Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,2'-bipyridine- $\kappa^2 N, N'$)dichloridocadmium(II)

Shan Gao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 15 November 2010; accepted 25 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.010 Å; R factor = 0.053; wR factor = 0.186; data-to-parameter ratio = 18.4.

The Cd^{II} atom in the title compound, $[CdCl_2(C_{10}H_8N_2)_2]$ exists in a distorted octahedral geometry [N-Cd-N =148.29 (17)°]; the Cl atoms are *cis* with respect to each other.

Related literature

For polymeric dichlorido(2,2'-bipyridine)cadmium, see: Zhou *et al.* (2003).

Experimental

Crystal data

 $\begin{bmatrix} CdCl_2(C_{10}H_8N_2)_2 \end{bmatrix} \\ M_r = 495.67 \\ Monoclinic, P2_1/c \\ a = 8.7477 (2) Å \\ b = 14.3541 (5) Å \\ c = 15.8723 (5) Å \\ \beta = 98.775 (1)^{\circ} \end{bmatrix}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.788, T_{\rm max} = 0.851$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.186$ S = 1.174497 reflections $V = 1969.68 (10) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 1.39 mm⁻¹ T = 293 K 0.18 \times 0.15 \times 0.12 mm

31202 measured reflections 4497 independent reflections 3047 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.056$

245 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.61$ e Å⁻³ $\Delta \rho_{min} = -1.04$ e Å⁻³

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903) and the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2233).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhou, Y.-F., Xu, Y., Yuan, D.-Q. & Hong, M.-C. (2003). Acta Cryst. E**59**, m821– m823.

supporting information

Acta Cryst. (2010). E66, m1692 [https://doi.org/10.1107/S1600536810049251]

Bis(2,2'-bipyridine- $\kappa^2 N, N'$)dichloridocadmium(II)

Shan Gao and Seik Weng Ng

S1. Comment

The hydrothermal reaction of cadmium chloride and 2,2'-bipyridine yields the 1:1 adduct, which exists as a chlorinebridged chain polymer. The cadmium atom exists in an octahedral geometry (Zhou *et al.*, 2003). In the present 1:2 adduct (Scheme I, Fig. 1), the geometry is also an octahedron but the molecule exists as a discrete entity, without any bridging.

S2. Experimental

Cadmium chloride (0.1 mmol), 2,2'-bipyridine (0.1 mmol) and benzoic acid (0.2 mmol) were dissolved in a waterethanol-DMF mixture (15 ml). The solution was heated in a 25 ml, Teflon-lined, stainless-steel bomb at 383 K for 3 days. The cool solution was filtered and the solvent allowed to evaporate. Colorless crystals separated from solution after a few days.

S3. Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $CdCl_2(C_{10}H_8N_2)_2$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Bis(2,2'-bipyridine- $\kappa^2 N, N'$)dichloridocadmium(II)

Crystal data

 $\begin{bmatrix} CdCl_2(C_{10}H_8N_2)_2 \end{bmatrix} \\ M_r = 495.67 \\ Monoclinic, P2_1/c \\ Hall symbol: -P 2ybc \\ a = 8.7477 (2) Å \\ b = 14.3541 (5) Å \\ c = 15.8723 (5) Å \\ \beta = 98.775 (1)^{\circ} \\ V = 1969.68 (10) Å^3 \\ Z = 4 \end{bmatrix}$

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.788, T_{max} = 0.851$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.186$ S = 1.174497 reflections 245 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 984 $D_x = 1.671 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 18413 reflections $\theta = 3.1-27.4^{\circ}$ $\mu = 1.39 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.18 \times 0.15 \times 0.12 \text{ mm}$

31202 measured reflections 4497 independent reflections 3047 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 27.4^\circ$, $\theta_{min} = 3.1^\circ$ $h = -11 \rightarrow 10$ $k = -18 \rightarrow 18$ $l = -20 \rightarrow 20$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1002P)^2 + 1.1952P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.61$ e Å⁻³ $\Delta\rho_{min} = -1.04$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0073 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A	valent isotropic displacement parameters (A^2)
--	--

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.69488 (4)	0.77175 (3)	0.53520(3)	0.0434 (2)	
Cl1	0.4692 (2)	0.77680 (12)	0.41696 (13)	0.0690 (5)	
Cl2	0.6158 (2)	0.88210 (14)	0.64297 (14)	0.0766 (6)	
N1	0.9503 (6)	0.7787 (3)	0.6172 (3)	0.0471 (12)	
N2	0.8703 (5)	0.8562 (3)	0.4634 (3)	0.0445 (11)	
N3	0.7797 (6)	0.6284 (4)	0.4710 (3)	0.0504 (12)	
N4	0.6420 (5)	0.6347 (4)	0.6118 (3)	0.0492 (12)	
C1	0.9828 (8)	0.7475 (5)	0.6967 (4)	0.0565 (16)	
H1	0.9028	0.7215	0.7213	0.068*	
C2	1.1294 (9)	0.7513 (5)	0.7455 (5)	0.0645 (19)	
H2	1.1465	0.7301	0.8015	0.077*	

C3	1.2469 (9)	0.7873 (5)	0.7080 (5)	0.068 (2)
H3	1.3470	0.7892	0.7379	0.081*
C4	1.2168 (7)	0.8207 (5)	0.6260 (5)	0.0622 (17)
H4	1.2961	0.8455	0.6001	0.075*
C5	1.0667 (6)	0.8170 (4)	0.5820 (4)	0.0463 (13)
C6	1.0215 (6)	0.8603 (4)	0.4967 (4)	0.0455 (13)
C7	1.1268 (7)	0.9075 (5)	0.4553 (4)	0.0576 (16)
H7	1.2309	0.9093	0.4787	0.069*
C8	1.0756 (8)	0.9521 (5)	0.3786 (4)	0.0661 (19)
H8	1.1450	0.9838	0.3500	0.079*
C9	0.9192 (9)	0.9489 (5)	0.3451 (4)	0.0652 (18)
H9	0.8808	0.9789	0.2944	0.078*
C10	0.8230 (8)	0.8991 (5)	0.3903 (4)	0.0548 (15)
H10	0.7185	0.8956	0.3678	0.066*
C11	0.8480 (8)	0.6289 (5)	0.4022 (4)	0.0635 (18)
H11	0.8691	0.6861	0.3790	0.076*
C12	0.8900 (9)	0.5483 (7)	0.3628 (5)	0.080(2)
H12	0.9375	0.5513	0.3143	0.096*
C13	0.8595 (9)	0.4645 (6)	0.3976 (5)	0.079 (3)
H13	0.8872	0.4092	0.3733	0.095*
C14	0.7875 (8)	0.4625 (5)	0.4688 (5)	0.066 (2)
H14	0.7663	0.4060	0.4931	0.080*
C15	0.7461 (7)	0.5474 (4)	0.5046 (4)	0.0493 (14)
C16	0.6667 (6)	0.5509 (4)	0.5800 (4)	0.0470 (14)
C17	0.6114 (8)	0.4700 (5)	0.6166 (5)	0.0648 (18)
H17	0.6267	0.4116	0.5939	0.078*
C18	0.5352 (8)	0.4779 (6)	0.6858 (5)	0.074 (2)
H18	0.4980	0.4251	0.7100	0.089*
C19	0.5145 (8)	0.5644 (6)	0.7189 (5)	0.068 (2)
H19	0.4647	0.5716	0.7662	0.081*
C20	0.5707 (7)	0.6415 (5)	0.6792 (4)	0.0584 (16)
H20	0.5573	0.7004	0.7014	0.070*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cd1	0.0380 (3)	0.0474 (3)	0.0449 (3)	-0.00430 (17)	0.00717 (18)	-0.00333 (18)
Cl1	0.0532 (9)	0.0678 (11)	0.0776 (12)	0.0016 (8)	-0.0165 (9)	-0.0071 (9)
Cl2	0.0647 (10)	0.0750 (12)	0.0984 (14)	-0.0204 (9)	0.0392 (10)	-0.0371 (11)
N1	0.041 (3)	0.056 (3)	0.042 (3)	-0.001 (2)	-0.001(2)	0.001 (2)
N2	0.038 (2)	0.050 (3)	0.045 (3)	-0.008(2)	0.0037 (19)	0.003 (2)
N3	0.051 (3)	0.055 (3)	0.045 (3)	0.002 (2)	0.008 (2)	-0.001 (2)
N4	0.047 (3)	0.051 (3)	0.050 (3)	-0.009(2)	0.006 (2)	0.001 (2)
C1	0.044 (3)	0.071 (4)	0.053 (4)	-0.005 (3)	0.000 (3)	-0.001 (3)
C2	0.072 (5)	0.060 (4)	0.055 (4)	0.008 (3)	-0.011 (4)	-0.005 (3)
C3	0.055 (4)	0.064 (4)	0.078 (5)	0.002 (3)	-0.013 (4)	-0.003 (4)
C4	0.038 (3)	0.067 (4)	0.080 (5)	-0.012 (3)	0.001 (3)	-0.003 (4)
C5	0.036 (3)	0.046 (3)	0.057 (3)	0.004 (2)	0.005 (2)	-0.004 (3)

supporting information

C6	0.043 (3)	0.049 (3)	0.047 (3)	0.001 (2)	0.015 (2)	-0.011 (3)
C7	0.050 (3)	0.059 (4)	0.067 (4)	-0.018 (3)	0.020 (3)	-0.001 (3)
C8	0.075 (5)	0.064 (4)	0.066 (4)	-0.021 (4)	0.032 (4)	-0.001 (3)
C9	0.083 (5)	0.061 (4)	0.053 (4)	-0.006 (4)	0.014 (3)	0.004 (3)
C10	0.058 (4)	0.061 (4)	0.044 (3)	-0.009(3)	0.006 (3)	0.009 (3)
C11	0.071 (4)	0.066 (4)	0.059 (4)	0.005 (4)	0.024 (3)	-0.009 (3)
C12	0.078 (5)	0.092 (7)	0.070 (5)	0.013 (5)	0.016 (4)	-0.030 (5)
C13	0.072 (5)	0.080 (6)	0.083 (6)	0.024 (4)	0.003 (4)	-0.042 (5)
C14	0.066 (4)	0.047 (4)	0.080 (5)	0.008 (3)	-0.007 (4)	-0.014 (3)
C15	0.045 (3)	0.046 (3)	0.054 (3)	0.002 (3)	-0.003 (3)	-0.006 (3)
C16	0.039 (3)	0.045 (3)	0.052 (3)	-0.005 (2)	-0.007(2)	0.005 (3)
C17	0.062 (4)	0.049 (4)	0.079 (5)	-0.011 (3)	-0.002 (4)	0.018 (3)
C18	0.057 (4)	0.076 (5)	0.085 (5)	-0.018 (4)	-0.001 (4)	0.037 (5)
C19	0.054 (4)	0.092 (6)	0.054 (4)	-0.015 (4)	-0.002 (3)	0.018 (4)
C20	0.054 (3)	0.075 (5)	0.049 (3)	-0.011 (3)	0.017 (3)	0.001 (3)

Geometric parameters (Å, °)

Cd1—N2	2.378 (5)	C7—C8	1.388 (9)
Cd1—N4	2.394 (5)	С7—Н7	0.9300
Cd1—N1	2.410 (5)	C8—C9	1.391 (10)
Cd1—N3	2.461 (5)	C8—H8	0.9300
Cd1—Cl2	2.5049 (18)	C9—C10	1.385 (9)
Cd1—Cl1	2.5087 (18)	С9—Н9	0.9300
N1—C1	1.327 (8)	C10—H10	0.9300
N1—C5	1.351 (8)	C11—C12	1.392 (10)
N2-C10	1.323 (7)	C11—H11	0.9300
N2—C6	1.349 (7)	C12—C13	1.366 (13)
N3—C11	1.322 (8)	C12—H12	0.9300
N3—C15	1.330 (8)	C13—C14	1.375 (10)
N4—C20	1.322 (8)	C13—H13	0.9300
N4—C16	1.335 (8)	C14—C15	1.415 (9)
C1—C2	1.395 (10)	C14—H14	0.9300
C1—H1	0.9300	C15—C16	1.472 (10)
C2—C3	1.365 (11)	C16—C17	1.417 (9)
C2—H2	0.9300	C17—C18	1.374 (11)
C3—C4	1.375 (10)	C17—H17	0.9300
С3—Н3	0.9300	C18—C19	1.370 (12)
C4—C5	1.391 (8)	C18—H18	0.9300
C4—H4	0.9300	C19—C20	1.399 (10)
C5—C6	1.487 (8)	C19—H19	0.9300
С6—С7	1.387 (8)	C20—H20	0.9300
N2—Cd1—N4	148.29 (17)	C7—C6—C5	122.2 (5)
N2—Cd1—N1	67.98 (16)	C6—C7—C8	119.5 (6)
N4—Cd1—N1	89.69 (16)	С6—С7—Н7	120.2
N2—Cd1—N3	88.30 (17)	С8—С7—Н7	120.2
N4—Cd1—N3	67.48 (19)	С7—С8—С9	119.1 (6)

N1—Cd1—N3	86.83 (16)	С7—С8—Н8	120.5
N2—Cd1—Cl2	105.71 (13)	С9—С8—Н8	120.5
N4—Cd1—Cl2	94.47 (13)	C10—C9—C8	117.4 (6)
N1—Cd1—Cl2	86.28 (13)	С10—С9—Н9	121.3
N3—Cd1—Cl2	160.70 (13)	С8—С9—Н9	121.3
N_2 —Cd1—Cl1	96 80 (12)	N2-C10-C9	124.1 (6)
N4—Cd1—Cl1	102.28(12)	$N_2 - C_{10} - H_{10}$	117.9
N1—Cd1—Cl1	162.28(12) 164.08(14)	C9 - C10 - H10	117.9
N3—Cd1—Cl1	88 10 (12)	N_{3} C11 C12	123 4 (8)
Cl2-Cd1-Cl1	102 99 (7)	N3—C11—H11	118 3
C1 - N1 - C5	102.99(7) 117.7(5)	C_{12} C_{11} H_{11}	118.3
C1 - N1 - Cd1	117.7(3) 123.1(4)	C12 - C11 - C11	118.0(7)
C_{1} N1 C_{1}	123.1(4) 110.2(4)	C13 - C12 - C11	121.0
C_{10} N2 C_{6}	119.2(4)	C13 - C12 - H12	121.0
C10 N2 Cd1	110.7(3) 121.2(4)	C12 C12 C14	121.0
C_{10} N_{2} C_{11}	121.3(4)	C12 - C13 - C14	119.5 (7)
Co-N2-Cal	120.0 (4)	C12—C13—H13	120.5
C11 - N3 - C15	119.5 (6)	C14—C13—H13	120.3
CII—N3—Cdl	122.7 (5)	C13-C14-C15	119.4 (7)
C15—N3—Cd1	117.7 (4)	C13—C14—H14	120.3
C20—N4—C16	119.7 (6)	C15—C14—H14	120.3
C20—N4—Cd1	120.2 (5)	N3—C15—C14	120.3 (6)
C16—N4—Cd1	119.6 (4)	N3—C15—C16	117.2 (5)
N1—C1—C2	124.1 (7)	C14—C15—C16	122.5 (6)
N1—C1—H1	118.0	N4—C16—C17	119.9 (6)
C2—C1—H1	118.0	N4—C16—C15	117.4 (5)
C3—C2—C1	117.5 (7)	C17—C16—C15	122.6 (6)
C3—C2—H2	121.2	C18—C17—C16	119.9 (7)
C1—C2—H2	121.2	C18—C17—H17	120.1
C2—C3—C4	119.8 (7)	C16—C17—H17	120.1
С2—С3—Н3	120.1	C19—C18—C17	119.3 (7)
С4—С3—Н3	120.1	C19-C18-H18	120.3
C3—C4—C5	119.4 (6)	C17—C18—H18	120.3
C3—C4—H4	120.3	C18—C19—C20	117.9 (7)
C5—C4—H4	120.3	C18—C19—H19	121.0
N1—C5—C4	121.5 (6)	C20—C19—H19	121.0
N1—C5—C6	115.8 (5)	N4—C20—C19	123.2 (7)
C4—C5—C6	122.7 (6)	N4—C20—H20	118.4
N2—C6—C7	121.2 (6)	C19—C20—H20	118.4
N2—C6—C5	116.5 (5)		
N2-Cd1-N1-C1	173 2 (5)	Cd1 - N1 - C5 - C4	-1785(5)
N4-Cd1-N1-C1	-29.9(5)	C1 - N1 - C5 - C6	-1735(5)
N_3 —Cd1—N1—C1	-974(5)	Cd1—N1—C5—C6	56(7)
Cl2— $Cd1$ — $N1$ — Cl	64 6 (5)	C_{3} C_{4} C_{5} N_{1}	-21(10)
C_{11} C_{d1} N_{1} C_{1}	-169.0(4)	C_{3} C_{4} C_{5} C_{6}	173.6 (6)
N_2 Cd1 N_1 C5	-5.8(4)	C_{10} N2 C_{6} C_{7}	-0.7(0)
$N_2 = Cut = N_1 = C_3$	151 1 (1)	$C_{10} = 102 = C_{0} = C_{7}$	1787(5)
$N_3 Cd1 N_1 C5$	33.1(+)	$C_{11} = N_2 = C_0 = C_7$	175.7(3)
11J-Cui-III-CJ	0.0.0	010-112-00-03	1/0.0(0)

C12 - Cd1 - N1 - C5	-1144(4)	Cd1 - N2 - C6 - C5	-5.0(7)
Cl1—Cd1—N1—C5	12.0 (8)	N1-C5-C6-N2	-0.4(8)
N4—Cd1—N2—C10	136.8 (5)	C4—C5—C6—N2	-176.3 (6)
N1—Cd1—N2—C10	-175.0 (5)	N1—C5—C6—C7	175.8 (6)
N3—Cd1—N2—C10	97.8 (5)	C4—C5—C6—C7	-0.1 (10)
Cl2—Cd1—N2—C10	-95.7 (5)	N2—C6—C7—C8	0.6 (10)
Cl1—Cd1—N2—C10	9.9 (5)	C5—C6—C7—C8	-175.4(6)
N4—Cd1—N2—C6	-42.7 (6)	C6—C7—C8—C9	0.3 (11)
N1—Cd1—N2—C6	5.6 (4)	C7—C8—C9—C10	-1.2 (11)
N3—Cd1—N2—C6	-81.7 (4)	C6—N2—C10—C9	-0.2 (10)
Cl2—Cd1—N2—C6	84.9 (4)	Cd1—N2—C10—C9	-179.6 (5)
Cl1—Cd1—N2—C6	-169.5 (4)	C8—C9—C10—N2	1.1 (11)
N2—Cd1—N3—C11	-20.4 (5)	C15—N3—C11—C12	-1.1 (11)
N4—Cd1—N3—C11	-179.4 (5)	Cd1—N3—C11—C12	-176.8 (6)
N1—Cd1—N3—C11	-88.4 (5)	N3-C11-C12-C13	-0.4 (12)
Cl2—Cd1—N3—C11	-157.7 (4)	C11—C12—C13—C14	0.8 (12)
Cl1—Cd1—N3—C11	76.5 (5)	C12—C13—C14—C15	0.1 (11)
N2—Cd1—N3—C15	163.8 (4)	C11—N3—C15—C14	2.0 (9)
N4—Cd1—N3—C15	4.8 (4)	Cd1—N3—C15—C14	178.0 (4)
N1—Cd1—N3—C15	95.7 (4)	C11—N3—C15—C16	-178.6 (5)
Cl2—Cd1—N3—C15	26.5 (7)	Cd1—N3—C15—C16	-2.6 (7)
Cl1—Cd1—N3—C15	-99.4 (4)	C13—C14—C15—N3	-1.6 (10)
N2-Cd1-N4-C20	138.8 (4)	C13—C14—C15—C16	179.0 (6)
N1-Cd1-N4-C20	95.0 (5)	C20-N4-C16-C17	2.3 (9)
N3—Cd1—N4—C20	-178.3 (5)	Cd1—N4—C16—C17	-169.2 (4)
Cl2-Cd1-N4-C20	8.7 (5)	C20-N4-C16-C15	179.8 (5)
Cl1-Cd1-N4-C20	-95.6 (4)	Cd1—N4—C16—C15	8.3 (7)
N2-Cd1-N4-C16	-49.8 (6)	N3-C15-C16-N4	-3.6 (8)
N1-Cd1-N4-C16	-93.6 (4)	C14—C15—C16—N4	175.8 (5)
N3—Cd1—N4—C16	-6.9 (4)	N3-C15-C16-C17	173.8 (5)
Cl2—Cd1—N4—C16	-179.8 (4)	C14—C15—C16—C17	-6.8 (10)
Cl1—Cd1—N4—C16	75.9 (4)	N4-C16-C17-C18	-1.2 (9)
C5—N1—C1—C2	-0.5 (10)	C15—C16—C17—C18	-178.6 (6)
Cd1—N1—C1—C2	-179.6 (5)	C16—C17—C18—C19	-0.4 (10)
N1—C1—C2—C3	-1.7 (11)	C17—C18—C19—C20	1.0 (10)
C1—C2—C3—C4	2.1 (11)	C16—N4—C20—C19	-1.8 (10)
C2—C3—C4—C5	-0.3 (11)	Cd1—N4—C20—C19	169.6 (5)
C1—N1—C5—C4	2.5 (9)	C18—C19—C20—N4	0.1 (11)