Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Bis(2,6-diisopropylphenyl)-4,5dihydro-1*H*-imidazol-3-ium triiodide

Monisola I. Ikhile and Muhammad D. Bala*

School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: bala@ukzn.ac.za

Received 29 October 2010; accepted 4 November 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.007 Å; R factor = 0.039; wR factor = 0.122; data-to-parameter ratio = 24.3.

In the crystal structure of the title compound, $C_{27}H_{39}N_2^{+}\cdot I_3^{-}$, the imidazolidinium ring is perpendicular to a mirror plane which bisects the cation. The dihedral angle between the imidazolidinium ring and the benzene ring is 89.0 (2)°. The triiodide anion also lies on a mirror plane and is almost linear with an I-I-I bond angle of 178.309 (18)°.

Related literature

For a related structure with a 1,3-(2,6-diisopropylphenyl)imidazolidinium unit, see: Giffin *et al.* (2010). For its synthesis, see: Llewellyn *et al.* (2006).

organic compounds

Experimental

Crystal data

 $wR(F^2) = 0.122$

3772 reflections

S = 0.97

$C_{27}H_{39}N_2^+ \cdot I_3^-$ $M_r = 772.30$ Monoclinic, $C2/m$ a = 18.0288 (5) Å b = 15.4554 (5) Å c = 13.8457 (6) Å $\beta = 129.456$ (1)°	$V = 2978.81 (18) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 3.16 \text{ mm}^{-1}$ T = 173 K $0.39 \times 0.22 \times 0.14 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Absorption correction: integration (XPREP; Bruker, 2005) $T_{min} = 0.438, T_{max} = 0.642$	12244 measured reflections 3772 independent reflections 2536 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.039$	155 parameters

155 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.92 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -1.30 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We wish to thank Dr Manuel Fernandes for the data collection and the University KwaZulu-Natal and the NRF for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2624).

References

Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010). Acta Cryst. E66, o2090– o2091.

Llewellyn, S., Green, M., Green, J. & Cowley, R. (2006). *Dalton Trans.* pp. 2535–2541.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o3121 [https://doi.org/10.1107/S1600536810045228]

1,3-Bis(2,6-diisopropylphenyl)-4,5-dihydro-1H-imidazol-3-ium triiodide

Monisola I. Ikhile and Muhammad D. Bala

S1. Comment

We were using a general synthetic method that involved the deprotonation of *N*-heterocyclic carbene (NHC) salts with strong bases to generate free carbenes, followed by *in situ* metalation with an iron(II) precursor to generate iron(II) based NHC complexes. In order to obtain piano stool type compounds, η^5 -CpFe(CO)₂I was used as the iron(II) precursor. Piano-stool type complexes are of interest due to their outstanding spectroscopic and structural features which has made them the subject of many elegant studies in the past. But in this instance, the title compound C₂₇H₃₉N₂I₃, (I), was obtained as a triiodide adduct of the protonated NHC ligand. A molecule of the cationic NHC is characterized by a bisecting mirror plane, while the triiodide counterion is symmetrical around the central iodine atom I2. The imidazolidinium ring is nearly orthogonal to the phenyl rings of the N-substituents with torsion angles N13–N1–C1–C6 close to 90°. The triiodide counterion is linear.

S2. Experimental

To a suspension of 1,3-bis(2,6-diisopropylphenyl)imidazolidinium chloride (0.1 g) in dry THF (15 ml) was added potassium *tert*-butoxide (0.031 g). After 1 h, this solution was added to a solution of $[\eta^5$ -CpFe(CO)₂I] (0.07 g) in dry toluene (40 ml). After stirring for 20 hrs, the resulting precipitate was centrifuged and washed once with dry toluene (30 ml). The toluene extracts were combined and left standing in air to form shiny black crystals of (I).

S3. Refinement

Hydrogen atoms were first located in a difference map and then positioned geometrically (C—H = 0.95-1.00 Å) and allowed to ride on their respective parent atoms. The highest peak and the deepest hole in the difference Fourier map are located 0.87 and 0.65 Å, respectively, from atom I3.

Figure 1

Molecular structure of the title compound with the atom labelling scheme for non-hydrogen atoms. Ellipsoids are drawn at the 50% probability level. All H atoms have been omitted.

1,3-Bis(2,6-diisopropylphenyl)-4,5-dihydro-1H-imidazol-3-ium triiodide

Crystal data

C₂₇H₃₉N₂⁺·I₃⁻ $M_r = 772.30$ Monoclinic, C2/m Hall symbol: -C 2y a = 18.0288 (5) Å b = 15.4554 (5) Å c = 13.8457 (6) Å $\beta = 129.456$ (1)° V = 2978.81 (18) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: integration (*XPREP*; Bruker, 2005) $T_{\min} = 0.438, T_{\max} = 0.642$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.122$ S = 0.97 F(000) = 1496 $D_x = 1.722 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3850 reflections $\theta = 2.9-28.1^{\circ}$ $\mu = 3.16 \text{ mm}^{-1}$ T = 173 KBlock, brown $0.39 \times 0.22 \times 0.14 \text{ mm}$

12244 measured reflections 3772 independent reflections 2536 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 28.3^\circ, \theta_{min} = 1.9^\circ$ $h = -17 \rightarrow 24$ $k = -20 \rightarrow 18$ $l = -18 \rightarrow 11$

3772 reflections155 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map	$w = 1/[\sigma^2(F_o^2) + (0.065P)^2 + 5.5612P]$ where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.026$
neighbouring sites	$\Delta \rho_{\rm max} = 1.92 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -1.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3529 (2)	0.3426 (2)	0.2270 (3)	0.0250 (7)	
C2	0.3463 (2)	0.3008 (2)	0.3116 (3)	0.0277 (7)	
C3	0.3832 (3)	0.2177 (2)	0.3478 (3)	0.0328 (8)	
Н3	0.3808	0.1876	0.4055	0.039*	
C4	0.4236 (3)	0.1775 (2)	0.3015 (4)	0.0388 (9)	
H4	0.4480	0.1203	0.3274	0.047*	
C5	0.4285 (3)	0.2201 (2)	0.2178 (3)	0.0354 (8)	
Н5	0.4569	0.1919	0.1873	0.043*	
C6	0.3926 (2)	0.3033 (2)	0.1777 (3)	0.0296 (7)	
C7	0.4002 (3)	0.3505 (2)	0.0879 (3)	0.0332 (8)	
H7	0.3583	0.4031	0.0567	0.040*	
C8	0.3653 (4)	0.2949 (3)	-0.0245 (4)	0.0578 (13)	
H8A	0.3638	0.3297	-0.0849	0.087*	
H8B	0.3006	0.2734	-0.0640	0.087*	
H8C	0.4090	0.2459	0.0029	0.087*	
C9	0.5022 (3)	0.3801 (4)	0.1556 (4)	0.0573 (13)	
H9A	0.5240	0.4145	0.2289	0.086*	
H9B	0.5050	0.4156	0.0992	0.086*	
H9C	0.5440	0.3296	0.1825	0.086*	
C10	0.3020 (3)	0.3437 (2)	0.3629 (3)	0.0310 (8)	
H10	0.2700	0.3981	0.3141	0.037*	
C11	0.3788 (4)	0.3692 (5)	0.4980 (4)	0.080 (2)	
H11A	0.4077	0.3170	0.5497	0.120*	
H11B	0.3500	0.4040	0.5259	0.120*	
H11C	0.4284	0.4031	0.5062	0.120*	
C12	0.2256 (5)	0.2874 (4)	0.3461 (6)	0.0741 (17)	
H12A	0.1784	0.2701	0.2582	0.111*	
H12B	0.1932	0.3200	0.3706	0.111*	
H12C	0.2557	0.2356	0.3986	0.111*	
C13	0.3643 (3)	0.5000	0.2404 (4)	0.0239 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H13	0.4304	0.5000	0.3122	0.029*	
C14	0.2147 (2)	0.4503 (2)	0.0778 (3)	0.0298 (7)	
H14A	0.1690	0.4272	0.0882	0.036*	
H14B	0.1980	0.4272	-0.0005	0.036*	
N1	0.31536 (19)	0.42912 (17)	0.1873 (2)	0.0250 (6)	
I1	0.24578 (3)	0.0000	0.27734 (5)	0.06328 (17)	
I2	0.34949 (3)	0.0000	0.54335 (4)	0.05203 (15)	
I3	0.45122 (3)	0.0000	0.81697 (5)	0.06143 (17)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0219 (16)	0.0203 (15)	0.0278 (14)	-0.0005 (12)	0.0134 (12)	-0.0018 (12)
C2	0.0229 (16)	0.0261 (17)	0.0252 (14)	-0.0019 (13)	0.0111 (13)	-0.0014 (12)
C3	0.0311 (19)	0.0298 (19)	0.0313 (16)	-0.0006 (15)	0.0170 (14)	0.0027 (14)
C4	0.035 (2)	0.0253 (19)	0.045 (2)	0.0043 (16)	0.0201 (17)	0.0037 (15)
C5	0.034 (2)	0.0302 (19)	0.0416 (18)	0.0031 (16)	0.0240 (16)	-0.0041 (15)
C6	0.0221 (17)	0.0294 (18)	0.0328 (15)	-0.0029 (14)	0.0153 (14)	-0.0042 (14)
C7	0.0312 (19)	0.0338 (19)	0.0393 (17)	0.0014 (15)	0.0246 (16)	-0.0014 (15)
C8	0.068 (3)	0.060 (3)	0.038 (2)	-0.019 (3)	0.030 (2)	-0.011 (2)
C9	0.048 (3)	0.081 (4)	0.051 (2)	-0.027 (3)	0.035 (2)	-0.012 (2)
C10	0.0318 (18)	0.0329 (19)	0.0272 (15)	0.0007 (15)	0.0182 (14)	-0.0011 (14)
C11	0.050 (3)	0.115 (5)	0.043 (2)	0.019 (3)	0.015 (2)	-0.035 (3)
C12	0.103 (5)	0.059 (3)	0.118 (5)	-0.025 (3)	0.097 (4)	-0.029 (3)
C13	0.021 (2)	0.026 (2)	0.0233 (19)	0.000	0.0131 (17)	0.000
C14	0.0198 (16)	0.0267 (18)	0.0303 (15)	0.0005 (13)	0.0101 (13)	-0.0013 (13)
N1	0.0201 (13)	0.0214 (14)	0.0267 (12)	0.0006 (11)	0.0118 (11)	0.0002 (10)
I1	0.0473 (3)	0.0391 (3)	0.0848 (3)	0.000	0.0333 (2)	0.000
I2	0.0325 (2)	0.0354 (2)	0.0847 (3)	0.000	0.0356 (2)	0.000
13	0.0361 (2)	0.0614 (3)	0.0792 (3)	0.000	0.0331 (2)	0.000

Geometric parameters (Å, °)

C1—C6	1.403 (5)	С9—Н9С	0.9800
C1—C2	1.407 (5)	C10—C11	1.509 (5)
C1—N1	1.441 (4)	C10—C12	1.518 (6)
C2—C3	1.386 (5)	C10—H10	1.0000
C2—C10	1.518 (5)	C11—H11A	0.9800
C3—C4	1.384 (5)	C11—H11B	0.9800
С3—Н3	0.9500	C11—H11C	0.9800
C4—C5	1.385 (5)	C12—H12A	0.9800
C4—H4	0.9500	C12—H12B	0.9800
C5—C6	1.388 (5)	C12—H12C	0.9800
С5—Н5	0.9500	C13—N1	1.302 (3)
C6—C7	1.520 (5)	C13—N1 ⁱ	1.302 (3)
С7—С9	1.511 (5)	C13—H13	0.9500
С7—С8	1.521 (5)	C14—N1	1.484 (4)
С7—Н7	1.0000	C14C14 ⁱ	1.535 (7)

C8—H8A	0.9800	C14—H14A	0.9900
C8—H8B	0.9800	C14—H14B	0.9900
C8—H8C	0.9800	I1—I2	2.8824 (7)
С9—Н9А	0.9800	I2—I3	2.9808 (7)
С9—Н9В	0.9800		
C6—C1—C2	123.1 (3)	Н9А—С9—Н9С	109.5
C6—C1—N1	118.5 (3)	H9B—C9—H9C	109.5
C2-C1-N1	118.4 (3)	C11—C10—C12	111.6 (4)
C3—C2—C1	116.8 (3)	C11—C10—C2	110.7 (3)
C3—C2—C10	120.7 (3)	C12—C10—C2	112.0 (3)
C1—C2—C10	122.5 (3)	C11—C10—H10	107.5
C4—C3—C2	121.5 (3)	C12—C10—H10	107.5
С4—С3—Н3	119.3	C2-C10-H10	107.5
С2—С3—Н3	119.3	C10-C11-H11A	109.5
C5—C4—C3	120.4 (3)	C10-C11-H11B	109.5
C5—C4—H4	119.8	H11A—C11—H11B	109.5
C3—C4—H4	119.8	C10-C11-H11C	109.5
C4—C5—C6	120.9 (4)	H11A—C11—H11C	109.5
С4—С5—Н5	119.5	H11B—C11—H11C	109.5
С6—С5—Н5	119.5	C10-C12-H12A	109.5
C5—C6—C1	117.3 (3)	C10-C12-H12B	109.5
C5—C6—C7	120.7 (3)	H12A—C12—H12B	109.5
C1—C6—C7	121.9 (3)	C10-C12-H12C	109.5
C9—C7—C8	110.7 (3)	H12A—C12—H12C	109.5
C9—C7—C6	110.2 (3)	H12B—C12—H12C	109.5
C8—C7—C6	111.8 (3)	N1-C13-N1 ⁱ	114.6 (4)
С9—С7—Н7	108.0	N1—C13—H13	122.7
С8—С7—Н7	108.0	N1 ⁱ —C13—H13	122.7
С6—С7—Н7	108.0	N1-C14-C14 ⁱ	102.77 (16)
С7—С8—Н8А	109.5	N1—C14—H14A	111.2
С7—С8—Н8В	109.5	C14 ⁱ —C14—H14A	111.2
H8A—C8—H8B	109.5	N1—C14—H14B	111.2
C7—C8—H8C	109.5	C14 ⁱ —C14—H14B	111.2
H8A—C8—H8C	109.5	H14A—C14—H14B	109.1
H8B—C8—H8C	109.5	C13— $N1$ — $C1$	125.5 (3)
C7—C9—H9A	109.5	C13—N1—C14	109.9 (3)
C7—C9—H9B	109.5	C1 - N1 - C14	1246(3)
H9A—C9—H9B	109.5	11—12—13	178.309 (18)
C7—C9—H9C	109.5		1,00005 (10)
	109.0		
C6-C1-C2-C3	1.3 (5)	C1—C6—C7—C9	103.2 (4)
N1-C1-C2-C3	-1800(3)	$C_{5} - C_{6} - C_{7} - C_{8}$	49 3 (5)
C_{6} C_{1} C_{2} C_{10}	-179.2(3)	C1-C6-C7-C8	-133.2.(4)
N1 - C1 - C2 - C10	-0.5(4)	C_{3} C_{2} C_{10} C_{11}	72.8 (5)
C1-C2-C3-C4	-0.7(5)	C1-C2-C10-C11	-106.7(4)
C10-C2-C3-C4	179.8 (3)	C_{3} C_{2} C_{10} C_{12}	-52.4(5)
$C_2 - C_3 - C_4 - C_5$	0.4 (6)	C1 - C2 - C10 - C12	128 1 (4)
02 03 07 03	0.7 (0)	01 - 02 - 010 - 012	120.1 (7)

C3—C4—C5—C6 C4—C5—C6—C1 C4—C5—C6—C7	-0.5 (6) 1.0 (5) 178.7 (3)	N1 ⁱ —C13—N1—C1 N1 ⁱ —C13—N1—C14 C6—C1—N1—C13	179.3 (2) 0.1 (5) -89.2 (4)
C4 - C5 - C6 - C7 C2 - C1 - C6 - C5 N1 - C1 - C6 - C5 C2 - C1 - C6 - C7 C2 - C1 - C6 - C7	1.0(3) 178.7(3) -1.4(5) 179.8(3) -179.1(3) 2.2(5)	$\begin{array}{c} C6-C1-N1-C13\\ C2-C1-N1-C13\\ C6-C1-N1-C13\\ C2-C1-N1-C14\\ C2-C1-N1-C14\\ C14i C14 N1-C12\\ \end{array}$	$\begin{array}{c} -89.2 \ (4) \\ 92.0 \ (4) \\ 89.9 \ (4) \\ -88.9 \ (4) \\ -0.1 \ (2) \end{array}$
C5—C6—C7—C9	-74.3 (4)	$C14^{i}$ — $C14$ — $N1$ — $C1$	-179.3 (3)

Symmetry code: (i) x, -y+1, z.