Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2,4-Dichloro-6-{1-[(2-chloroethyl)imino]ethyl}phenol

Yong-Sheng Xie,^a* Wen-Liang Dong,^b Li-Ping He,^a Xin-Ling Zhang^c and Bao-Xiang Zhao^d

^aCollege of Chemical and Environment Engineering, Chongqing Three Gorges University, Chongging 404100, People's Republic of China, ^bShandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China, ^cEditorial Department of College Journal, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China, and ^dSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: yshxl@yahoo.com.cn

Received 10 October 2010; accepted 31 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.091; data-to-parameter ratio = 18.0.

The title Schiff base compound, $C_{10}H_{10}Cl_3NO$, was prepared by the condensation of 1-(3,5-dichloro-2-hydroxyphenyl)ethanone with chloroethylamine. The imine adopts an Econfiguration with respect to the C-N bond. The H atom of the phenolic OH group is disordered over two positions with site occupation factors of 0.52 (7) and 0.48 (7), respectively, and the major occupancy component is involved in an intramolecular N-H···O hydrogen bond. The compound therefore exists in an iminium-phenolate as well as in the imino-phenol form. In the crystal, molecules are connected by $C-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds and $Cl\cdots Cl$ interactions [3.7864 (9) Å] into a three-dimensional network. In addition, intermolecular π - π stacking interactions [centroid–centroid distance = 4.4312 (9) Å] are observed.

Related literature

For a related structure, see: Wang et al. (2010). For applications of Schiff base ligands, see: Yin et al. (2004); Böhme & Günther (2007).

Experimental

Crystal data

V = 1150.39 (3) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.77 \text{ mm}^{-1}$
T = 296 K
$0.38 \times 0.19 \times 0.07$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.762, \ T_{\max} = 0.951$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	
$wR(F^2) = 0.091$	
S = 1.02	
2625 reflections	
146 parameters	
2 restraints	

n 07 mm

8253 measured reflections 2625 independent reflections 1940 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.023$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O1$	0.88 (2)	1.68 (2)	2.479 (2)	150 (4)
$C10-H10B\cdotsO1^{i}$	0.97	2.48	3.416 (2)	159
C10-H10A···Cl3 ⁱⁱ	0.97	2.86	3.621 (2)	136

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

This study was supported by the Natural Science Foundation of Shandong Province (Z2008B10).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2238).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Böhme, U. & Günther, B. (2007). Inorg. Chem. Commun. 10, 482-484.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, C.-H., Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2010). Acta Cryst. E66, 0745. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yin, H. D., Wang, Q. B. & Xue, S. C. (2004). J. Organomet. Chem. 689, 2480-2485

supporting information

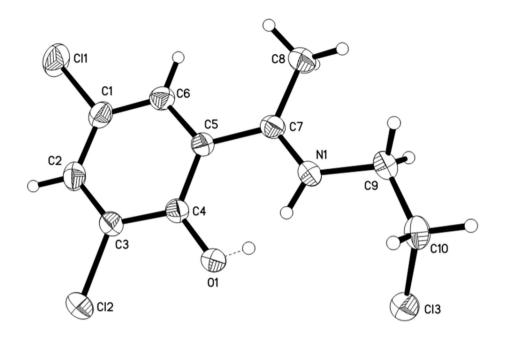
Acta Cryst. (2010). E66, o3106 [https://doi.org/10.1107/S160053681004448X]

(E)-2,4-Dichloro-6-{1-[(2-chloroethyl)imino]ethyl}phenol

Yong-Sheng Xie, Wen-Liang Dong, Li-Ping He, Xin-Ling Zhang and Bao-Xiang Zhao

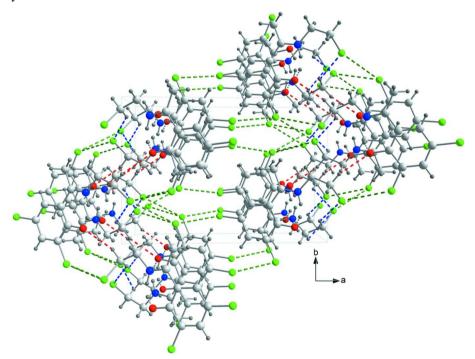
S1. Comment

Schiff-base ligands have attracted much attention over the years, e.g. as ligands in organotin(IV) compounds owing to their anti-tumour activities (Yin *et al.*, 2004), and in silicon complexes applied to the field of photovoltaic applications, as coloring material and due to their antimicrobial activity. (Böhme & Günther, 2007). We report here the crystal structure of the title Schiff-base ligand (Fig. 1).

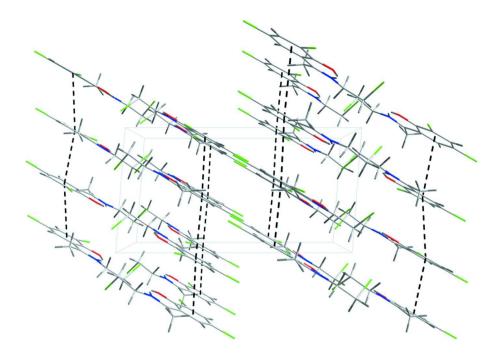

The molecular structure of the ligand is represented in Fig. 1. The bond lengths and angles are in eligible range. The C7 —N1 and C9—N1 bond lengths of 1.290 (2), 1.460 (2) Å, respectively, conform to the value for a double and single bonds and they are comparable with the corresponding bond lengths in similar Schiff-base compounds (Wang *et al.*, 2010). The hydrogen atom of the phenolic OH group is disordered over two positions with site occupation factors of 0.52 and 0.48, respectively. The compound therefore exists in an iminium-phenolate as well as in an imino-phenol form. The situation may be interpreted as the intramolecular protonation of the basic imine nitrogen by the acidic phenol group. In the crystal, molecules are connected by C—H···O, C—H···Cl (Table 1) and Cl···Cl interactions [Cl1···Cl2 distance = 3.7864 (9) Å for symmetry operation -x + 1, -y + 1, -z; Cl2···Cl3 distance = 3.7709 (7) Å for symmetry operation -x + 2, y - 1/2, -z + 1/2; Cl2···Cl3 distance = 3.7789 (8) Å for symmetry operation -x + 2, -y + 1, -z] into a network (Fig. 2). In addition, weak intermolecular π - π interactions serve to stabilize the extended structure [Cg···Cg distance = 4.4312 (9) Å for symmetry operation x, -y + 1/2, z - 1/2 and x, -y + 1/2, z + 1/2 (The Cg is the centroid of the phenyl ring)].

S2. Experimental

To a mixture of 1-(3,5-dichloro-2-hydroxy-phenyl)-ethanone (5.1 g, 25 mmol) and chloroethylamine hydrochloride (5.8 g, 50 mmol) in ethanol (150 ml) was added triethylamine (5.1 g, 50 mmol). The mixture was heated to reflux for 10 min. After being cooled to room temperature, the resulting precipitate was filtrated and washed with water to afford the product, *E*-2,4-dichloro-6-(1-(2-chloroethylimino)ethyl)phenol in 84% yield. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethyl acetate at room temperature for 7 d.


S3. Refinement

All H atoms at carbon were placed geometrically and refined using a riding model with C—H = 0.97 Å (for CH₂ group), 0.96 Å (for CH₃ group) and 0.93 Å (for aryl H atoms). The isotropic atomic displacement parameters of hydrogen atoms were set to $1.5 \times Ueq$ (CH₃) and $1.2 \times Ueq$ (CH₂, C_{ar}H) of the parent atoms. Positions of hydrogen atoms at N1 and O1 were taken from difference Fourier maps and were refined using PART instructions.


Figure 1

Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Crystal packing of title compound viewed along the *b* axis. $C - H \cdots O$ and $C - H \cdots Cl$ hydrogen bonds are displayed as red and blue dashed lines, respectively. $Cl \cdots Cl$ interactions are shown as green dashed lines.

Crystal packing of title compound viewed along the *c* axis. The π - π interactions are shown as black dashed lines.

(E)-2,4-Dichloro-6-{1-[(2-chloroethyl)imino]ethyl}phenol

Crystal data

C₁₀H₁₀Cl₃NO $M_r = 266.54$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.5710 (2) Å b = 10.2323 (2) Å c = 7.7384 (1) Å $\beta = 94.376$ (1)° V = 1150.39 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.762, T_{\max} = 0.951$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.091$ S = 1.02 F(000) = 544 $D_x = 1.539 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2504 reflections $\theta = 2.4-25.9^{\circ}$ $\mu = 0.77 \text{ mm}^{-1}$ T = 296 KPlate, orange $0.38 \times 0.19 \times 0.07 \text{ mm}$

8253 measured reflections 2625 independent reflections 1940 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -18 \rightarrow 17$ $k = -10 \rightarrow 13$ $l = -8 \rightarrow 10$

2625 reflections146 parameters2 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map	$w = 1/[\sigma^2(F_o^2) + (0.0452P)^2 + 0.1559P]$ where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.006$
neighbouring sites	$\Delta \rho_{\rm max} = 0.25 \ { m e} \ { m \AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
and constrained refinement	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1
C1	0.57736 (13)	0.15817 (19)	-0.1505 (2)	0.0498 (4)	
C2	0.61146 (13)	0.0340 (2)	-0.1143 (2)	0.0516 (5)	
H2	0.5771	-0.0395	-0.1481	0.062*	
C3	0.69659 (12)	0.02119 (17)	-0.0279 (2)	0.0455 (4)	
C4	0.75065 (12)	0.12988 (16)	0.0289 (2)	0.0401 (4)	
C5	0.71381 (12)	0.25627 (16)	-0.0117 (2)	0.0388 (4)	
C6	0.62665 (12)	0.26726 (18)	-0.1027 (2)	0.0458 (4)	
H6	0.6026	0.3495	-0.1303	0.055*	
C7	0.76729 (12)	0.37256 (16)	0.0405 (2)	0.0403 (4)	
C8	0.73432 (14)	0.50736 (18)	-0.0072 (3)	0.0559 (5)	
H8A	0.6689	0.5122	0.0002	0.084*	
H8B	0.7487	0.5268	-0.1235	0.084*	
H8C	0.7642	0.5696	0.0710	0.084*	
С9	0.90715 (13)	0.45820 (17)	0.1910 (2)	0.0491 (4)	
H9A	0.8749	0.5189	0.2611	0.059*	
H9B	0.9276	0.5057	0.0925	0.059*	
C10	0.98893 (13)	0.40380 (19)	0.2962 (2)	0.0509 (5)	
H10A	0.9682	0.3582	0.3961	0.061*	
H10B	1.0284	0.4752	0.3382	0.061*	
Cl1	0.46922 (4)	0.17442 (7)	-0.26165 (8)	0.0791 (2)	
Cl2	0.74236 (4)	-0.13318 (4)	0.01161 (8)	0.06643 (18)	
Cl3	1.05345 (3)	0.29415 (5)	0.17400 (7)	0.05817 (16)	
N1	0.84464 (10)	0.35378 (14)	0.12961 (19)	0.0418 (3)	
H1N	0.858 (3)	0.271 (2)	0.146 (5)	0.049 (16)*	0.52 (7)
H1O	0.855 (3)	0.183 (3)	0.145 (6)	0.07 (2)*	0.48 (7)
01	0.83069 (9)	0.11256 (12)	0.11379 (18)	0.0494 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0381 (10)	0.0583 (11)	0.0523 (10)	-0.0039 (9)	-0.0005 (8)	0.0049 (9)
C2	0.0472 (11)	0.0491 (10)	0.0583 (11)	-0.0119 (9)	0.0041 (9)	-0.0039 (9)
C3	0.0451 (10)	0.0370 (9)	0.0551 (10)	-0.0010 (8)	0.0077 (8)	-0.0016 (7)
C4	0.0392 (10)	0.0368 (8)	0.0450 (9)	-0.0005 (7)	0.0069 (7)	-0.0006 (7)
C5	0.0387 (9)	0.0364 (8)	0.0417 (9)	-0.0005 (7)	0.0051 (7)	0.0023 (7)
C6	0.0421 (10)	0.0449 (10)	0.0506 (10)	0.0042 (8)	0.0041 (8)	0.0077 (8)
C7	0.0428 (10)	0.0360 (8)	0.0428 (9)	0.0027 (7)	0.0081 (7)	0.0028 (7)
C8	0.0577 (12)	0.0382 (9)	0.0709 (12)	0.0041 (9)	-0.0014 (10)	0.0076 (9)
C9	0.0515 (11)	0.0348 (8)	0.0610 (11)	-0.0068 (8)	0.0040 (9)	-0.0030 (8)
C10	0.0561 (12)	0.0511 (10)	0.0450 (9)	-0.0121 (9)	0.0002 (8)	-0.0071 (8)
Cl1	0.0484 (3)	0.0859 (4)	0.0987 (4)	-0.0121 (3)	-0.0218 (3)	0.0179 (3)
Cl2	0.0629 (4)	0.0339 (2)	0.1020 (4)	0.0003 (2)	0.0030 (3)	-0.0027 (2)
Cl3	0.0544 (3)	0.0519 (3)	0.0673 (3)	0.0025 (2)	-0.0016 (2)	-0.0059 (2)
N1	0.0448 (9)	0.0310 (7)	0.0493 (8)	-0.0020 (6)	0.0019 (7)	-0.0003 (6)
01	0.0408 (7)	0.0350 (7)	0.0710 (8)	0.0018 (6)	-0.0055 (6)	0.0007 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C6	1.363 (3)	С7—С8	1.498 (2)
C1—C2	1.385 (3)	C8—H8A	0.9600
C1—Cl1	1.7446 (19)	C8—H8B	0.9600
C2—C3	1.370 (2)	C8—H8C	0.9600
С2—Н2	0.9300	C9—N1	1.460 (2)
C3—C4	1.413 (2)	C9—C10	1.498 (3)
C3—Cl2	1.7326 (18)	С9—Н9А	0.9700
C4—O1	1.306 (2)	С9—Н9В	0.9700
C4—C5	1.426 (2)	C10—Cl3	1.781 (2)
С5—С6	1.409 (2)	C10—H10A	0.9700
С5—С7	1.462 (2)	C10—H10B	0.9700
С6—Н6	0.9300	N1—H1N	0.874 (19)
C7—N1	1.290 (2)	01—H10	0.827 (19)
C6—C1—C2	121.53 (17)	С7—С8—Н8В	109.5
C6—C1—Cl1	119.55 (15)	H8A—C8—H8B	109.5
C2—C1—Cl1	118.92 (15)	С7—С8—Н8С	109.5
C3—C2—C1	118.94 (17)	H8A—C8—H8C	109.5
С3—С2—Н2	120.5	H8B—C8—H8C	109.5
С1—С2—Н2	120.5	N1—C9—C10	110.83 (15)
C2—C3—C4	122.61 (16)	N1—C9—H9A	109.5
C2—C3—Cl2	119.69 (14)	С10—С9—Н9А	109.5
C4—C3—Cl2	117.69 (13)	N1—C9—H9B	109.5
O1—C4—C3	120.31 (15)	С10—С9—Н9В	109.5
O1—C4—C5	122.71 (15)	Н9А—С9—Н9В	108.1
C3—C4—C5	116.98 (15)	C9—C10—Cl3	112.06 (12)
C6—C5—C4	119.49 (16)	C9—C10—H10A	109.2

C6—C5—C7	120.94 (15)	Cl3—C10—H10A	109.2
C4—C5—C7	119.56 (15)	C9—C10—H10B	109.2
C1—C6—C5	120.43 (17)	Cl3—C10—H10B	109.2
С1—С6—Н6	119.8	H10A-C10-H10B	107.9
С5—С6—Н6	119.8	C7—N1—C9	124.26 (15)
N1—C7—C5	116.87 (14)	C7—N1—H1N	113 (3)
N1—C7—C8	121.32 (16)	C9—N1—H1N	122 (3)
C5—C7—C8	121.82 (16)	C4—O1—H1O	112 (4)
С7—С8—Н8А	109.5		
C6—C1—C2—C3	0.2 (3)	C2—C1—C6—C5	-1.1 (3)
Cl1—C1—C2—C3	179.64 (14)	Cl1—C1—C6—C5	179.53 (13)
C1—C2—C3—C4	1.1 (3)	C4—C5—C6—C1	0.5 (3)
C1—C2—C3—Cl2	-177.60 (14)	C7—C5—C6—C1	-179.91 (16)
C2—C3—C4—O1	178.66 (16)	C6—C5—C7—N1	177.17 (15)
Cl2—C3—C4—O1	-2.6 (2)	C4—C5—C7—N1	-3.3 (2)
C2—C3—C4—C5	-1.6 (3)	C6—C5—C7—C8	-3.0 (3)
Cl2—C3—C4—C5	177.17 (12)	C4—C5—C7—C8	176.56 (16)
O1—C4—C5—C6	-179.54 (15)	N1-C9-C10-Cl3	60.56 (18)
C3—C4—C5—C6	0.7 (2)	C5—C7—N1—C9	179.36 (15)
O1—C4—C5—C7	0.9 (3)	C8—C7—N1—C9	-0.5 (3)
C3—C4—C5—C7	-178.81 (15)	C10—C9—N1—C7	177.78 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N1—H1 <i>N</i> …O1	0.88 (2)	1.68 (2)	2.479 (2)	150 (4)
C10—H10 <i>B</i> ···O1 ⁱ	0.97	2.48	3.416 (2)	159
C10—H10A····Cl3 ⁱⁱ	0.97	2.86	3.621 (2)	136

Symmetry codes: (i) -*x*+2, *y*+1/2, -*z*+1/2; (ii) *x*, -*y*+1/2, *z*+1/2.