

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(*µ*-bis{[4-(2-pyridyl)pyrimidin-2-yl]sulfanyl}methane)disilver(I) bis(perchlorate)

Hai-Bin Zhu

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhuhaibin@seu.edu.cn

Received 20 November 2010; accepted 25 November 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; disorder in solvent or counterion; R factor = 0.046; wR factor = 0.172; data-toparameter ratio = 16.0.

In the macrocyclic centrosymmetric dinuclear complex, $[Ag_2(C_{19}H_{14}N_6S_2)_2](ClO_4)_2$, the Ag^I atom, bis{[4-(2-pyridyl)pyrimidin-2-yl]sulfanyl}methane (2-bppt) ligand and perchlorate anion each lie on a twofold rotation axis. The 2bppt ligand chelates two four-coordinated Ag^I atoms through its two bipyridine-like arms. The O atoms of the perchlorate anion are disordered each over two positions of equal occupancy. Adjacent complex molecules are linked by $\pi - \pi$ interactions between the pyridine and pyrimidine rings [centroid–centroid distance = 3.663 (8) Å].

Related literature

For Ag(I) coordination polymers, see: Chen et al. (2006). For the coordination chemistry of 4-(pyridin-n-yl)pyrimidin-2thiol (n = 2, 3, 4) and their derivatives, see: Dong *et al.* (2009); Huang et al. (2007); Zhu et al. (2010).

metal-organic compounds

 $V = 8761 (2) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.15 \times 0.12 \times 0.10 \text{ mm}$

 $\mu = 1.27 \text{ mm}^-$

T = 298 K

Z = 8

Experimental

Crystal data

$[Ag_2(C_{19}H_{14}N_6S_2)_2](ClO_4)_2$
$M_r = 1195.64$
Orthorhombic, Fddd
a = 10.4382 (16) Å
b = 27.896 (4) Å
c = 30.089 (5) Å

Data collection

Bruker APEXII CCD	14503 measured reflections
diffractometer	2705 independent reflections
Absorption correction: multi-scan	1640 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.035$
$T_{\min} = 0.832, \ T_{\max} = 0.880$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	24 restraints
$wR(F^2) = 0.172$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
2705 reflections	$\Delta \rho_{\rm min} = -0.64 \ {\rm e} \ {\rm \AA}^{-3}$
169 parameters	

Table 1

elected bond lengths (A).	
---------------------------	--

Ag1-N1	2.277 (4)	Ag1-N2	2.398 (3)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author acknowledges financial support from the China Postdoctoral Research Fund (20070411010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2383).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, C.-L., Kang, B.-S. & Su, C.-Y. (2006). Aust. J. Chem. 59, 3-18.
- Dong, H.-Z., Zhao, J., Gou, S.-H. & Zhu, H.-B. (2009). Polyhedron, 28, 1040-1048.
- Huang, C.-H., Gou, S.-H., Zhu, H.-B. & Huang, W. (2007). Inorg. Chem. 46, 5537-5543.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhu, H.-B., Li, L., Xu, G. & Gou, S.-H. (2010). Eur. J. Inorg. Chem. pp. 1143-1148

supporting information

Acta Cryst. (2010). E66, m1691 [https://doi.org/10.1107/S160053681004924X] Bis(µ-bis{[4-(2-pyridyl)pyrimidin-2-yl]sulfanyl}methane)disilver(I) bis-(perchlorate)

Hai-Bin Zhu

S1. Comment

The supramolecular chemistry of Ag(I) coordination polymers is being a dynamic and thriving research field, which has attracted considerable interest (Chen *et. al*, 2006). For a long time, we have focused on the coordination chemistry of 4-(pyridin-*n*-yl)pyrimidin-2-thiol (n = 2, 3, 4) and their derivatives (Dong *et al.*, 2009; Huang *et al.*, 2007; Zhu *et al.*, 2010). Herein, we report a macrocyclic Ag(I) complex with bis[4-(2-pyridyl)pyrimidin-2-ylthio]methane (2-bppt) ligand.

The title compound shows a discrete macrocylic dinuclear structure, with perchlorate anions uncoordinated (Fig. 1). Each Ag^I ion is chelated by two sets of N,*N*-chelating donors from two 2-bppt ligands. The Ag—N bond distances are 2.277 (4) and 2.398 (3) Å (Table 1), while the N—Ag—N angles are in the range of 70.96 (13) to 158.7 (2)°. The Ag—Ag separation across the macrocycle is 8.167 (1) Å.

S2. Experimental

A CH₃CN solution of AgClO₄ (0.1 mmol) was layered above a CH_2Cl_2 solution of 2-bppt (0.1 mmol). Colorless crystals were obtained after one week. The crystals were collected and dried under vacuum (yield: 46%).

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 and 0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Molecular structure of the title compound, with the 30% probability displacement ellipsoids. [Symmetry codes: (A) 7/4 - x, 3/4 - y, z; (B) x, 3/4 - y, -1/4 - z; (C) 7/4 - x, y, -1/4 - z; (D) 9/4 - x, 1/4 - y, z.]

Bis(µ-bis{[4-(2-pyridyl)pyrimidin-2-yl]sulfanyl}methane)disilver(I) bis(perchlorate)

Crystal data	
$[Ag_2(C_{19}H_{14}N_6S_2)_2](ClO_4)_2$	F(000) = 4768
$M_r = 1195.64$	$D_{\rm x} = 1.813 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Fddd	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -F 2uv 2vw	Cell parameters from 2705 reflections
a = 10.4382 (16) Å	$\theta = 2.3 - 25.5^{\circ}$
b = 27.896 (4) Å	$\mu = 1.27 \text{ mm}^{-1}$
c = 30.089 (5) Å	T = 298 K
$V = 8761 (2) Å^3$	Block, colorless
Z = 8	$0.15 \times 0.12 \times 0.10 \text{ mm}$
Data collection	
Bruker APEXII CCD	14503 measured reflections
diffractometer	2705 independent reflections
Radiation source: fine-focus sealed tube	1640 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
φ and ω scans	$\theta_{\rm max} = 28.3^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 12$
(SADABS; Bruker, 2001)	$k = -36 \rightarrow 35$
$T_{\min} = 0.832, \ T_{\max} = 0.880$	$l = -35 \rightarrow 40$

Refinement

•	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.172$	neighbouring sites
S = 1.05	H-atom parameters constrained
2705 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
169 parameters	where $P = (F_o^2 + 2F_c^2)/3$
24 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinate	s and isotropic of	r equivalent isotropic	displacement paramet	ers (Ų)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Agl	0.8750	0.3750	0.010711 (18)	0.0724 (3)	
S1	0.64901 (13)	0.37857 (5)	-0.07449 (5)	0.0703 (4)	
Cl1	1.1250	0.1250	-0.08929 (11)	0.1119 (9)	
C6	0.8563 (4)	0.27205 (15)	-0.03645 (15)	0.0602 (11)	
N2	0.7995 (3)	0.31493 (12)	-0.03991 (12)	0.0577 (9)	
N3	0.6715 (4)	0.28754 (15)	-0.10059 (13)	0.0708 (10)	
C9	0.7124 (4)	0.32014 (15)	-0.07181 (14)	0.0598 (10)	
C5	0.9565 (5)	0.26651 (16)	-0.00209 (16)	0.0652 (12)	
C10	0.5575 (6)	0.3750	-0.1250	0.0715 (18)	
H10A	0.5025	0.4030	-0.1267	0.086*	0.50
H10B	0.5025	0.3470	-0.1233	0.086*	0.50
N1	0.9792 (4)	0.30490 (14)	0.02472 (13)	0.0693 (10)	
C8	0.7272 (6)	0.24468 (18)	-0.09552 (17)	0.0804 (15)	
H8	0.7013	0.2199	-0.1141	0.096*	
C7	0.8198 (6)	0.23519 (16)	-0.06458 (18)	0.0761 (14)	
H7	0.8571	0.2050	-0.0625	0.091*	
C3	1.1171 (7)	0.2208 (3)	0.0336 (3)	0.107 (2)	
H3	1.1630	0.1924	0.0365	0.128*	
C1	1.0704 (5)	0.3010(2)	0.05571 (19)	0.0873 (15)	
H1	1.0864	0.3268	0.0745	0.105*	
C2	1.1432 (5)	0.2585 (3)	0.0605 (3)	0.105 (2)	
H2	1.2078	0.2565	0.0817	0.125*	
C4	1.0244 (6)	0.2245 (2)	0.0026 (2)	0.0892 (16)	
H4	1.0062	0.1985	-0.0158	0.107*	
01	1.1499 (10)	0.1740 (3)	-0.0861 (3)	0.120 (3)	0.50
O2	1.2437 (12)	0.1043 (4)	-0.0898 (4)	0.142 (4)	0.50
03	1.0656 (13)	0.1194 (5)	-0.0423 (5)	0.166 (5)	0.50
O4	1.0504 (13)	0.1200 (6)	-0.1265 (5)	0.176 (5)	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ag1	0.0848 (4)	0.0529 (3)	0.0795 (4)	-0.0060 (2)	0.000	0.000
S1	0.0718 (8)	0.0712 (7)	0.0679 (8)	0.0074 (5)	-0.0057 (6)	-0.0091 (6)

supporting information

C11	0.1036 (17)	0.0619 (12)	0.170 (3)	0.0054 (11)	0.000	0.000
C6	0.068 (3)	0.051 (2)	0.062 (3)	-0.0062 (19)	0.026 (2)	0.0064 (19)
N2	0.059 (2)	0.0522 (18)	0.062 (2)	-0.0070 (15)	0.0100 (18)	-0.0039 (15)
N3	0.074 (2)	0.071 (3)	0.067 (2)	-0.022 (2)	0.007 (2)	-0.0131 (19)
C9	0.058 (2)	0.063 (2)	0.059 (2)	-0.0073 (19)	0.012 (2)	-0.006 (2)
C5	0.065 (3)	0.062 (3)	0.069 (3)	0.002 (2)	0.023 (2)	0.013 (2)
C10	0.050 (3)	0.089 (5)	0.076 (4)	0.000	0.000	0.000 (3)
N1	0.066 (2)	0.068 (2)	0.074 (2)	-0.0072 (19)	0.004 (2)	0.0169 (19)
C8	0.095 (4)	0.075 (3)	0.071 (3)	-0.026 (3)	0.020 (3)	-0.020 (3)
C7	0.091 (4)	0.050(2)	0.087 (4)	-0.008 (2)	0.034 (3)	-0.007 (2)
C3	0.092 (5)	0.102 (5)	0.126 (6)	0.029 (4)	0.023 (4)	0.036 (5)
C1	0.074 (3)	0.101 (4)	0.087 (4)	-0.006 (3)	-0.007 (3)	0.023 (3)
C2	0.065 (4)	0.129 (6)	0.120 (5)	0.007 (3)	-0.003 (3)	0.050 (5)
C4	0.087 (4)	0.081 (3)	0.099 (4)	0.022 (3)	0.027 (3)	0.019 (3)
01	0.152 (7)	0.076 (5)	0.132 (7)	0.008 (5)	-0.029 (5)	-0.009 (4)
O2	0.133 (7)	0.105 (6)	0.188 (8)	0.044 (6)	-0.017 (6)	-0.012 (6)
O3	0.176 (9)	0.166 (8)	0.155 (8)	-0.016 (7)	0.028 (7)	0.007 (7)
O4	0.167 (8)	0.198 (9)	0.162 (8)	-0.025 (8)	-0.076 (7)	-0.041 (7)

Geometric parameters (Å, °)

Ag1—N1	2.277 (4)	C5—C4	1.377 (6)
Ag1—N2	2.398 (3)	C10—S1 ⁱ	1.798 (4)
S1—C9	1.761 (4)	C10—H10A	0.9700
S1—C10	1.798 (4)	C10—H10B	0.9700
Cl1—O4	1.370 (11)	N1—C1	1.337 (6)
Cl1—O2	1.367 (11)	C8—C7	1.368 (8)
Cl1—O1	1.395 (9)	C8—H8	0.9300
Cl1—O3	1.552 (13)	С7—Н7	0.9300
C6—N2	1.339 (5)	C3—C2	1.355 (11)
C6—C7	1.385 (7)	C3—C4	1.348 (9)
C6—C5	1.479 (7)	С3—Н3	0.9300
N2—C9	1.330 (5)	C1—C2	1.416 (9)
N3—C9	1.326 (5)	C1—H1	0.9300
N3—C8	1.338 (6)	С2—Н2	0.9300
C5—N1	1.361 (6)	C4—H4	0.9300
N1 Ac1 N1 ⁱⁱ	159 7 (2)	S1i C10 H10A	108.2
N1 = Ag1 = N2	130.7(2)	S1 - C10 - H10A	108.5
$1 \sqrt{1 - Ag1} \sqrt{1 - N2}$	71.00(14) 124 11 (13)	S1 - C10 - H10B	108.3
$\frac{1}{1} - \frac{1}{1} - \frac{1}{1} = \frac{1}$	124.11(13) 124.11(13)	$H_{10A} = C_{10} = H_{10B}$	108.3
$N1^{ii}$ Ag1 $N2^{ii}$	124.11(13) 71.00(14)	$C_5 \times 10^{-110}$	107.4
N1 - Ag1 - N2	71.00(14) 101.12(16)	$C_5 = N_1 = C_1$	110.3(3)
$N_2 - Ag_1 - N_2^{-1}$	101.13(10) 100.78(17)	C_{3} NI Agi	110.9(3)
$C_9 = S_1 = C_{10}$	100.78(17) 70.5(12)	CI - NI - AgI	122.0(4)
04 - C11 - 04	70.3(13)	$N_3 = C_0 = C_7$	123.9 (4)
04-01-02	(10)	$1N_{3} = C_{0} = H_{0}$	110.1
04 - 01 - 02	01.2(7)	C = C = C = C	117.0 (5)
$04-011-02^{m}$	01.2(/)	しる―し /―しり	117.8(5)

$O4^{m}$ — $Cl1$ — $O2^{m}$	117.6 (10)	С8—С7—Н7	121.1
O2—Cl1—O2 ⁱⁱⁱ	178.7 (11)	С6—С7—Н7	121.1
O4—Cl1—O1 ⁱⁱⁱ	81.5 (8)	C2—C3—C4	119.8 (6)
$O4^{iii}$ — $C11$ — $O1^{iii}$	105.2 (8)	С2—С3—Н3	120.1
O2—Cl1—O1 ⁱⁱⁱ	75.8 (6)	C4—C3—H3	120.1
O2 ⁱⁱⁱ —Cl1—O1 ⁱⁱⁱ	104.3 (6)	N1—C1—C2	121.3 (6)
O4—Cl1—O1	105.2 (8)	N1—C1—H1	119.3
O4 ⁱⁱⁱ —Cl1—O1	81.5 (8)	C2—C1—H1	119.3
O2—C11—O1	104.3 (6)	C3—C2—C1	118.9 (6)
O2 ⁱⁱⁱ —Cl1—O1	75.8 (6)	С3—С2—Н2	120.6
O1 ⁱⁱⁱ —Cl1—O1	172.0 (9)	C1—C2—H2	120.6
O4—Cl1—O3 ⁱⁱⁱ	168.9 (8)	C3—C4—C5	120.3 (6)
O4 ⁱⁱⁱ —Cl1—O3 ⁱⁱⁱ	120.5 (8)	C3—C4—H4	119.8
O2—C11—O3 ⁱⁱⁱ	72.0 (7)	C5—C4—H4	119.8
O2 ⁱⁱⁱ —Cl1—O3 ⁱⁱⁱ	109.3 (9)	Cl1—O1—O2 ⁱⁱⁱ	51.3 (4)
O1 ⁱⁱⁱ —C11—O3 ⁱⁱⁱ	96.3 (7)	Cl1—O1—O4 ⁱⁱⁱ	48.6 (5)
O1—C11—O3 ⁱⁱⁱ	76.3 (7)	O2 ⁱⁱⁱ —O1—O4 ⁱⁱⁱ	83.8 (7)
O4—C11—O3	120.5 (8)	Cl1—O1—O3 ⁱⁱⁱ	55.7 (6)
O4 ⁱⁱⁱ —Cl1—O3	168.9 (8)	O2 ⁱⁱⁱ —O1—O3 ⁱⁱⁱ	85.0 (7)
O2—C11—O3	109.3 (9)	O4 ⁱⁱⁱ —O1—O3 ⁱⁱⁱ	88.7 (8)
O2 ⁱⁱⁱ —Cl1—O3	72.0 (7)	Cl1—O2—O4 ⁱⁱⁱ	59.5 (7)
O1 ⁱⁱⁱ —Cl1—O3	76.3 (7)	Cl1—O2—O1 ⁱⁱⁱ	52.8 (5)
O1—C11—O3	96.3 (7)	O4 ⁱⁱⁱ —O2—O1 ⁱⁱⁱ	90.0 (9)
O3 ⁱⁱⁱ —Cl1—O3	48.6 (10)	Cl1—O2—O3 ⁱⁱⁱ	59.0 (6)
N2—C6—C7	119.6 (5)	O4 ⁱⁱⁱ —O2—O3 ⁱⁱⁱ	108.6 (10)
N2—C6—C5	117.4 (4)	O1 ⁱⁱⁱ —O2—O3 ⁱⁱⁱ	80.0 (8)
C7—C6—C5	123.0 (4)	O3 ⁱⁱⁱ —O3—Cl1	65.7 (5)
C9—N2—C6	117.2 (4)	O3 ⁱⁱⁱ —O3—O2 ⁱⁱⁱ	104.2 (9)
C9—N2—Ag1	127.3 (3)	Cl1—O3—O2 ⁱⁱⁱⁱ	49.0 (5)
C6—N2—Ag1	115.4 (3)	O3 ⁱⁱⁱ —O3—O1 ⁱⁱⁱ	88.3 (12)
C9—N3—C8	113.5 (4)	Cl1—O3—O1 ⁱⁱⁱ	48.0 (5)
N3—C9—N2	128.0 (4)	O2 ⁱⁱⁱ —O3—O1 ⁱⁱⁱ	75.8 (7)
N3—C9—S1	119.0 (4)	Cl1—O4—O2 ⁱⁱⁱⁱ	59.3 (7)
N2—C9—S1	113.0 (3)	Cl1—O4—O4 ⁱⁱⁱ	54.8 (6)
N1—C5—C4	121.3 (5)	O2 ⁱⁱⁱ —O4—O4 ⁱⁱⁱ	103.6 (10)
N1—C5—C6	117.1 (4)	Cl1—O4—O1 ⁱⁱⁱ	49.9 (6)
C4—C5—C6	121.6 (5)	O2 ⁱⁱⁱ —O4—O1 ⁱⁱⁱ	84.9 (9)
S1—C10—S1 ⁱ	115.8 (4)	O4 ⁱⁱⁱ —O4—O1 ⁱⁱⁱ	80.6 (11)
S1—C10—H10A	108.3		

Symmetry codes: (i) *x*, -*y*+3/4, -*z*-1/4; (ii) -*x*+7/4, -*y*+3/4, *z*; (iii) -*x*+9/4, -*y*+1/4, *z*.