Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Metal-nucleobase interaction: bis[4-aminopyrimidin-2(1H)-one- κN^{3}]dibromidozinc(II)

Ammasai Karthikeyan, Samuel Ebenezer and Packianathan Thomas Muthiah*

School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
Correspondence e-mail: tommtrichy@yahoo.co.in

Received 19 November 2010; accepted 25 November 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.036 ; w R$ factor $=0.083$; data-to-parameter ratio $=17.3$.

In the title complex, $\left[\mathrm{ZnBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}\right)_{2}\right]$, the central metal ion is coordinated to two bromide ions and endocyclic N atoms of the two cytosine molecules leading to a distorted tetrahedral geometry. The structure is isotypic with $\left[\mathrm{CdBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}\right)_{2}\right]$ [Muthiah et al. (2001). Acta Cryst. E57, $\mathrm{m} 558-\mathrm{m} 560$]. There are two interligand $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds, generating two hydrogen-bonded rings stabilizing the coordination sphere. The complex aggregates, forming supramolecular chains, sheets and staircases through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonding and $\pi-\pi$ stacking interactions [centroid-centroid distance $=3.616(2) \AA$ A .

Related literature

For metal ion-nucleic acid interactions, see: Muller (2010). For different modes of binding between metal ions and cytosine, see: Lippert (2000). For an isotypic complex, see: Muthiah et al. (2001).

Experimental

Crystal data

$\left[\mathrm{ZnBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}\right)_{2}\right]$

$$
M_{r}=447.41
$$

Triclinic, $P \overline{1}$
$a=7.1337(2) \AA$
$b=7.8375$ (2) \AA
$c=12.4275(3) \AA$
$\alpha=86.746$ (2)
$\beta=75.199(2)^{\circ}$
$\gamma=87.448(2)^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.203, T_{\text {max }}=0.305$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.083$
$S=1.02$
2973 reflections
$V=670.36(3) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=7.80 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

13254 measured reflections 2973 independent reflections 2204 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$

172 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.69 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 2 A^{\text {i }}$	0.86	1.94	$2.766(5)$	161
$\mathrm{~N} 1 B-\mathrm{H} 1 B \cdots \mathrm{Br} 1^{\mathrm{ii}}$	0.86	2.70	$3.483(3)$	151
$\mathrm{~N} 4 A-\mathrm{H} 2 A \cdots \mathrm{Br} 1$	0.86	2.74	$3.577(4)$	165
$\mathrm{~N} 4 B-\mathrm{H} 2 B \cdots \mathrm{Br} 2$	0.86	2.65	$3.454(3)$	155
$\mathrm{~N} 4 A-\mathrm{H} 3 A \cdots \mathrm{Br} 2^{\mathrm{iii}}$	0.86	2.91	$3.339(4)$	112
$\mathrm{~N} 4 B-\mathrm{H} 3 B \cdots \mathrm{O} 2 B^{\text {iv }}$	0.86	2.19	$3.003(5)$	157
$\mathrm{C} 5 A-\mathrm{H} 5 A \cdots \mathrm{Br} 2^{\text {v }}$	0.93	2.87	$3.726(4)$	153
$\mathrm{C} 6 A-\mathrm{H} 6 A \cdots \mathrm{O} 2 B^{\text {vi }}$	0.93	2.42	$3.292(6)$	156

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x, y-1, z$; (iii) $x-1, y, z$; (iv)
$x+1, y, z ;$ (v) $-x+1,-y+2,-z+1$; (vi) $-x+1,-y+1,-z+1$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The authors thank the DST-India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University.

[^0]
References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Lippert, B. (2000). Coord. Chem. Rev. 200-202, 487-516.
Muller, J. (2010). Metallomics, 2, 318-327.
Muthiah, P. T., Robert, J. J., Raj, S. B., Bocelli, G. \& Ollá, R. (2001). Acta Cryst. E57, m558-m560.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, m1693 [https://doi.org/10.1107/S1600536810049305]

Metal-nucleobase interaction: bis[4-aminopyrimidin-2(1H)-oneκN^{3}]dibromidozinc(II)

Ammasai Karthikeyan, Samuel Ebenezer and Packianathan Thomas Muthiah

S1. Comment

The studies of metal ion-nucleic acid interactions are of continued interest in bioinorganic chemistry (Muller, 2010). There are several modes of binding between a cytosine and metal ion. The cytosine coordinates in a monodentate fashion either through $\mathrm{N} 3, \mathrm{~N} 4, \mathrm{O} 2$ or C 5 sites. Similarly it acts as a bidentate ligand by chelating, semi-chelating or bridging via N3, O2 and N3, N4 sites (Lippert, 2000). However the most preferable mode of binding is via N3 as observed in majority of the cases. In the present study we have prepared a metal complex of zinc-cytosine as a model for Zn (II) ion interactions with guanine-cytosine rich regions of nucleic acids (DNA and RNA). The crystal structure is found to be isomorphous with the earlier reported structure of dibromobis(cytosine)cadmium(II) (Muthiah et al., 2001).

The title complex is coordinated by two bromide ions in addition to two cytosine molecules. The ORTEP view is shown in Figure 1. The two crystallographically independent cytosine molecules coordinate through N3 position forming a tetrahedral geometry around the central Zn (II) ion with slight distortion. This distortion is not only because of the dissimilar ligands coordinated to the central metal ion but is due to the additional attraction between the zinc ion and the oxygen of the cytosine molecule. This can be confirmed by looking into the contact distances between $\mathrm{Zn} \cdots \mathrm{O}$ in both the molecules (A and B) which are 2.804 (3) \AA and 2.858 (3) \AA respectively. It is further substantiated by the exocyclic bond angles at $\mathrm{N} 3(\mathrm{Zn}-\mathrm{N} 3-\mathrm{C} 4$ and $\mathrm{Zn}-\mathrm{N} 3-\mathrm{C} 2)$ of cytosine which is $132.0(3)^{\circ}$ and $109.0(3)^{\circ}$ for molecule A and 128.1 (3) ${ }^{\circ}$ and $109.3(2)^{\circ}$ for molecule B. The stability of the coordinated metal complex is also enhanced by the two interligand hydrogen bonds ($\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond). These are formed between the amino group of the coordinated cytosine and the coordinated bromide ion which are lying in proximity. The interligand hydrogen bonds generate two hydrogen-bonded rings (Figure 1). These are very characteristic of metal-nucleobase interactions (Lippert, 2000).
The hydrogen bonding geometries of the title complex are given in Table 1 . The two cytosines that have coordinated to the metal ion, although look similar, form different inter-molecular hydrogen bonds. The amino nitrogen of molecule B connects with the oxygen of the neighboring molecule via $\mathrm{N} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 2 \mathrm{~B}$ extending into an infinite chain. This chain is supported by an additional weak hydrogen bond (N4A-H4A2 $\cdots \mathrm{Br} 2$) between the A molecules of neighboring cytosine (Figure 2). The infinite chain can further aggregate itself in two different ways. A supramolecular sheet is formed when the adjacent chains are linked by molecule B via N1B-H1B‥Brl hydrogen bonds (Figure 3). Similarly a staircase is formed when the inversely related chains pair up via N1A-H1A $\cdots \mathrm{O} 2 \mathrm{~A}$ hydrogen bonds involving molecule A (Figure 4). These molecules form the steps of the staircase and stack one over the other through $\pi-\pi$ stacking with a cg-cg distance of 3.616 (2) and a slip angle of 24.32°. Besides this, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions are additionally present which stabilize the entire crystal structure.

S2. Experimental

Solution of zinc bromide anhydrous ($0.056 \mathrm{~g}, 0.25 \mathrm{mmol}$) in 10 ml of hot propanol and cytosine ($0.055 \mathrm{~g}, 0.50 \mathrm{mmol}$) in 10 ml of hot water were mixed mixed and dissolved in an 1:2 molar ratio. The resultant solution was heated over a water bath for an hour and on slow cooling the solution gave transparent colourless prismatic crystals.

S3. Refinement

All hydrogen atoms were positioned geometrically and were refined using a riding model. The $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ bond lengths are 0.86 and $0.93 \AA$ respectively $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\right.$ (parent atom)].

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 2
View of an infinite chain linked by N4B-H4B $\cdots \mathrm{O} 2 \mathrm{~B}$ and $\mathrm{N} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A} 2 \cdots \mathrm{Br} 2$ hydrogen bonds.

Figure 3
View of a supramolecular sheet along the (001) plane.

Figure 4
Molecular staircase formed by pairing of two infinite chains through hydrogen bonding and stacking interactions.
bis[4-aminopyrimidin-2(1H)-one- κN^{3}]dibromidozinc(II)

Crystal data

$\left[\mathrm{ZnBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}\right)_{2}\right]$
$M_{r}=447.41$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.1337$ (2) \AA
$b=7.8375$ (2) \AA
$c=12.4275(3) \AA$
$\alpha=86.746(2)^{\circ}$
$\beta=75.199(2)^{\circ}$
$\gamma=87.448(2)^{\circ}$
$V=670.36(3) \AA^{3}$
$Z=2$
$F(000)=432$
$D_{\mathrm{x}}=2.217 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2973 reflections
$\theta=1.7-27.2^{\circ}$
$\mu=7.80 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.203, T_{\max }=0.305$

> 13254 measured reflections
> 2973 independent reflections
> 2204 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.043$
> $\theta_{\max }=27.2^{\circ}, \theta_{\min }=1.7^{\circ}$
> $h=-9 \rightarrow 9$
> $k=-10 \rightarrow 10$
> $l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.083$
$S=1.02$
2973 reflections
172 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F^{2} for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors $w R$ and all goodnesses of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $-R$-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.34971(6)$	$1.00965(5)$	$0.84763(4)$	$0.0378(1)$
Br2	$0.88031(6)$	$1.05932(5)$	$0.68592(4)$	$0.0374(1)$
Zn	$0.63076(7)$	$0.84924(6)$	$0.74430(4)$	$0.0303(2)$
O2A	$0.9020(4)$	$0.6403(4)$	$0.6017(3)$	$0.0454(11)$
O2B	$0.4019(4)$	$0.5579(3)$	$0.8291(3)$	$0.0372(10)$
N1A	$0.7973(5)$	$0.6009(4)$	$0.4478(3)$	$0.0326(11)$
N1B	$0.5996(5)$	$0.3618(4)$	$0.8891(3)$	$0.0364(11)$
N3A	$0.6105(4)$	$0.7588(4)$	$0.5954(3)$	$0.0275(10)$
N3B	$0.6990(4)$	$0.6425(4)$	$0.8371(3)$	$0.0264(10)$
N4A	$0.3118(5)$	$0.8664(4)$	$0.5860(3)$	$0.0426(12)$
N4B	$1.0054(5)$	$0.7147(4)$	$0.8420(3)$	$0.0439(14)$
C2A	$0.7755(6)$	$0.6643(5)$	$0.5505(4)$	$0.0304(12)$
C2B	$0.5592(6)$	$0.5230(5)$	$0.8506(3)$	$0.0296(12)$
C4A	$0.4734(6)$	$0.7811(5)$	$0.5385(4)$	$0.0307(14)$
C4B	$0.8725(6)$	$0.5973(5)$	$0.8562(3)$	$0.0283(12)$
C5A	$0.4985(6)$	$0.7156(5)$	$0.4323(4)$	$0.0367(16)$

C5B	$0.9146(6)$	$0.4288(5)$	$0.8921(4)$	$0.0352(12)$
C6A	$0.6632(6)$	$0.6267(5)$	$0.3895(4)$	$0.0371(16)$
C6B	$0.7763(7)$	$0.3150(5)$	$0.9073(4)$	$0.0396(16)$
H1A	0.90110	0.54210	0.41930	0.0390^{*}
H1B	0.51060	0.28730	0.90240	0.0430^{*}
H2A	0.29720	0.90540	0.65110	0.0510^{*}
H2B	0.98030	0.81770	0.82100	0.0530^{*}
H3A	0.22130	0.88290	0.55190	0.0510^{*}
H3B	1.11690	0.68790	0.85380	0.0530^{*}
H5A	0.40390	0.73350	0.39310	0.0440^{*}
H5B	1.03500	0.39860	0.90470	0.0420^{*}
H6A	0.68450	0.58280	0.31920	0.0450^{*}
H6B	0.79990	0.20290	0.93040	0.0480^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0296(2)$	$0.0316(2)$	$0.0490(3)$	$-0.0027(2)$	$-0.0031(2)$	$-0.0055(2)$
Br2	$0.0269(2)$	$0.0323(2)$	$0.0511(3)$	$-0.0019(2)$	$-0.0075(2)$	$0.0042(2)$
Zn	$0.0284(3)$	$0.0287(2)$	$0.0348(3)$	$0.0000(2)$	$-0.0101(2)$	$-0.0002(2)$
O2A	$0.0353(18)$	$0.060(2)$	$0.047(2)$	$0.0205(15)$	$-0.0223(16)$	$-0.0176(16)$
O2B	$0.0288(17)$	$0.0358(16)$	$0.0495(19)$	$-0.0045(13)$	$-0.0135(14)$	$-0.0045(14)$
N1A	$0.0248(19)$	$0.0391(19)$	$0.035(2)$	$0.0063(15)$	$-0.0093(16)$	$-0.0096(16)$
N1B	$0.039(2)$	$0.0251(17)$	$0.045(2)$	$-0.0093(16)$	$-0.0100(18)$	$0.0027(16)$
N3A	$0.0233(18)$	$0.0268(16)$	$0.0331(19)$	$0.0014(14)$	$-0.0089(15)$	$-0.0022(15)$
N3B	$0.0229(18)$	$0.0254(16)$	$0.0319(19)$	$-0.0029(14)$	$-0.0092(15)$	$0.0026(14)$
N4A	$0.032(2)$	$0.050(2)$	$0.050(2)$	$0.0118(18)$	$-0.0187(19)$	$-0.0110(19)$
N4B	$0.033(2)$	$0.044(2)$	$0.061(3)$	$-0.0100(17)$	$-0.0259(19)$	$0.0166(19)$
C2A	$0.028(2)$	$0.030(2)$	$0.034(2)$	$0.0022(18)$	$-0.0098(19)$	$-0.0019(18)$
C2B	$0.028(2)$	$0.030(2)$	$0.029(2)$	$-0.0046(18)$	$-0.0031(18)$	$-0.0025(18)$
C4A	$0.029(2)$	$0.0242(19)$	$0.039(3)$	$-0.0022(17)$	$-0.0098(19)$	$0.0035(18)$
C4B	$0.030(2)$	$0.032(2)$	$0.023(2)$	$-0.0017(18)$	$-0.0074(17)$	$0.0017(17)$
C5A	$0.038(3)$	$0.037(2)$	$0.041(3)$	$0.002(2)$	$-0.022(2)$	$0.001(2)$
C5B	$0.035(2)$	$0.039(2)$	$0.035(2)$	$0.002(2)$	$-0.016(2)$	$-0.001(2)$
C6A	$0.039(3)$	$0.039(2)$	$0.035(3)$	$0.000(2)$	$-0.012(2)$	$-0.005(2)$
C6B	$0.051(3)$	$0.031(2)$	$0.038(3)$	$0.003(2)$	$-0.015(2)$	$0.002(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{Zn}$	$2.4275(7)$	$\mathrm{N} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$1.323(5)$
$\mathrm{Br} 2-\mathrm{Zn}$	$2.4232(7)$	$\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A}$	0.8600
$\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}$	$2.060(4)$	$\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B}$	0.8600
$\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}$	$2.049(3)$	$\mathrm{N} 4 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	0.8600
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$1.233(6)$	$\mathrm{N} 4 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	0.8600
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$1.234(5)$	$\mathrm{N} 4 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	0.8600
$\mathrm{~N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$1.365(6)$	$\mathrm{N} 4 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	0.8600
$\mathrm{~N} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.342(6)$	$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$1.409(7)$
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$1.370(5)$	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$1.414(6)$

N1B-C6B	1.367 (6)	C5A-C6A	1.341 (6)
N3A-C2A	1.371 (5)	C5B-C6B	1.330 (6)
N3A-C4A	1.346 (6)	C5A-H5A	0.9300
N3B-C2B	1.371 (5)	C5B-H5B	0.9300
N3B-C4B	1.347 (5)	C6A-H6A	0.9300
N4A - C4A	1.324 (6)	C6B-H6B	0.9300
$\mathrm{Br} 1 \cdots \mathrm{Br} 2$	3.8306 (7)	$\mathrm{N} 4 \mathrm{~A} \cdots \mathrm{Br} 2^{\text {ii }}$	3.339 (4)
$\mathrm{Br} 1 \cdots \mathrm{O} 2 \mathrm{~B}$	3.558 (2)	N4A \cdots C4A ${ }^{\text {iii }}$	3.325 (5)
$\mathrm{Br} 1 \cdots \mathrm{~N} 1 \mathrm{~B}^{\text {i }}$	3.483 (3)	$\mathrm{N} 4 \mathrm{~B} \cdots \mathrm{Br}^{1{ }^{\text {iv }}}$	3.463 (3)
Bri \cdots N4A	3.577 (4)	N4B \cdots - ${ }^{\text {r }}$ 2	3.454 (3)
$\mathrm{Br} 1 \cdots \mathrm{~N} 4 \mathrm{~B}^{\mathrm{ii}}$	3.463 (3)	N4B \cdots O2B ${ }^{\text {iv }}$	3.003 (5)
$\mathrm{Br} 2 \cdots \mathrm{C} 5 \mathrm{~A}^{\text {iii }}$	3.726 (4)	$\mathrm{C} 2 \mathrm{~B} \cdots{ }^{\text {C }}{ }^{\text {b }}$	3.588 (6)
$\mathrm{Br} 2 \cdots \mathrm{~N} 4 \mathrm{~A}^{\text {iv }}$	3.339 (4)	C2B $\cdots{ }^{\text {N }}$ 1 ${ }^{\text {v }}$	3.306 (5)
Br2 \cdots N4B	3.454 (3)	C2B \cdots C2B ${ }^{\text {v }}$	3.592 (5)
Br2 $\cdots \mathrm{C}^{\text {b }}{ }^{\text {i }}$	3.404 (5)	C4A \cdots C6A ${ }^{\text {vii }}$	3.387 (6)
Br2 \cdots N3A	3.511 (3)	$\mathrm{C} 4 \mathrm{~A} \cdots{ }^{\text {N }} 4{ }^{\text {iii }}$	3.325 (5)
$\mathrm{Br} 2 \cdots \mathrm{Br} 1$	3.8306 (7)	$\mathrm{C} 4 \mathrm{~A} \cdots \mathrm{C} 4 \mathrm{~A}^{\text {iii }}$	3.520 (6)
$\mathrm{Br} 2 \cdots \mathrm{O} 2 \mathrm{~A}$	3.488 (3)	C4B \cdots O2A	3.116 (5)
$\mathrm{Br} 1 \cdots \mathrm{H}^{\text {b }}$	3.1100	C5A \cdots N1A ${ }^{\text {vii }}$	3.357 (5)
$\mathrm{Br} 1 \cdots \mathrm{H} 2 \mathrm{~A}$	2.7400	$\mathrm{C} 5 \mathrm{~A} \cdots \mathrm{Br} 2^{\text {iii }}$	3.726 (4)
$\mathrm{Br} 1 \cdots \mathrm{H} 2 \mathrm{~B}^{\text {ii }}$	3.1900	C5A $\cdots \mathrm{Zn}^{\text {iii }}$	4.148 (4)
$\mathrm{Br} 1 \cdots \mathrm{H} 3 \mathrm{~B}^{\text {ii }}$	3.0700	C5A \cdots C6A ${ }^{\text {vii }}$	3.425 (6)
$\mathrm{Br} 1 \cdots \mathrm{H} 1 \mathrm{~B}^{\text {i }}$	2.7000	C5B \cdots C5B ${ }^{\text {ix }}$	3.472 (6)
$\mathrm{Br} 2 \cdots \mathrm{H} 2 \mathrm{~A}^{\text {iv }}$	3.0900	C6A \cdots C4A ${ }^{\text {vii }}$	3.387 (6)
$\mathrm{Br} 2 \cdots \mathrm{H} 3 \mathrm{~A}^{\text {iv }}$	2.9100	C6A \cdots C5 ${ }^{\text {vii }}$	3.425 (6)
$\mathrm{Br} 2 \cdots{ }^{\text {\% }}$ 6 ${ }^{\text {i }}$	3.2000	C6A \cdots O2B ${ }^{\text {vii }}$	3.292 (6)
Br2 \cdots H2B	2.6500	C6B $\cdots{ }^{\text {O }}{ }^{\text {v }}$	3.387 (6)
$\mathrm{Br} 2 \cdots \mathrm{H} 3 \mathrm{~A}^{\text {iii }}$	3.2200	C6B $\cdots{ }^{\text {C }}$ 2B ${ }^{\text {v }}$	3.588 (6)
Br2 $\cdots{ }^{\text {H }}{ }^{\text {iii }}$	2.8700	C6B $\cdots \mathrm{Br}^{\text {viii }}$	3.404 (5)
$\mathrm{Zn} \cdots \mathrm{C} 5 \mathrm{~A}^{\text {iii }}$	4.148 (4)	$\mathrm{C} 2 \mathrm{~A} \cdots \mathrm{H}_{1}{ }^{\text {vi }}$	2.8500
$\mathrm{Zn} \cdots \mathrm{H} 2 \mathrm{~A}$	2.9100	C5B $\cdots{ }^{\text {H }}$ 5 ${ }^{\text {ix }}$	3.0400
$\mathrm{Zn} \cdots \mathrm{H} 2 \mathrm{~B}$	2.8800	H1A \cdots O2A ${ }^{\text {vi }}$	1.9400
$\mathrm{Zn} \cdots{ }^{\text {- }}$ 5 ${ }^{\text {iii }}$	3.6300	H1A \cdots C2A ${ }^{\text {vi }}$	2.8500
O2A \cdots Br2	3.488 (3)	H1B \cdots Br $1^{\text {viii }}$	2.7000
O2A \cdots N3B	2.915 (5)	$\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Br} 1$	2.7400
O2A \cdots C4B	3.116 (5)	$\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Br} 2^{\text {ii }}$	3.0900
O2A \cdots N1A ${ }^{\text {vi }}$	2.766 (5)	$\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Zn}$	2.9100
O2B $\cdots \mathrm{C}^{\text {b }}$	3.387 (6)	$\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Br}^{\text {iv }}$	3.1900
O2B $\cdots \mathrm{Br} 1$	3.558 (2)	$\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Br} 2$	2.6500
O2B \cdots N3A	3.257 (5)	H2B $\cdots \mathrm{Zn}$	2.8800
O2B $\cdots \mathrm{N} 4 \mathrm{~B}^{\text {ii }}$	3.003 (5)	H3A $\cdots \mathrm{Br}^{2 i}$	2.9100
O2B $\cdots \mathrm{C}^{\text {d }}{ }^{\text {vii }}$	3.292 (6)	H3A \cdots H5A	2.4000
O2A $\cdots{ }^{\text {c }}$ (${ }^{\text {vi }}$	1.9400	H3A $\cdots \mathrm{Br}^{\text {2iii }}$	3.2200
O2B $\cdots{ }^{\text {H }}{ }^{\text {bii }}$	2.8600	H3B $\cdots \mathrm{Br}^{1{ }^{\text {iv }}}$	3.0700
O2B $\cdots{ }^{\text {c }}$ 3 ${ }^{\text {ii }}$	2.1900	H3B \cdots O2B ${ }^{\text {iv }}$	2.1900
O2B $\cdots{ }^{\text {H }}$ 6 ${ }^{\text {vii }}$	2.4200	H3B \cdots H5B	2.3800
$\mathrm{N} 1 \mathrm{~A} \cdots \mathrm{O} 2 \mathrm{~A}^{\text {vi }}$	2.766 (5)	H5A $\cdots 3$ H	2.4000

$\mathrm{N} 1 \mathrm{~A} \cdots \mathrm{C} 5 \mathrm{~A}^{\text {vii }}$	$3.357(5)$
$\mathrm{N} 1 \mathrm{~B} \cdots \mathrm{Br}^{\text {vii }}$	$3.483(3)$
$\mathrm{N} 1 \mathrm{~B} \cdots \mathrm{C}^{\mathrm{V}} \mathrm{B}^{v}$	$3.306(5)$
$\mathrm{N} 3 \mathrm{~A} \cdots \mathrm{Br} 2$	$3.511(3)$
$\mathrm{N} 3 \mathrm{~A} \cdots \mathrm{O} 2 \mathrm{~B}$	$3.257(5)$
$\mathrm{N} 3 \mathrm{~A} \cdots \mathrm{~N} 3 \mathrm{~B}$	$3.295(5)$
$\mathrm{N} 3 \mathrm{~B} \cdots \mathrm{O} 2 \mathrm{~A}$	$2.915(5)$
$\mathrm{N} 3 \mathrm{~B} \cdots \mathrm{~N} 3 \mathrm{~A}$	$3.295(5)$
$\mathrm{N} 4 \mathrm{~A} \cdots \mathrm{Br} 1$	$3.577(4)$

$\mathrm{Br} 1-\mathrm{Zn}-\mathrm{Br} 2$
$\mathrm{Br} 1-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}$
$\mathrm{Br} 2-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}$
$\mathrm{Br} 2-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}$
$\mathrm{N} 3 \mathrm{~A}-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}$
C2A-N1A-C6A
C2B-N1B-C6B
$\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$
$\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$
$\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$
$\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$
C2B-N3B-C4B
C2A-N1A-H1A
C6A-N1A-H1A
C2B-N1B-H1B
C6B-N1B-H1B
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 4 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 4 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 4 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$
$\mathrm{H} 2 \mathrm{~B}-\mathrm{N} 4 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 4 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$
C4B-N4B-H3B

$\mathrm{Br} 1-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$-176.9(2)$
$\mathrm{Br} 1-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$5.3(4)$
$\mathrm{Br} 2-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$69.9(3)$
$\mathrm{Br} 2-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-107.9(4)$
$\mathrm{N} 3 \mathrm{~B}-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$-51.9(3)$
$\mathrm{N} 3 \mathrm{~B}-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$130.4(4)$
$\mathrm{Br} 1-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$70.0(3)$
$\mathrm{Br} 1-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-128.9(3)$
$\mathrm{Br} 2-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$-171.3(2)$
$\mathrm{Br} 2-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-10.2(4)$
$\mathrm{N} 3 \mathrm{~A}-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$-57.8(3)$
$\mathrm{N} 3 \mathrm{~A}-\mathrm{Zn}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$103.2(3)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	$-179.2(4)$

$\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{Br}^{\text {iii }}$	2.8700
$\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{Zn}^{\text {iii }}$	3.6300
$\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{in}} \mathrm{B}^{\text {iv }}$	2.8600
$\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{H} 3 \mathrm{~B}$	2.3800
$\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{C}^{\text {ix }}$	3.0400
$\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{O}^{\text {ix }}$	2.4200
$\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{Br}^{\text {viii }}$	3.2000
$\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{Br}^{\text {vi }}$	3.1100

121.3 (4)
118.6 (4)
120.2 (4)
121.7 (3)
120.6 (4)
117.7 (4)
121.7 (4)
117.7 (4)
120.6 (4)
119.5 (4)
121.7 (4)
118.8 (4)
117.9 (4)
117.8 (4)
120.2 (4)
120.4 (4)
121.00
121.00
121.00
121.00
120.00
120.00
120.00
120.00
-179.1 (4)
2.1 (6)
-5.4 (6)
175.1 (3)
177.1 (4)
-2.5 (6)
-13.9 (5)
166.2 (3)
-176.7 (4)
3.3 (5)
20.3 (5)
-160.4 (3)
179.6 (4)

$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}$	$-0.4(6)$	$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$-1.1(6)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$-1.0(6)$	$\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.2(6)$
$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}$	$175.8(4)$	$\mathrm{N} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$-178.4(4)$
$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}$	$-4.2(6)$	$\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$-0.4(6)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$2.8(7)$	$\mathrm{N} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$178.9(4)$
$\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	$2.8(5)$	$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$0.6(6)$
$\mathrm{Zn}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$-176.0(3)$	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	$-0.4(7)$

[^1]Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 2 A^{\text {vi }}$	0.86	1.94	$2.766(5)$	161
$\mathrm{~N} 1 B-\mathrm{H} 1 B \cdots \mathrm{Br} 1^{\text {viii }}$	0.86	2.70	$3.483(3)$	151
$\mathrm{~N} 4 A-\mathrm{H} 2 A \cdots \mathrm{Br} 1$	0.86	2.74	$3.577(4)$	165
$\mathrm{~N} 4 B-\mathrm{H} 2 B \cdots \mathrm{Br} 2$	0.86	2.65	$3.454(3)$	155
$\mathrm{~N} 4 A-\mathrm{H} 3 A \cdots \mathrm{Br} 2^{\text {ii }}$	0.86	2.91	$3.339(4)$	112
$\mathrm{~N} 4 B-\mathrm{H} 3 B \cdots \mathrm{O} 2 B^{\text {iv }}$	0.86	2.19	$3.003(5)$	157
$\mathrm{C} 5 A-\mathrm{H} 5 A \cdots \mathrm{Br} 2^{\text {iii }}$	0.93	2.87	$3.726(4)$	153
$\mathrm{C} 6 A — \mathrm{H} 6 A \cdots \mathrm{O} 2 B^{\text {vii }}$	0.93	2.42	$3.292(6)$	156

Symmetry codes: (ii) $x-1, y, z$; (iii) $-x+1,-y+2,-z+1$; (iv) $x+1, y, z$; (vi) $-x+2,-y+1,-z+1$; (vii) $-x+1,-y+1,-z+1$; (viii) $x, y-1, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2756).

[^1]: Symmetry codes: (i) $x, y+1, z$; (ii) $x-1, y, z$; (iii) $-x+1,-y+2,-z+1$; (iv) $x+1, y, z$; (v) $-x+1,-y+1,-z+2$; (vi) $-x+2,-y+1,-z+1$; (vii) $-x+1,-y+1,-z+1$; (viii) $x, y-1, z$; (ix) $-x+2,-y+1,-z+2$.

