

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[dimethylammonium [tris(*µ*₂formato- $\kappa^2 O:O'$)cadmate(II)]]

Shan Gao^a and Seik Weng Ng^b*

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 9 November 2010; accepted 12 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(O-C) = 0.001$ Å; disorder in main residue; R factor = 0.022; wR factor = 0.055; data-to-parameter ratio = 11.2.

In the coordination polymer, $\{(C_2H_8N)[Cd(CHO_2)_3]\}_n$, the Cd^{II} atom lies on a special position of $\overline{3}$ site symmetry in an octahedron of O atoms. The formate unit bridges the metal atoms, generating a three-dimensional polyanionic framework. The disordered cations occupy the cavities within the framework, and are N-H···O hydrogen-bonded to the framework.

Related literature

For the tris(formato)zincate cation, see; Fortier & Creber (1985); Marsh (1986). Tris(formato)cadmate is not isotypic to the aforementioned Zn structures.

Mo $K\alpha$ radiation

 $0.22 \times 0.19 \times 0.15 \text{ mm}$

 $\mu = 2.27 \text{ mm}^{-1}$

T = 293 K

Z = 6

Experimental

Crystal data

(C2H8N)[Cd(CHO2)3] $M_r = 293.55$ Trigonal, $R\overline{3}c$ a = 8.5121 (4) Å c = 23.0022(9) Å $V = 1443.36(9) \text{ Å}^3$

Data collection

Rigaku R-AXIS RAPID 4250 measured reflections diffractometer 370 independent reflections Absorption correction: multi-scan 352 reflections with $I > 2\sigma(I)$ (ABSCOR; Higashi, 1995) $R_{\rm int} = 0.024$ $T_{\min} = 0.635, T_{\max} = 0.727$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.022$	9 restraints
$vR(F^2) = 0.055$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$
370 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
33 parameters	

Table 1

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O1	0.88	1.99	2.84 (7)	163

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002): program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903) and the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2747).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Fortier, S. & Creber, K. A. M. (1985). Acta Cryst. C41, 1763-1765.

- Higashi, T. (1995). ABSCOR. Program for Absorption Correction, Tokyo, Japan.
- Marsh, R. E. (1986). Acta Cryst. C42, 1327-1328.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, m1599 [https://doi.org/10.1107/S1600536810046830] Poly[dimethylammonium [tris(μ_2 -formato- $\kappa^2 O:O'$)cadmate(II)]]

Shan Gao and Seik Weng Ng

S1. Comment

For some hydrothermal syntheses involving carboxylic acids, the *N*,*N*-dimethylformamide that is used as solvent is partially converted to the dimethylammonium cation, whose charge is balanced by the carboxylate ion. In the present study, the attempt to synthesize a coordination compound of a cadmium carboxylate yielded the tris(formato)cadmate anion (Scheme I). In the salt (Fig. 1), the cadmium atom lies on a special position of $\overline{3}$ site symmetry in an octahedron of O atoms. The formate unit bridges the metal atoms to generate a three-dimensional polyanionic framework, whose cavities are occupied by disordered cations.

A similar tris(formato)zincate(II) has been reported; the compound was synthesized directly from a zinc salt and formic acid in DMF medium (Fortier & Creber, 1985; Marsh, 1986). The later study has assumed the cation to be the formamidine cation, $(NH_2)CH(NH_2)^+$. Possibly, the cation is the dimethylammonium cation.

S2. Experimental

N,*N*-Dimethylformamide (10 ml), water (1 ml), ethanol (1 ml), formic acid (0.1 ml), cadmium nitrate (5 mmol), 1,10-phenanthroline (5 mmol) and benzoic acid (5 mmol) were heated in a 23-ml Teflon-lined autoclave at 383 K for 3 days. After slow cooling the autoclave to room temperature, colorless crystals were obtained.

S3. Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.93, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2-1.5U_{eq}(C,N)$.

The dimethylammonium cation was allowed to refine off the special position; the two N–C distances were restrained to 1.50 ± 0.01 Å and the C…C distance to 2.35 ± 0.01 Å. The anisotropic temperature factors of the carbon atoms were restrained to be nearly isotropic.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of a portion of poly[dimethylammonium tris(formato)cadmate] at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Poly[dimethylammonium [tris(μ_2 -formato- $\kappa^2 O:O'$)cadmate(II)]]

Crystal data	
$(C_{2}H_{8}N)[Cd(CHO_{2})_{3}]$ $M_{r} = 293.55$ Trigonal, $R\overline{3}c$ Hall symbol: -R 3 2" c a = 8.5121 (4) Å c = 23.0022 (9) Å V = 1443.36 (9) Å ³ Z = 6 F(000) = 864	$D_x = 2.026 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3921 reflections $\theta = 3.3-37.5^{\circ}$ $\mu = 2.27 \text{ mm}^{-1}$ T = 293 K Prism, colorless $0.22 \times 0.19 \times 0.15 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{\min} = 0.635, T_{\max} = 0.727$	4250 measured reflections 370 independent reflections 352 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.3^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 9$ $l = -29 \rightarrow 29$

Refinement

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from
$wR(F^2) = 0.055$	neighbouring sites
S = 1.09	H-atom parameters constrained
370 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0419P)^2 + 0.5666P]$
33 parameters	where $P = (F_o^2 + 2F_c^2)/3$
9 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.73 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and is	sotropic or equivalent	isotropic displa	acement parameters (A ²)
--------------------------------------	------------------------	------------------	--------------------------------------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	0.0000	0.0000	0.0000	0.02669 (17)	
01	0.23112 (15)	0.21016 (15)	0.05612 (5)	0.0452 (3)	
C1	0.2265 (2)	0.3333	0.0833	0.0328 (4)	
H1A	0.1173	0.3333	0.0833	0.039*	
N1	0.578 (6)	0.252 (5)	0.0797 (17)	0.040 (4)	0.167
H1B	0.5788	0.1489	0.0798	0.048*	0.167
H1	0.4646	0.2277	0.0792	0.048*	0.167
C2	0.680 (5)	0.365 (4)	0.0282 (14)	0.041 (4)*	0.167
H2A	0.6061	0.3181	-0.0061	0.062*	0.167
H2B	0.7899	0.3619	0.0232	0.062*	0.167
H2C	0.7079	0.4881	0.0344	0.062*	0.167
C3	0.676 (7)	0.364 (4)	0.1320 (15)	0.041 (4)*	0.167
H3A	0.6210	0.2961	0.1667	0.062*	0.167
H3B	0.6687	0.4732	0.1322	0.062*	0.167
H3C	0.8010	0.3952	0.1306	0.062*	0.167

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.02630 (19)	0.02630 (19)	0.0275 (2)	0.01315 (10)	0.000	0.000
01	0.0397 (6)	0.0420 (6)	0.0554 (7)	0.0215 (5)	-0.0121 (5)	-0.0206 (5)
C1	0.0301 (8)	0.0326 (11)	0.0367 (10)	0.0163 (5)	-0.0006 (4)	-0.0011 (8)
N1	0.040 (8)	0.028 (6)	0.055 (8)	0.019 (4)	-0.006 (7)	0.002 (7)

Geometric parameters (Å, °)

Cd1-O1 ⁱ	2.2841 (10)	N1—C3	1.505 (10)	
Cd1—O1	2.2841 (10)	N1—H1B	0.8800	
Cd1—O1 ⁱⁱ	2.2841 (10)	N1—H1	0.8800	
Cd1—O1 ⁱⁱⁱ	2.2841 (10)	C2—H2A	0.9600	
Cd1—O1 ^{iv}	2.2841 (10)	C2—H2B	0.9600	
Cd1—O1 ^v	2.2841 (10)	C2—H2C	0.9600	
01—C1	1.2384 (14)	С3—НЗА	0.9600	
C101 ^{vi}	1.2383 (14)	С3—Н3В	0.9600	

supporting information

C1—H1A N1—C2	0.9300 1.499 (10)	С3—НЗС	0.9600
$\begin{array}{c} O1^{i} - Cd1 - O1 \\ O1^{i} - Cd1 - O1^{ii} \\ O1 - Cd1 - O1^{ii} \\ O1^{i} - Cd1 - O1^{iii} \\ O1^{i} - Cd1 - O1^{iii} \\ O1^{ii} - Cd1 - O1^{iii} \\ O1^{ii} - Cd1 - O1^{iv} \\ O1^{ii} - Cd1 - O1^{v} \\ O1^{ii} - Cd1 \\ O1^{v} \\ O1^{ii} - Cd1 \\$	180.00 (5) $91.20 (4)$ $88.80 (4)$ $91.20 (4)$ $88.80 (4)$ $91.20 (4)$ $88.80 (4)$ $91.20 (4)$ $88.80 (4)$ $91.20 (4)$ $180.00 (7)$ $88.80 (4)$ $91.20 (4)$ $180.00 (5)$ $88.80 (4)$ $91.20 (4)$ $124.71 (11)$ $125.90 (19)$	$\begin{array}{c} C2-N1-C3\\ C2-N1-H1B\\ C3-N1-H1B\\ C2-N1-H1\\ C3-N1-H1\\ H1B-N1-H1\\ N1-C2-H2A\\ N1-C2-H2B\\ H2A-C2-H2B\\ H2A-C2-H2C\\ H2A-C2-H2C\\ H2B-C2-H2C\\ H2B-C2-H2C\\ H2B-C2-H2C\\ N1-C3-H3A\\ N1-C3-H3B\\ H3A-C3-H3B\\ N1-C3-H3C\\ H3A-C3-H3C\\ H$	105.3 (8) 110.7 110.7 110.7 110.7 108.8 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
O1 [™] —C1—H1A O1—C1—H1A O1 [™] —Cd1—O1—C1 O1 [™] —Cd1—O1—C1	117.1 117.1 151.34 (11) 60.11 (7)	H3B—C3—H3C O1 ^v —Cd1—O1—C1 Cd1—O1—C1—O1 ^{vi}	109.5 -28.66 (11) -174.40 (11)
01 ^{iv} —Cd1—O1—C1	-119.89 (7)		

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) *y*, -*x*+*y*, -*z*; (iii) *x*-*y*, *x*, -*z*; (iv) -*x*+*y*, -*x*, *z*; (v) -*y*, *x*-*y*, *z*; (vi) *x*-*y*+1/3, -*y*+2/3, -*z*+1/6.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O1	0.88	1.99	2.84 (7)	163