

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(4-chloropyridine){2,2'-[ethane-1,2divlbis(nitrilomethylidyne)]diphenolato{cobalt(III) perchlorate methanol monosolvate

Daopeng Zhang

College of Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China Correspondence e-mail: dpzhang73@126.com

Received 4 November 2010; accepted 17 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.052; wR factor = 0.160; data-to-parameter ratio = 13.5.

In the title complex, $[Co(C_{16}H_{14}N_2O_2)(C_5H_4ClN)_2]ClO_4$. CH₃OH, the Co^{III} ion is in a slightly distorted octahedral CoN₄O₂ coordination environment with the two 4-chloropyridine ligands in a trans arrangement.

Related literature

For related structures, see: Chen (2008); Kitaura et al. (1987); Shi et al. (1995); Zhou (2009).

Experimental

Crystal data

[Co(C₁₆H₁₄N₂O₂)(C₅H₄ClN)₂]- $\beta = 103.843 \ (2)^{\circ}$ ClO₄·CH₄O $\gamma = 95.396 \ (2)^{\circ}$ $M_r = 683.80$ V = 1474.9 (3) Å³ Triclinic, $P\overline{1}$ Z = 2a = 9.0244 (12) Å b = 11.2625 (16) Å c = 15.052 (2) Å $\alpha = 92.757 \ (2)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 2008a) $T_{\min} = 0.767, T_{\max} = 0.805$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.160$ S = 1.055144 reflections

Mo $K\alpha$ radiation $\mu = 0.91 \text{ mm}^{-1}$ T = 293 K $0.31 \times 0.29 \times 0.25 \text{ mm}$

7378 measured reflections 5144 independent reflections 4213 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.016$

380 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.21 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.49$ e Å⁻³

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.

The author thanks the Doctoral Starting Fund of Shandong University of Technology for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2742).

References

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Chen, Y.-T. (2008). Acta Cryst. E64, m1377-m1378. Kitaura, E., Nishida, Y., Okawa, H. & Kida, S. (1987). J. Chem. Soc. Dalton

Trans. pp. 3055-3059. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.

Shi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206–207.

Zhou, L.-W. (2009). Acta Cryst. E65, m226.

Acta Cryst. (2010). E66, m1633 [https://doi.org/10.1107/S1600536810047793]

Bis(4-chloropyridine){2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}cobalt(III) perchlorate methanol monosolvate

Daopeng Zhang

S1. Comment

Tetradentate Schiff-base ligands, due to their excellent chelating ability for metal atoms, have been widely used to synthsize transition metal complexes. Here, we report the crystal structure of a Co^{III} complex based on tetradentate Schiff base ligand *N*,*N*'-bis(salicylidene)-1,2-diphenyl-1,2-ethanediamine.

The cation structure of the title complex is shown in Fig. 1. The Co^{III} ion is six coordinated by a N_4O_2 unit, in which the four equational sites are occupied by two N atoms and two O atoms from the tetradentate Schiff base ligand and the two axial sites are occupied by the N atoms of two 4-chloro-pyridine ligands, therefore forming a slightly distorted octahedral coordination environment. The Co–O, Co– $N_{Schiff-base}$ and Co– $N_{pyridine}$ bond lengths are 1.891 (2), 1.898 (2),1.892 (3), 1.897 (3), 1.977 (3) and 1.995 (3)A%, respectively, which are all comparable to the corresponding bond lengths found in the previously reported Co^{III} Schiff-base complexes (Chen, 2008; Kitaura, *et al.*, 1987; Shi, *et al.*, 1995; Zhou, 2009).

S2. Experimental

The synthesis of the title complex was carried out by mixing $Co(ClO_4)_2.6H_2O$ (0.1 mmol, 36.6 mg), 4-chloro-pyridine (0.2 mm mol, 22.8 mg) and the Schiff-base ligand (0.1 mmol, 26.8 mg) in methanol. After the mixture was stirred for about half an hour at room temperature in air, it was filtered, and the filtrate was allowed to partially evaporate for one week to produce crystals suitable for X-ray diffraction with an yield about 51%. Anal. Calcd for $C_{27}H_{26}Cl_3CoN_4O_7$: C, 47.42; H, 3.83; N, 8.19. Found: C, 47.54; H, 3.75; N, 8.095. Main IR bands (cm⁻¹): 3020 (s, *C*—H),1618 (m, C=N), 1093 (s, Cl=O).

S3. Refinement

All the H atoms bonded to the C atoms were placed using the HFIX commands in *SHELXL-97* with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C)$, respectively. For the H atoms bonded to O atom, it was found from difference Fourier maps with the bond lengths restrained to 0.82 Å, and was allowed for as riding atoms with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The cation of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All the H atoms, the balanced ClO_4^- anion and the solvent methanol are not shown.

Bis(4-chloropyridine){2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}cobalt(III) perchlorate methanol monosolvate

Crystal data	
$[Co(C_{16}H_{14}N_2O_2)(C_5H_4CIN)_2]CIO_4\cdot CH_4O$	Z=2
$M_r = 683.80$	F(000) = 700
Triclinic, P1	$D_{\rm x} = 1.540 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.0244 (12) Å	Cell parameters from 1564 reflections
b = 11.2625 (16) Å	$\theta = 2.7 - 27.9^{\circ}$
c = 15.052 (2) Å	$\mu = 0.91 \text{ mm}^{-1}$
$\alpha = 92.757 \ (2)^{\circ}$	T = 293 K
$\beta = 103.843 \ (2)^{\circ}$	Block, red-brown
$\gamma = 95.396 \ (2)^{\circ}$	$0.31 \times 0.29 \times 0.25 \text{ mm}$
$V = 1474.9 (3) Å^3$	

Data collection

Bruker APEXII CCD area-detector	7378 measured reflections
diffractometer	5144 independent reflections
Radiation source: fine-focus sealed tube	4213 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.016$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(<i>SADABS</i> ; Sheldrick, 2008 <i>a</i>)	$k = -12 \rightarrow 13$
$T_{min} = 0.767, T_{max} = 0.805$	$l = -12 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.160$	neighbouring sites
S = 1.05	H-atom parameters constrained
5144 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0871P)^2 + 1.6441P]$
380 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.21 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.49 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$	
Col	0.86908 (5)	0.11688 (4)	0.27546 (3)	0.03389 (18)	
Cl1	0.7528 (2)	-0.42638(12)	0.38879 (11)	0.0922 (5)	
Cl2	1.12614 (17)	0.66668 (11)	0.25101 (11)	0.0786 (4)	
Cl3	0.18397 (16)	0.27636 (12)	0.02468 (9)	0.0665 (3)	
01	1.0710 (3)	0.1026 (2)	0.34504 (16)	0.0395 (6)	
02	0.8300 (3)	0.1686 (2)	0.38825 (16)	0.0390 (6)	
03	0.0318 (7)	0.2275 (8)	-0.0063(5)	0.186 (3)	
04	0.2366 (8)	0.3413 (8)	-0.0360(5)	0.178 (3)	
05	0.2650 (11)	0.1777 (7)	0.0309 (7)	0.222 (4)	
O6	0.2264 (10)	0.3178 (9)	0.1133 (4)	0.205 (4)	
07	0.5606 (10)	0.2638 (9)	0.9505 (7)	0.221 (5)	
H7	0.5417	0.2768	1.0005	0.332*	
N1	0.9058 (4)	0.0653 (3)	0.1619 (2)	0.0401 (7)	
N2	0.6671 (3)	0.1307 (3)	0.2060 (2)	0.0374 (7)	
N3	0.8215 (3)	-0.0521 (3)	0.3026 (2)	0.0384 (7)	
N4	0.9340 (3)	0.2864 (3)	0.2621 (2)	0.0390 (7)	

C1	1.1544 (4)	-0.0002(3)	0.2244 (3)	0.0397 (8)
C2	1.1695 (4)	0.0401 (3)	0.3167 (2)	0.0357 (8)
C3	1.2979 (4)	0.0125 (4)	0.3825 (3)	0.0471 (9)
H3	1.3099	0.0375	0.4438	0.056*
C4	1.4067 (5)	-0.0514 (4)	0.3574 (3)	0.0563 (11)
H4	1.4909	-0.0687	0.4022	0.068*
C5	1.3924 (5)	-0.0902(4)	0.2664 (3)	0.0554 (11)
H5	1.4667	-0.1327	0.2502	0.066*
C6	1.2690 (5)	-0.0655(4)	0.2015 (3)	0.0511 (10)
H6	1 2590	-0.0918	0.1407	0.061*
C7	1.0261 (5)	0.0194(4)	0.1520(3)	0.001
U7 H7A	1.0303	-0.0031	0.0924	0.054*
C8	0.5817(4)	0.0001	0.0924	0.034
C0	0.3017(4) 0.7113(4)	0.2302(3)	0.3231(3) 0.3977(2)	0.0352(8)
C10	0.7113(4) 0.7080(5)	0.2223(3)	0.3977(2)	0.0356 (0)
U10	0.7089 (3)	0.2073 (4)	0.4804 (3)	0.0430 (9)
C11	0.7915	0.2369	0.5554	0.055°
	0.3884 (3)	0.3220 (4)	0.5022(3)	0.0316(10)
	0.3900	0.3304	0.3010	0.062^{*}
C12	0.4637 (5)	0.3381 (4)	0.4310(3)	0.0577(11)
HI2	0.3831	0.3773	0.4423	0.069*
013	0.4607 (5)	0.2947 (4)	0.3435 (3)	0.0509 (10)
HI3	0.3768	0.3043	0.2957	0.061*
C14	0.5654 (4)	0.1835 (3)	0.2337 (3)	0.0413 (9)
H14	0.4729	0.1884	0.1912	0.050*
C15	0.7786 (5)	0.0764 (4)	0.0805 (3)	0.0520 (11)
H15A	0.7719	0.0110	0.0348	0.062*
H15B	0.7967	0.1511	0.0533	0.062*
C16	0.6310 (5)	0.0731 (4)	0.1120 (3)	0.0495 (10)
H16A	0.5571	0.1153	0.0711	0.059*
H16B	0.5870	-0.0090	0.1114	0.059*
C17	0.7805 (5)	-0.1467 (4)	0.2413 (3)	0.0454 (9)
H17	0.7667	-0.1333	0.1795	0.055*
C18	0.7576 (5)	-0.2624 (4)	0.2642 (3)	0.0541 (11)
H18	0.7278	-0.3253	0.2192	0.065*
C19	0.7798 (5)	-0.2828 (4)	0.3555 (3)	0.0534 (11)
C20	0.8241 (6)	-0.1875 (4)	0.4200 (3)	0.0570 (11)
H20	0.8399	-0.1992	0.4822	0.068*
C21	0.8445 (5)	-0.0751 (4)	0.3914 (3)	0.0470 (9)
H21	0.8760	-0.0113	0.4356	0.056*
C22	0.8877(5)	0.3475 (4)	0.1886 (3)	0.0533 (11)
H22	0.8144	0.3090	0.1388	0.064*
C23	0.9419 (6)	0.4633 (4)	0.1823 (3)	0.0620 (12)
H23	0.9067	0 5022	0 1294	0.074*
C24	1.0492 (5)	0.5210 (4)	0.2553(3)	0.0522 (10)
C25	1.0946 (5)	0.4621(4)	0.3331(3)	0.0522(10)
H25	1 1642	0 5003	0 3846	0.073*
C26	1.0355 (5)	0.3463(4)	0 3333 (3)	0.075
H26	1.0555 (5)	0.3066	0.3867	0.0540(11)
1120	1.00/0	0.2000	0.0002	0.000

C27	0.6289 (12)	0.3621 (9)	0.9273 (7)	0.150 (4)	
H27A	0.6190	0.4289	0.9666	0.225*	
H27B	0.5819	0.3752	0.8647	0.225*	
H27C	0.7357	0.3537	0.9335	0.225*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0333 (3)	0.0412 (3)	0.0266 (3)	0.0087 (2)	0.00415 (19)	0.0042 (2)
Cl1	0.1540 (16)	0.0488 (7)	0.0981 (11)	0.0199 (8)	0.0718 (11)	0.0204 (7)
Cl2	0.0851 (9)	0.0531 (7)	0.0944 (10)	-0.0081 (6)	0.0192 (8)	0.0193 (7)
Cl3	0.0745 (8)	0.0669 (8)	0.0580 (7)	0.0084 (6)	0.0148 (6)	0.0113 (6)
01	0.0356 (13)	0.0489 (15)	0.0327 (13)	0.0113 (11)	0.0038 (10)	0.0019 (11)
O2	0.0367 (13)	0.0500 (15)	0.0303 (13)	0.0143 (11)	0.0048 (10)	0.0017 (11)
O3	0.092 (4)	0.272 (9)	0.165 (6)	-0.034 (5)	-0.003 (4)	0.019 (6)
O4	0.154 (6)	0.236 (8)	0.141 (5)	-0.011 (5)	0.026 (4)	0.103 (5)
05	0.214 (8)	0.129 (6)	0.277 (10)	0.069 (6)	-0.044 (7)	-0.029 (6)
O6	0.208 (8)	0.300 (11)	0.093 (4)	0.056 (7)	0.013 (5)	-0.048 (5)
07	0.202 (8)	0.219 (9)	0.301 (12)	0.090 (7)	0.123 (8)	0.146 (9)
N1	0.0430 (17)	0.0515 (19)	0.0262 (15)	0.0089 (15)	0.0073 (13)	0.0070 (13)
N2	0.0361 (16)	0.0439 (17)	0.0302 (15)	0.0077 (13)	0.0028 (12)	0.0022 (13)
N3	0.0360 (16)	0.0485 (18)	0.0307 (16)	0.0098 (14)	0.0061 (13)	0.0040 (14)
N4	0.0352 (16)	0.0464 (18)	0.0351 (16)	0.0082 (13)	0.0062 (13)	0.0068 (14)
C1	0.041 (2)	0.042 (2)	0.041 (2)	0.0057 (16)	0.0176 (17)	0.0097 (16)
C2	0.0358 (19)	0.0339 (18)	0.0392 (19)	0.0043 (15)	0.0116 (15)	0.0068 (15)
C3	0.039 (2)	0.056 (2)	0.047 (2)	0.0102 (18)	0.0079 (17)	0.0071 (19)
C4	0.036 (2)	0.066 (3)	0.068 (3)	0.017 (2)	0.009 (2)	0.013 (2)
C5	0.041 (2)	0.055 (3)	0.079 (3)	0.0165 (19)	0.027 (2)	0.014 (2)
C6	0.054 (2)	0.054 (2)	0.054 (2)	0.011 (2)	0.028 (2)	0.009 (2)
C7	0.053 (2)	0.053 (2)	0.0327 (19)	0.0087 (19)	0.0177 (17)	0.0069 (17)
C8	0.0362 (19)	0.038 (2)	0.044 (2)	0.0060 (15)	0.0088 (16)	0.0048 (16)
C9	0.0383 (19)	0.0320 (18)	0.0374 (19)	0.0025 (15)	0.0101 (15)	0.0024 (15)
C10	0.048 (2)	0.048 (2)	0.041 (2)	0.0070 (18)	0.0107 (18)	-0.0025 (17)
C11	0.055 (2)	0.053 (2)	0.050(2)	0.006 (2)	0.020 (2)	-0.0059 (19)
C12	0.048 (2)	0.060 (3)	0.071 (3)	0.016 (2)	0.023 (2)	-0.005 (2)
C13	0.041 (2)	0.053 (2)	0.057 (3)	0.0109 (19)	0.0073 (19)	0.001 (2)
C14	0.0317 (18)	0.046 (2)	0.042 (2)	0.0060 (16)	0.0003 (16)	0.0062 (17)
C15	0.055 (2)	0.073 (3)	0.0266 (19)	0.019 (2)	0.0024 (17)	0.0043 (19)
C16	0.048 (2)	0.062 (3)	0.033 (2)	0.0135 (19)	-0.0048 (17)	-0.0018 (18)
C17	0.050(2)	0.049 (2)	0.038 (2)	0.0106 (18)	0.0089 (17)	0.0044 (18)
C18	0.064 (3)	0.047 (2)	0.054 (3)	0.009 (2)	0.018 (2)	-0.002 (2)
C19	0.065 (3)	0.041 (2)	0.066 (3)	0.016 (2)	0.032 (2)	0.012 (2)
C20	0.077 (3)	0.057 (3)	0.043 (2)	0.018 (2)	0.021 (2)	0.014 (2)
C21	0.057 (2)	0.048 (2)	0.036 (2)	0.0127 (19)	0.0097 (18)	0.0051 (17)
C22	0.064 (3)	0.052 (2)	0.040 (2)	0.003 (2)	0.0029 (19)	0.0099 (19)
C23	0.079 (3)	0.061 (3)	0.046 (3)	0.008 (2)	0.012 (2)	0.019 (2)
C24	0.045 (2)	0.048 (2)	0.066 (3)	0.0067 (19)	0.017 (2)	0.013 (2)
C25	0.053 (3)	0.050 (3)	0.067 (3)	-0.001 (2)	-0.009 (2)	0.007 (2)

C26	0.053 (2)	0.053 (3)	0.048 (2)	0.006 (2)	-0.008 (2)	0.011 (2)
C27	0.172 (10)	0.128 (7)	0.158 (9)	-0.036 (7)	0.078 (8)	-0.001 (7)

Geometric parameters (Å, °)

Geometric purumeters (A,)			
Co1-02	1.891 (2)	C8—C13	1.402 (5)
Co1—N1	1.892 (3)	C8—C9	1.423 (5)
Co1—N2	1.897 (3)	C8—C14	1.440 (5)
Co1—O1	1.898 (2)	C9—C10	1.410 (5)
Co1—N4	1.977 (3)	C10—C11	1.365 (6)
Co1—N3	1.995 (3)	C10—H10	0.9300
Cl1—C19	1.728 (4)	C11—C12	1.387 (6)
Cl2—C24	1.730 (4)	C11—H11	0.9300
Cl3—O4	1.342 (6)	C12—C13	1.376 (6)
Cl3—O6	1.344 (6)	C12—H12	0.9300
Cl3—O5	1.382 (7)	C13—H13	0.9300
Cl3—O3	1.391 (6)	C14—H14	0.9300
O1—C2	1.318 (4)	C15—C16	1.515 (6)
O2—C9	1.312 (4)	C15—H15A	0.9700
O7—C27	1.319 (10)	C15—H15B	0.9700
O7—H7	0.8200	C16—H16A	0.9700
N1—C7	1.282 (5)	C16—H16B	0.9700
N1—C15	1.485 (5)	C17—C18	1.373 (6)
N2—C14	1.278 (5)	C17—H17	0.9300
N2—C16	1.477 (5)	C18—C19	1.374 (6)
N3—C17	1.339 (5)	C18—H18	0.9300
N3—C21	1.344 (5)	C19—C20	1.375 (6)
N4—C22	1.334 (5)	C20—C21	1.366 (6)
N4—C26	1.337 (5)	C20—H20	0.9300
C1—C2	1.412 (5)	C21—H21	0.9300
C1—C6	1.420 (5)	C22—C23	1.365 (6)
C1—C7	1.430 (5)	C22—H22	0.9300
C2—C3	1.403 (5)	C23—C24	1.369 (6)
C3—C4	1.381 (6)	С23—Н23	0.9300
С3—Н3	0.9300	C24—C25	1.369 (6)
C4—C5	1.390 (7)	C25—C26	1.363 (6)
C4—H4	0.9300	С25—Н25	0.9300
C5—C6	1.355 (6)	C26—H26	0.9300
С5—Н5	0.9300	C27—H27A	0.9600
С6—Н6	0.9300	С27—Н27В	0.9600
С7—Н7А	0.9300	С27—Н27С	0.9600
O2—Co1—N1	179.33 (12)	C11—C10—C9	121.7 (4)
O2—Co1—N2	94.28 (12)	C11—C10—H10	119.2
N1—Co1—N2	85.06 (13)	C9—C10—H10	119.2
O2—Co1—O1	85.71 (10)	C10-C11-C12	121.1 (4)
N1—Co1—O1	94.95 (12)	C10-C11-H11	119.5
N2—Co1—O1	179.83 (13)	C12—C11—H11	119.5

O2—Co1—N4	87.07 (12)	C13—C12—C11	119.2 (4)
N1—Co1—N4	92.94 (13)	C13—C12—H12	120.4
N2—Co1—N4	91.30 (13)	C11—C12—H12	120.4
O1—Co1—N4	88.86 (12)	C12—C13—C8	121.3 (4)
O2—Co1—N3	89.24 (12)	C12—C13—H13	119.4
N1—Co1—N3	90.81 (13)	С8—С13—Н13	119.4
N2—Co1—N3	94.37 (13)	N2—C14—C8	125.6 (3)
O1—Co1—N3	85.46 (12)	N2—C14—H14	117.2
N4—Co1—N3	173.45 (12)	C8—C14—H14	117.2
04	117.6 (6)	N1—C15—C16	107.9 (3)
04	104.2 (7)	N1—C15—H15A	110.1
06-013-05	98.6 (6)	C16—C15—H15A	110.1
04-C13-O3	114.2 (5)	N1-C15-H15B	110.1
06	115.2 (5)	C16—C15—H15B	110.1
05-013-03	103.6 (6)	H15A—C15—H15B	108.4
$C_2 = 0_1 = C_0_1$	1245(2)	N2-C16-C15	108.2(3)
C9-O2-Co1	1256(2)	N2-C16-H16A	110.1
$C_{27} = 07 = H7$	109 5	C_{15} C_{16} H_{16A}	110.1
C_{2}^{-} N1-C15	119.9 (3)	N_2 —C16—H16B	110.1
C7 N1 $C13$	125.3 (3)	C_{15} C_{16} H_{16B}	110.1
$C_1 = N_1 = C_0 I$	125.5(3) 114.8(2)	$H_{16} - C_{16} - H_{16}B$	108.4
C_{14} N2 C_{16}	114.0(2) 110.0(3)	$N_{3} C_{17} C_{18}$	100.4 123.0 (4)
C14 - N2 - Co1	119.9 (3)	N3_C17_H17	123.9 (4)
$C_{14} = N_2 = C_{01}$	120.0(3)	13 - 17 - 117	118.1
$C_{10} = N_2 = C_{01}$	114.1(2) 116.5(2)	$C_{10} = C_{17} = C_{10}$	110.1 118.2(4)
C17 = N3 = C21	110.3(3) 126.2(2)	C17 - C18 - C19	118.5 (4)
C1/-N3-C01	120.2(3)	$C_{1} = C_{10} = C_{10} = H_{10}$	120.8
$C_{21} = N_{3} = C_{01}$	117.1(3) 1162(4)	C19-C10-H18	120.8
$C_{22} = N_4 = C_{20}$	110.2 (4)	C18 - C19 - C20	119.0 (4)
C_{22} N4 C_{11}	126.6 (3)	C18 - C19 - C11	120.5 (4)
$C_{20} = N_{4} = C_{01}$	117.2 (3)	C20-C19-C11	120.4 (4)
$C_2 - C_1 - C_6$	119.3 (4)	$C_{21} = C_{20} = C_{19}$	119.0 (4)
$C_2 = C_1 = C_7$	122.9 (3)	C21—C20—H20	120.5
	117.8 (4)	C19—C20—H20	120.5
01 - 02 - 03	117.9 (3)	N3-C21-C20	123.3 (4)
01	124.1 (3)	N3—C21—H21	118.3
C3—C2—C1	118.0 (3)	C20—C21—H21	118.3
C4—C3—C2	120.9 (4)	N4—C22—C23	123.7 (4)
C4—C3—H3	119.5	N4—C22—H22	118.1
С2—С3—Н3	119.5	С23—С22—Н22	118.1
C3—C4—C5	121.1 (4)	C22—C23—C24	118.7 (4)
C3—C4—H4	119.5	С22—С23—Н23	120.7
C5—C4—H4	119.5	С24—С23—Н23	120.7
C6—C5—C4	119.2 (4)	C23—C24—C25	119.0 (4)
С6—С5—Н5	120.4	C23—C24—Cl2	121.1 (3)
C4—C5—H5	120.4	C25—C24—Cl2	119.9 (4)
C5—C6—C1	121.5 (4)	C26—C25—C24	118.5 (4)
С5—С6—Н6	119.3	C26—C25—H25	120.7
С1—С6—Н6	119.3	С24—С25—Н25	120.7

N1—C7—C1	125.7 (3)	N4—C26—C25	123.9 (4)	
N1—C7—H7A	117.2	N4—C26—H26	118.1	
С1—С7—Н7А	117.2	C25—C26—H26	118.1	
С13—С8—С9	119.7 (4)	O7—C27—H27A	109.5	
C13—C8—C14	118.4 (3)	O7—C27—H27B	109.5	
C9—C8—C14	121.7 (3)	H27A—C27—H27B	109.5	
O2—C9—C10	118.1 (3)	O7—C27—H27C	109.5	
O2—C9—C8	124.7 (3)	H27A—C27—H27C	109.5	
С10—С9—С8	117.2 (3)	H27B—C27—H27C	109.5	