

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-[4-(Hexyloxy)phenyl]-3-(3-hydroxyphenyl)prop-2-en-1-one

Zainab Ngaini,^a Siti Muhaini Haris Fadzillah,^a Hasnain Hussain,^b Ibrahim Abdul Razak^c*‡ and Hoong-Kun Fun^c§

^aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, ^bDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: arazaki@usm my

Received 16 November 2010: accepted 17 November 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.060; wR factor = 0.188; data-to-parameter ratio = 22.7.

There are two molecules in the asymmetric unit of the title compound, $C_{21}H_{24}O_3$, in which the dihedral angles between the aromatic rings are 6.4 (1) and 7.0 (1) $^{\circ}$. The enone moiety of both molecules adopts an *s-cis* configuration. In the crystal, intermolecular $O-H\cdots O$ and $C-H\cdots O$ interactions to the same acceptor O atom generate $R_2^1(6)$ ring motifs and further C-H···O interactions generate $R_2^2(8)$ ring motifs. Topologically, the $R_2^1(6)$ and $R_2^2(8)$ ring motifs are arranged alternately, forming [001] chains of molecules. The crystal structure is further stabilized by $C-H\cdots\pi$ interactions.

Related literature

For general background to the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Satyanarayana et al. (2004); Zhao et al. (2005); Yayli et al. (2006). For related structures, see: Razak, Fun, Ngaini, Rahman et al. (2009); Razak, Fun, Ngaini, Fadzillah et al. (2009*a*,*b*); Ngaini, Fadzillah *et al.* (2009); Ngaini, Rahman *et al.* (2009); Razak et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

[‡] Thomson Reuters ResearcherID: A-5599-2009.

Experimental

Crystal data

 C_2

M Tr *a* :

b c

α в

$_{1}H_{24}O_{3}$	$\gamma = 93.038 \ (2)^{\circ}$
r = 324.40	V = 1742.80 (12) Å ³
iclinic, $P\overline{1}$	Z = 4
= 7.6053 (3) Å	Mo $K\alpha$ radiation
= 13.7328 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
= 17.3769 (7) Å	$T = 100 { m K}$
= 105.226 (2)°	$0.77 \times 0.44 \times 0.12$ r
$= 93.740 (2)^{\circ}$	

Data collection

Bruker SMART APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2005)	
$T_{\min} = 0.940, \ T_{\max} = 0.990$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.188$ S = 1.0410044 reflections 443 parameters

10044 independent reflections 6371 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.036$

36519 measured reflections

0.12 mm

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg3 are the centroids of the C1A-C6A and C1B-C6B rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1B-H1OB\cdots O2A^{i}$	0.86 (3)	1.92 (3)	2.773 (2)	171 (2)
$C1B-H1BA\cdots O2A^{i}$	0.93	2.50	3.196 (2)	132
$O1A - H1OA \cdots O2B^{ii}$	0.92 (3)	1.85 (3)	2.763 (2)	175 (3)
$C1A - H1AA \cdots O2B^{ii}$	0.93	2.50	3.214 (2)	133
$C12B - H12B \cdots O3A^{iii}$	0.93	2.56	3.483 (2)	175
$C12A - H12A \cdot \cdot \cdot O3B^{iv}$	0.93	2.56	3.487 (2)	174
$C16A - H16A \cdots Cg1^{v}$	0.97	2.80	3.653 (2)	147
$C16B - H16C \cdots Cg3^{vi}$	0.97	2.73	3.595 (2)	149
$C17B - H17C \cdots Cg3^{vii}$	0.97	2.74	3.640 (2)	154

Symmetry codes: (i) x + 1, y + 1, z - 1; (ii) x - 1, y - 1, z + 1; (iii) x, y + 1, z; (iv) x, y - 1, z; (v) - x + 1, -y, -z + 1; (vi) - x + 2, -y + 2, -z; (vii) - x + 1, -y + 2, -z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University grant No. 1001/PFIZIK/811151. ZN and HH thank Universiti Malaysia Sarawak (UMS) for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007 (01) and Fundamental Research grant No: FRGS/01(03)/608/2006(41). SMHF thanks the Malaysian Government and UMS for providing a scholarship for postgraduate studies.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5741).

[§] Additional correspondence, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). *Bioorg. Med. Chem. Lett.* 15, 3177–3180.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Ngaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, 0879–0880.
- Ngaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, 0889–0890.

- Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, 0881–0882.
- Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, 01133–01134.
- Razak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, 01092–01093.
- Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883–889.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). *Eur. J. Med. Chem.* **39**, 745–753.
- Yayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Yayli, N., Akyuz, E. & Alpay-Karaoglu, S. (2006). Turk. J. Chem. 30, 505–514.
- Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). *Chem. Lett.* **15**, 5027–5029.

Acta Cryst. (2010). E66, o3275–o3276 [https://doi.org/10.1107/S1600536810047768]

(E)-1-[4-(Hexyloxy)phenyl]-3-(3-hydroxyphenyl)prop-2-en-1-one

Zainab Ngaini, Siti Muhaini Haris Fadzillah, Hasnain Hussain, Ibrahim Abdul Razak and Hoong-Kun Fun

S1. Comment

Biological properties of chalcone derivatives such as anticancer (Bhat *et al.*, 2005), antimalarial (Xue *et al.*, 2004), antioxidant and antimicrobial (Yayli *et al.*, 2006), antiplatelet (Zhao *et al.*, 2005) as well as antihyperglycemic (Satyanarayana *et al.*, 2004) activities have been widely reported. We have synthesized in our lab chalcone derivatives possessing alkyl chains which were tested against *E. coli* ATCC 8739 for their antibacterial activities. In this paper, we report one of these chalcone derivatives, the title compound (I).

There are two crystallographically independent molecules (A and B) in the asymmetric unit (Fig. 1). The bond lengths of (I) have normal values (Allen *et al.*, 1987). In molecule A, the mean plane through the enone moiety (O2/C7/C8/C9) makes a dihedral angle of 4.5 (1)° with the C1—C6 benzene ring whereas the angle is 4.4 (1)° with C10—C15 benzene ring; the corresponding angles are 8.7 (1) and 3.3 (1)°, respectively, for molecule B. The two benzene rings make a dihedral angle of 6.4 (1)° in molecule A and 7.0 (1)° in molecule B. In both molecules, the enone moiety adopts *s*-*cis* configuration with C7—C8—C9—O2 torsion angle being 3.7 (2)° in molecule A and 2.2 (2)° in molecule B.

The alkoxyl tail in both molecules are roughly coplanar with the attached benzene ring with C16—O3—C13—C14 torsion angles of 5.5 (2)° and 6.2 (2)° for molecules A and B, respectively. These chains initially maintained its planarity with the largest torsion angle deviation from the ideal 180° being 1.3 (1)° and 2.2 (1)° for O3—C16—C17—C18 in molecules A and B, respectively. However, the deviation of the alkoxyl tail from planarity starts in the aliphatic chain. The twist about the C18—C19 bond can be shown from the C17—C18—C19—C20 torsion angle of -165.1 (2)° in molecule A and -167.1 (2)° in molecule B. The twist about the C19—C20 bond are indicated by C18—C19—C20—C21 torsion angles of -67.1 (2)° for molecule A and -64.9 (2)° for molecule B.

In molecule A, the widening of C5—C6—C7 and C6—C7—C8 angles to 123.2 (2)° and 128.0 (2)°, respectively, may be the outcome of the short H5AA···H8AA (2.28 Å) contact. Similarly, strain induced through short H8AA···H11A (2.10 Å) and H14A···H16A (2.35 Å) contacts resulted in the widening of C9—C10—C11 (123.0 (2)°) and O3—C13—C14 (124.8 (2)°) angles, respectively. The distortion of the angles which is relative to what is anticipated in terms of hybridization rules can also be observed in molecule B. The opening of C5—C6—C7 (123.2 (2)°) and C6—C7—C8 (127.8 (2)°) angles is the consequence of the close interatomic contact of H5BA···H8BA (2.30 Å) while the effect of short H8BA···H11B (2.11 Å) contact resulted in the widening of C9—C10—C11 (123.2 (2)°). Likewise, the enlargement of O3 —C13—C14 angle to 125.0 (2)° is due to the strain induced by short H14B···H16C (2.35 Å) contact. Similar features can also be found in related structures previously reported (Razak, Fun, Ngaini, Rahman *et al.*, 2009; Razak, Fun, Ngaini, Fadzillah *et al.*, 2009; Ngaini, Rahman *et al.*, 2009).

In the crystal structure, bifurcated acceptor bond is formed by O2A atom in molecule A through O1B—H1OB···O2Aⁱ and C1B—H1BA···O2Aⁱ while similar acceptor bonds involving O2B in molecule B is formed through O1A—

H1OA···O2Bⁱⁱ and C1A—H1AA···O2Bⁱⁱ intermolecular interactions (Table 1). These bifurcated acceptor bonds generate $R_2^{1}(6)$ ring motifs (Bernstein *et al.*, 1995) while intermolecular C12B—H12B···O3Aⁱⁱⁱ and C12A—H12A···O3B^{iv} interactions involving both molecules generate an $R_2^{2}(8)$ ring motifs. The $R_2^{1}(6)$ and $R_2^{2}(8)$ ring motifs are arranged alternately throughout the structure forming chains down on the *c*-axis (Fig. 2). The crystal structure is further stabilized by C—H··· π interactions.

S2. Experimental

A mixture of 3-hydroxybenzaldehyde (1.22 g, 10 mmol) and 4-hexyloxyacetophenone (2.20 ml, 10 mmol) and KOH (2.02 g, 36 mmol) in 30 ml of methanol was heated at reflux for 24 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. After a few days of slow evaporation, colourless plates of (I) were collected.

S3. Refinement

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å. The U_{iso} values were constrained to be $-1.5U_{eq}$ (methyl H atoms) and $-1.2U_{eq}$ (other H atoms). The rotating model group was considered for the methyl group. In the case of O1A and O1B, the hydrogen atoms were located from a difference Fourier map and refined isotropically.

Figure 1

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.

Figure 2

Part of the crystal packing of (I) showing $R_2^{1}(6)$ and $R_2^{2}(8)$ ring motifs generated by intermolecular interactions. The symmetry codes are given in Table 1.

(E)-1-[4-(Hexyloxy)phenyl]-3-(3-hydroxyphenyl)prop-2-en-1-one

Crystal data

 $\begin{array}{l} C_{21}H_{24}O_3 \\ M_r = 324.40 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a = 7.6053 \ (3) \ \text{\AA} \\ b = 13.7328 \ (5) \ \text{\AA} \\ c = 17.3769 \ (7) \ \text{\AA} \\ a = 105.226 \ (2)^{\circ} \\ \beta = 93.740 \ (2)^{\circ} \\ \gamma = 93.038 \ (2)^{\circ} \\ V = 1742.80 \ (12) \ \text{\AA}^3 \end{array}$

Data collection

Bruker SMART APEXII CCD
diffractometer
Radiation source: sealed tube
Graphite monochromator
π and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.940, \ T_{\max} = 0.990$

Refinement

Tejmement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from
$wR(F^2) = 0.188$	neighbouring sites
<i>S</i> = 1.04	H atoms treated by a mixture of independent
10044 reflections	and constrained refinement
443 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0965P)^2 + 0.6952P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\min} = -0.28 \text{ e} \text{ Å}^{-3}$

Z = 4

F(000) = 696 $D_x = 1.236 \text{ Mg m}^{-3}$

 $\theta = 2.7 - 31.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Plate, colourless

 $0.77 \times 0.44 \times 0.12 \text{ mm}$

36519 measured reflections 10044 independent reflections 6371 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 1.2^{\circ}$

T = 100 K

 $R_{\rm int} = 0.036$

 $h = -10 \rightarrow 10$

 $k = -19 \rightarrow 19$ $l = -24 \rightarrow 23$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9989 reflections

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1A	-0.04558 (17)	-0.32446 (10)	0.74767 (8)	0.0222 (3)

O2A	0.17874 (17)	0.08611 (9)	0.57096 (7)	0.0229 (3)
O3A	0.49336 (16)	0.12151 (8)	0.24926 (7)	0.0193 (3)
C1A	0.0626 (2)	-0.22051 (13)	0.66575 (10)	0.0177 (3)
H1AA	0.0344	-0.1623	0.7027	0.021*
C2A	0.0299 (2)	-0.31450(13)	0.68046 (10)	0.0181 (3)
C3A	0.0749 (2)	-0.40150 (13)	0.62610 (11)	0.0214 (4)
H3AA	0.0551	-0.4644	0.6360	0.026*
C4A	0.1498 (2)	-0.39383(13)	0.55681 (11)	0.0226 (4)
H4AA	0.1800	-0.4521	0.5204	0.027*
C5A	0.1801 (2)	-0.30062(13)	0.54114 (11)	0.0204 (4)
H5AA	0.2286	-0.2967	0.4942	0.025*
C6A	0.1373 (2)	-0.21258(12)	0.59617 (10)	0.0173 (3)
C7A	0.1628 (2)	-0.11143 (13)	0.58357 (10)	0.0185 (3)
H7AA	0.1380	-0.0577	0.6257	0.022*
C8A	0.2170 (2)	-0.08706(12)	0.51938 (11)	0.0177 (3)
H8AA	0.2481	-0.1376	0.4763	0.021*
C9A	0.2285 (2)	0.01929 (12)	0.51567 (10)	0.0161 (3)
C10A	0.2985 (2)	0.04561 (12)	0.44537 (10)	0.0157 (3)
C11A	0.3666 (2)	-0.02568(12)	0.38269 (10)	0.0170 (3)
H11A	0.3692	-0.0926	0.3847	0.020*
C12A	0.4293 (2)	0.00219 (12)	0.31843 (10)	0.0178 (3)
H12A	0.4733	-0.0459	0.2773	0.021*
C13A	0.4270 (2)	0.10263 (12)	0.31485 (10)	0.0160 (3)
C14A	0.3598 (2)	0.17511 (12)	0.37613 (10)	0.0174 (3)
H14A	0.3576	0.2420	0.3739	0.021*
C15A	0.2965 (2)	0.14575 (12)	0.44015 (10)	0.0177 (3)
H15A	0.2513	0.1938	0.4809	0.021*
C16A	0.5117 (2)	0.22438 (12)	0.24321 (11)	0.0180 (3)
H16A	0.5771	0.2680	0.2906	0.022*
H16B	0.3967	0.2500	0.2370	0.022*
C17A	0.6112 (2)	0.21984 (12)	0.17017 (10)	0.0176 (3)
H17A	0.5423	0.1760	0.1239	0.021*
H17B	0.7215	0.1893	0.1765	0.021*
C18A	0.6523 (2)	0.32204 (13)	0.15368 (11)	0.0205 (4)
H18A	0.7172	0.3677	0.2003	0.025*
H18B	0.5429	0.3514	0.1433	0.025*
C19A	0.7623 (2)	0.30938 (13)	0.08122 (11)	0.0212 (4)
H19A	0.8531	0.2637	0.0855	0.025*
H19B	0.6862	0.2780	0.0331	0.025*
C20A	0.8507 (3)	0.40815 (13)	0.07228 (12)	0.0250 (4)
H20A	0.9201	0.4423	0.1218	0.030*
H20B	0.9308	0.3924	0.0302	0.030*
C21A	0.7195 (3)	0.47918 (15)	0.05250 (15)	0.0370 (5)
H21A	0.7821	0.5388	0.0463	0.056*
H21B	0.6432	0.4978	0.0951	0.056*
H21C	0.6500	0.4459	0.0036	0.056*
O1B	1.03690 (18)	1.26874 (10)	-0.36389 (8)	0.0221 (3)
O2B	0.92123 (17)	0.87058 (9)	-0.16144 (8)	0.0234 (3)

020	0.58(40(17)	0.82200 (0)	0 15508 (7)	0.0011 (2)
CID	0.38049(17)	0.85500(9)	0.13308(7)	0.0211(3)
	0.9824 (2)	1.17005 (12)	-0.27030(10)	0.0107 (3)
HIBA	1.0148	1.1119	-0.3061	0.020*
C2B	0.9882 (2)	1.26135 (12)	-0.29143 (10)	0.0167 (3)
C3B	0.9418 (2)	1.34888 (12)	-0.23/52 (11)	0.0183 (3)
H3BA	0.9450	1.4101	-0.2511	0.022*
C4B	0.8907 (2)	1.34372 (13)	-0.16302 (11)	0.0192 (4)
H4BA	0.8612	1.4022	-0.1268	0.023*
C5B	0.8830 (2)	1.25322 (13)	-0.14194 (10)	0.0182 (3)
H5BA	0.8477	1.2511	-0.0921	0.022*
C6B	0.9286 (2)	1.16495 (12)	-0.19592 (10)	0.0164 (3)
C7B	0.9226 (2)	1.06597 (12)	-0.17862 (10)	0.0182 (3)
H7BA	0.9728	1.0146	-0.2148	0.022*
C8B	0.8539 (2)	1.04076 (12)	-0.11739 (10)	0.0175 (3)
H8BA	0.8028	1.0893	-0.0792	0.021*
C9B	0.8582 (2)	0.93598 (12)	-0.10954 (10)	0.0165 (3)
C10B	0.7870 (2)	0.90971 (12)	-0.03963 (10)	0.0156 (3)
C11B	0.7199 (2)	0.98105 (12)	0.02337 (11)	0.0176 (3)
H11B	0.7202	1.0483	0.0221	0.021*
C12B	0.6538(2)	0.95274 (12)	0.08697(11)	0.0184(3)
H12B	0.6102	1 0008	0.1282	0.022*
C13B	0.6525(2)	0.85191(12)	0.08946(10)	0.022
C14B	0.0323(2) 0.7172(2)	0.03171(12) 0.77927(12)	0.00040(10)	0.0160(3)
H1/B	0.7172 (2)	0.7110	0.0284	0.020*
C15P	0.7135 0.7835 (2)	0.7119 0.90970 (12)	-0.02590(10)	0.020
	0.7855 (2)	0.80879 (12)	-0.03580(10)	0.0170(3)
	0.6270	0.7003 0.72280 (12)	-0.0709	0.020°
	0.3938 (2)	0.75589 (12)	0.16820 (10)	0.01/1(3)
HI0C	0.7130	0.7123	0.1038	0.020*
HIOD C17D	0.5105	0.0847	0.1294	0.020°
	0.5415 (2)	0.74426 (12)	0.25178 (10)	0.0169 (3)
HI7C	0.4226	0.7665	0.2545	0.020*
H17D	0.6192	0.7965	0.2888	0.020*
C18B	0.5463 (2)	0.64715 (12)	0.27882 (10)	0.0178 (3)
H18C	0.6643	0.6236	0.2758	0.021*
H18D	0.4655	0.5950	0.2435	0.021*
C19B	0.4938 (2)	0.66626 (13)	0.36472 (11)	0.0203 (4)
H19C	0.5558	0.7288	0.3968	0.024*
H19D	0.3683	0.6756	0.3647	0.024*
C20B	0.5329 (3)	0.58199 (14)	0.40434 (12)	0.0244 (4)
H20C	0.6577	0.5709	0.4029	0.029*
H20D	0.5080	0.6038	0.4601	0.029*
C21B	0.4270 (3)	0.48291 (15)	0.36512 (14)	0.0372 (5)
H21D	0.4515	0.4347	0.3950	0.056*
H21E	0.4590	0.4574	0.3114	0.056*
H21F	0.3032	0.4937	0.3642	0.056*
H1OB	1.074 (3)	1.212 (2)	-0.3885 (16)	0.045 (7)*
H1OA	-0.063 (4)	-0.261(2)	0.7782 (18)	0.062 (9)*
-				

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0294 (7)	0.0205 (6)	0.0194 (7)	0.0003 (5)	0.0103 (5)	0.0085 (5)
O2A	0.0319 (7)	0.0226 (6)	0.0166 (6)	0.0068 (5)	0.0104 (5)	0.0066 (5)
O3A	0.0281 (6)	0.0133 (5)	0.0186 (6)	0.0005 (5)	0.0095 (5)	0.0064 (5)
C1A	0.0193 (8)	0.0183 (8)	0.0157 (8)	0.0027 (6)	0.0036 (7)	0.0042 (6)
C2A	0.0165 (8)	0.0234 (8)	0.0166 (8)	0.0005 (6)	0.0046 (7)	0.0084 (7)
C3A	0.0251 (9)	0.0183 (8)	0.0226 (9)	0.0005 (7)	0.0050 (7)	0.0082 (7)
C4A	0.0278 (9)	0.0188 (8)	0.0213 (9)	0.0044 (7)	0.0076 (7)	0.0036 (7)
C5A	0.0248 (9)	0.0226 (8)	0.0161 (8)	0.0035 (7)	0.0071 (7)	0.0074 (7)
C6A	0.0177 (8)	0.0205 (8)	0.0149 (8)	0.0013 (6)	0.0016 (6)	0.0069 (6)
C7A	0.0208 (8)	0.0200 (8)	0.0162 (8)	0.0035 (6)	0.0044 (7)	0.0063 (6)
C8A	0.0181 (8)	0.0178 (8)	0.0174 (8)	0.0023 (6)	0.0047 (7)	0.0041 (6)
C9A	0.0145 (7)	0.0189 (8)	0.0153 (8)	0.0018 (6)	0.0012 (6)	0.0050 (6)
C10A	0.0146 (7)	0.0183 (8)	0.0148 (8)	0.0011 (6)	0.0018 (6)	0.0055 (6)
C11A	0.0196 (8)	0.0142 (7)	0.0175 (8)	0.0016 (6)	0.0027 (7)	0.0044 (6)
C12A	0.0218 (8)	0.0147 (7)	0.0163 (8)	0.0022 (6)	0.0051 (7)	0.0020 (6)
C13A	0.0150 (7)	0.0181 (8)	0.0154 (8)	-0.0005 (6)	0.0024 (6)	0.0052 (6)
C14A	0.0188 (8)	0.0153 (7)	0.0191 (9)	0.0009 (6)	0.0040 (7)	0.0060 (6)
C15A	0.0189 (8)	0.0164 (8)	0.0170 (8)	0.0023 (6)	0.0030 (7)	0.0026 (6)
C16A	0.0211 (8)	0.0141 (7)	0.0202 (9)	0.0004 (6)	0.0040 (7)	0.0069 (6)
C17A	0.0205 (8)	0.0166 (8)	0.0174 (8)	-0.0009 (6)	0.0031 (7)	0.0074 (6)
C18A	0.0257 (9)	0.0183 (8)	0.0197 (9)	-0.0003 (7)	0.0049 (7)	0.0084 (7)
C19A	0.0253 (9)	0.0193 (8)	0.0206 (9)	-0.0003 (7)	0.0061 (7)	0.0072 (7)
C20A	0.0312 (10)	0.0228 (9)	0.0217 (9)	-0.0054 (7)	0.0058 (8)	0.0076 (7)
C21A	0.0494 (13)	0.0252 (10)	0.0437 (13)	0.0081 (9)	0.0132 (11)	0.0185 (9)
O1B	0.0327 (7)	0.0212 (6)	0.0153 (6)	0.0026 (5)	0.0076 (5)	0.0087 (5)
O2B	0.0343 (7)	0.0193 (6)	0.0187 (7)	0.0042 (5)	0.0120 (6)	0.0062 (5)
O3B	0.0329 (7)	0.0158 (6)	0.0195 (6)	0.0054 (5)	0.0142 (5)	0.0096 (5)
C1B	0.0182 (8)	0.0162 (7)	0.0160 (8)	0.0008 (6)	0.0042 (6)	0.0042 (6)
C2B	0.0177 (8)	0.0202 (8)	0.0138 (8)	-0.0003 (6)	0.0023 (6)	0.0073 (6)
C3B	0.0213 (8)	0.0156 (8)	0.0200 (9)	-0.0007 (6)	0.0032 (7)	0.0082 (6)
C4B	0.0210 (8)	0.0167 (8)	0.0198 (9)	0.0007 (6)	0.0047 (7)	0.0040 (6)
C5B	0.0202 (8)	0.0208 (8)	0.0149 (8)	0.0003 (6)	0.0058 (7)	0.0065 (6)
C6B	0.0155 (7)	0.0189 (8)	0.0163 (8)	-0.0001 (6)	0.0028 (6)	0.0074 (6)
C7B	0.0219 (8)	0.0171 (8)	0.0167 (8)	0.0013 (6)	0.0052 (7)	0.0057 (6)
C8B	0.0213 (8)	0.0169 (8)	0.0159 (8)	0.0013 (6)	0.0052 (7)	0.0062 (6)
C9B	0.0171 (8)	0.0186 (8)	0.0148 (8)	-0.0002 (6)	0.0027 (6)	0.0058 (6)
C10B	0.0152 (7)	0.0181 (8)	0.0152 (8)	-0.0002 (6)	0.0025 (6)	0.0072 (6)
C11B	0.0207 (8)	0.0150 (7)	0.0188 (8)	0.0028 (6)	0.0040 (7)	0.0067 (6)
C12B	0.0231 (8)	0.0158 (8)	0.0181 (9)	0.0045 (6)	0.0073 (7)	0.0056 (6)
C13B	0.0164 (8)	0.0191 (8)	0.0170 (8)	0.0009 (6)	0.0048 (6)	0.0075 (6)
C14B	0.0192 (8)	0.0144 (7)	0.0193 (8)	0.0022 (6)	0.0061 (7)	0.0071 (6)
C15B	0.0184 (8)	0.0171 (8)	0.0163 (8)	0.0024 (6)	0.0040 (6)	0.0053 (6)
C16B	0.0208 (8)	0.0149 (7)	0.0179 (8)	0.0021 (6)	0.0053 (7)	0.0077 (6)
C17B	0.0196 (8)	0.0162 (8)	0.0162 (8)	0.0008 (6)	0.0054 (6)	0.0060 (6)
C18B	0.0224 (8)	0.0172 (8)	0.0166 (8)	0.0018 (6)	0.0066(7)	0.0080 (6)

C19B	0.0261 (9)	0.0193 (8)	0.0175 (9)	0.0018 (7)	0.0054 (7)	0.0076 (7)
C20B	0.0301 (10)	0.0255 (9)	0.0228 (9)	0.0053 (7)	0.0081 (8)	0.0137 (7)
C21B	0.0598 (15)	0.0233 (10)	0.0336 (12)	-0.0012 (9)	0.0109 (11)	0.0155 (9)

Geometric	parameters	(Å,	9
-----------	------------	-----	---

O1A—C2A	1.369 (2)	O1B—C2B	1.363 (2)
O1A—H1OA	0.92 (3)	O1B—H1OB	0.85 (3)
O2A—C9A	1.237 (2)	O2B—C9B	1.235 (2)
O3A—C13A	1.355 (2)	O3B—C13B	1.355 (2)
O3A—C16A	1.4440 (19)	O3B—C16B	1.4428 (19)
C1A—C2A	1.393 (2)	C1B—C2B	1.395 (2)
C1A—C6A	1.396 (2)	C1B—C6B	1.399 (2)
C1A—H1AA	0.9300	C1B—H1BA	0.9300
C2A—C3A	1.389 (2)	C2B—C3B	1.394 (2)
C3A—C4A	1.391 (3)	C3B—C4B	1.394 (2)
СЗА—НЗАА	0.9300	СЗВ—НЗВА	0.9300
C4A—C5A	1.388 (2)	C4B—C5B	1.384 (2)
C4A—H4AA	0.9300	C4B—H4BA	0.9300
C5A—C6A	1.399 (2)	C5B—C6B	1.400 (2)
С5А—Н5АА	0.9300	C5B—H5BA	0.9300
C6A—C7A	1.467 (2)	C6B—C7B	1.466 (2)
C7A—C8A	1.330 (2)	C7B—C8B	1.331 (2)
С7А—Н7АА	0.9300	C7B—H7BA	0.9300
C8A—C9A	1.477 (2)	C8B—C9B	1.482 (2)
C8A—H8AA	0.9300	C8B—H8BA	0.9300
C9A—C10A	1.484 (2)	C9B—C10B	1.481 (2)
C10A—C15A	1.403 (2)	C10B—C15B	1.404 (2)
C10A—C11A	1.407 (2)	C10B—C11B	1.408 (2)
C11A—C12A	1.377 (2)	C11B—C12B	1.379 (2)
C11A—H11A	0.9300	C11B—H11B	0.9300
C12A—C13A	1.398 (2)	C12B—C13B	1.396 (2)
C12A—H12A	0.9300	C12B—H12B	0.9300
C13A—C14A	1.398 (2)	C13B—C14B	1.400 (2)
C14A—C15A	1.384 (2)	C14B—C15B	1.379 (2)
C14A—H14A	0.9300	C14B—H14B	0.9300
C15A—H15A	0.9300	C15B—H15B	0.9300
C16A—C17A	1.509 (2)	C16B—C17B	1.508 (2)
C16A—H16A	0.9700	C16B—H16C	0.9700
C16A—H16B	0.9700	C16B—H16D	0.9700
C17A—C18A	1.525 (2)	C17B—C18B	1.527 (2)
C17A—H17A	0.9700	C17B—H17C	0.9700
C17A—H17B	0.9700	C17B—H17D	0.9700
C18A—C19A	1.534 (2)	C18B—C19B	1.529 (2)
C18A—H18A	0.9700	C18B—H18C	0.9700
C18A—H18B	0.9700	C18B—H18D	0.9700
C19A—C20A	1.531 (2)	C19B—C20B	1.526 (2)
C19A—H19A	0.9700	C19B—H19C	0.9700

C19A—H19B	0.9700	C19B—H19D	0.9700
C20A—C21A	1.517 (3)	C20B—C21B	1.513 (3)
C20A—H20A	0.9700	C20B—H20C	0.9700
C20A—H20B	0.9700	C20B—H20D	0.9700
C21A—H21A	0.9600	C21B—H21D	0.9600
C21A—H21B	0.9600	C21B—H21E	0.9600
C21A—H21C	0.9600	C21B—H21F	0.9600
C2A—O1A—H1OA	107.6 (18)	C2B—O1B—H1OB	108.3 (18)
C13A—O3A—C16A	119.39 (13)	C13B—O3B—C16B	119.73 (13)
C2A—C1A—C6A	120.84 (16)	C2B-C1B-C6B	120.76 (15)
C2A—C1A—H1AA	119.6	C2B—C1B—H1BA	119.6
C6A—C1A—H1AA	119.6	C6B—C1B—H1BA	119.6
O1A—C2A—C3A	118.21 (15)	O1B-C2B-C3B	117.90 (15)
O1A—C2A—C1A	121.99 (15)	O1B—C2B—C1B	122.35 (15)
C3A—C2A—C1A	119.80 (16)	C3B—C2B—C1B	119.75 (15)
C2A—C3A—C4A	119.48 (16)	C4B—C3B—C2B	119.28 (15)
С2А—С3А—НЗАА	120.3	C4B—C3B—H3BA	120.4
С4А—С3А—НЗАА	120.3	С2В—С3В—НЗВА	120.4
C5A—C4A—C3A	121.01 (16)	C5B—C4B—C3B	121.31 (16)
С5А—С4А—Н4АА	119.5	C5B—C4B—H4BA	119.3
СЗА—С4А—Н4АА	119.5	C3B—C4B—H4BA	119.3
C4A—C5A—C6A	119.79 (16)	C4B—C5B—C6B	119.71 (16)
С4А—С5А—Н5АА	120.1	C4B—C5B—H5BA	120.1
С6А—С5А—Н5АА	120.1	C6B—C5B—H5BA	120.1
C1A—C6A—C5A	119.05 (15)	C1B—C6B—C5B	119.19 (15)
C1A—C6A—C7A	117.76 (15)	C1B—C6B—C7B	117.64 (15)
C5A—C6A—C7A	123.17 (16)	C5B—C6B—C7B	123.17 (15)
C8A—C7A—C6A	128.02 (16)	C8B—C7B—C6B	127.82 (16)
С8А—С7А—Н7АА	116.0	C8B—C7B—H7BA	116.1
С6А—С7А—Н7АА	116.0	C6B—C7B—H7BA	116.1
C7A—C8A—C9A	120.77 (16)	C7B—C8B—C9B	120.59 (16)
С7А—С8А—Н8АА	119.6	C7B—C8B—H8BA	119.7
С9А—С8А—Н8АА	119.6	C9B—C8B—H8BA	119.7
O2A—C9A—C8A	119.90 (16)	O2B—C9B—C10B	120.05 (15)
O2A—C9A—C10A	120.17 (15)	O2B—C9B—C8B	119.86 (15)
C8A—C9A—C10A	119.93 (14)	C10B—C9B—C8B	120.09 (14)
C15A—C10A—C11A	117.86 (16)	C15B—C10B—C11B	117.80 (15)
C15A—C10A—C9A	119.11 (15)	C15B—C10B—C9B	119.00 (15)
C11A—C10A—C9A	123.03 (15)	C11B—C10B—C9B	123.19 (15)
C12A—C11A—C10A	120.96 (15)	C12B-C11B-C10B	121.04 (15)
C12A—C11A—H11A	119.5	C12B—C11B—H11B	119.5
C10A—C11A—H11A	119.5	C10B—C11B—H11B	119.5
C11A—C12A—C13A	120.12 (15)	C11B—C12B—C13B	119.99 (15)
C11A—C12A—H12A	119.9	C11B—C12B—H12B	120.0
C13A—C12A—H12A	119.9	C13B—C12B—H12B	120.0
O3A—C13A—C12A	115.01 (14)	O3B—C13B—C12B	114.92 (14)
O3A—C13A—C14A	124.78 (15)	O3B-C13B-C14B	124.96 (15)

C12A—C13A—C14A	120.21 (16)	C12B—C13B—C14B	120.11 (16)
C15A—C14A—C13A	118.93 (15)	C15B—C14B—C13B	119.23 (15)
C15A—C14A—H14A	120.5	C15B—C14B—H14B	120.4
C13A - C14A - H14A	120.5	C13B-C14B-H14B	120.1
C14A - C15A - C10A	120.9	C14B-C15B-C10B	121.81 (15)
C_{14A} C_{15A} H_{15A}	110.0	C14B C15B H15B	110.1
$C_{10A} = C_{15A} = H_{15A}$	119.0	C10P $C15P$ $H15P$	119.1
C10A = C15A = III5A	119.0 105.46(12)	C10D - C15D - III5D	117.1 105.71(12)
$O_{A} = C_{I} O_{A} = C_{I} O_{A}$	103.40 (13)	$O_{3}D = C_{1}O_{3}D = C_{1}O_{3}D$	105.71 (15)
	110.0		110.6
CI/A - CI6A - HI6A	110.6	CI/B—CI6B—HI6C	110.6
O3A—C16A—H16B	110.6	O3B—C16B—H16D	110.6
C17A—C16A—H16B	110.6	C17B—C16B—H16D	110.6
H16A—C16A—H16B	108.8	H16C—C16B—H16D	108.7
C16A—C17A—C18A	114.68 (14)	C16B—C17B—C18B	114.30 (14)
C16A—C17A—H17A	108.6	C16B—C17B—H17C	108.7
C18A—C17A—H17A	108.6	C18B—C17B—H17C	108.7
C16A—C17A—H17B	108.6	C16B—C17B—H17D	108.7
C18A—C17A—H17B	108.6	C18B—C17B—H17D	108.7
H17A—C17A—H17B	107.6	H17C—C17B—H17D	107.6
C17A—C18A—C19A	110.30 (14)	C17B—C18B—C19B	110.22 (14)
C17A—C18A—H18A	109.6	C17B—C18B—H18C	109.6
C19A—C18A—H18A	109.6	C19B—C18B—H18C	109.6
C17A—C18A—H18B	109.6	C17B—C18B—H18D	109.6
C19A—C18A—H18B	109.6	C19B—C18B—H18D	109.6
H18A - C18A - H18B	108.1	$H_{18}C - C_{18}B - H_{18}D$	108.1
C_{20A} C_{19A} C_{18A}	114 49 (15)	C_{20B} C_{19B} C_{18B}	114 61 (14)
C_{20A} C_{19A} H_{19A}	108.6	C_{20B} C_{10B} H_{10C}	108.6
C_{18A} C_{19A} H_{19A}	108.6	$C_{20} = C_{10} = H_{10} C_{10}$	108.6
$C_{10A} = C_{10A} = H_{10B}$	108.0	$C_{10} = C_{10} = C$	108.0
$C_{20A} = C_{10A} = H_{10B}$	108.0	$C_{20}B = C_{19}B = H_{19}D$	108.0
	108.0		108.0
HI9A—CI9A—HI9B	107.0	HI9C—CI9B—HI9D	107.0
C21A—C20A—C19A	113.07 (16)	C21B—C20B—C19B	113.65 (16)
C21A—C20A—H20A	109.0	C21B—C20B—H20C	108.8
C19A—C20A—H20A	109.0	C19B—C20B—H20C	108.8
C21A—C20A—H20B	109.0	C21B—C20B—H20D	108.8
C19A—C20A—H20B	109.0	C19B—C20B—H20D	108.8
H20A—C20A—H20B	107.8	H20C—C20B—H20D	107.7
C20A—C21A—H21A	109.5	C20B—C21B—H21D	109.5
C20A—C21A—H21B	109.5	C20B—C21B—H21E	109.5
H21A—C21A—H21B	109.5	H21D—C21B—H21E	109.5
C20A—C21A—H21C	109.5	C20B—C21B—H21F	109.5
H21A—C21A—H21C	109.5	H21D—C21B—H21F	109.5
H21B—C21A—H21C	109.5	H21E—C21B—H21F	109.5
C6A—C1A—C2A—O1A	-179.04 (15)	C6B—C1B—C2B—01B	-178 82 (15)
C6A - C1A - C2A - C3A	1 2 (3)	C6B-C1B-C2B-C3B	0.8(2)
$014 - C^{2} - C^{3} + C^{4}$	179 22 (15)	$\begin{array}{c} \text{C1B} & \text{C1B} & \text{C2B} & \text{C3B} \\ \text{O1B} & \text{C2B} & \text{C3B} & \text{C4B} \\ \end{array}$	179.76(15)
$C_{1A} = C_{2A} = C_{4A}$	-10(3)	C1B C2B C2D C4D	1/2.70(13)
UIA-UZA-UJA-U4A	-1.0 (3)	UID-U2D-U3B-U4B	0.1(2)

C2A—C3A—C4A—C5A	-0.1 (3)	C2B—C3B—C4B—C5B	-0.8 (3)
C3A—C4A—C5A—C6A	1.0 (3)	C3B—C4B—C5B—C6B	0.5 (3)
C2A—C1A—C6A—C5A	-0.3 (2)	C2B-C1B-C6B-C5B	-1.1 (2)
C2A—C1A—C6A—C7A	178.12 (15)	C2B-C1B-C6B-C7B	178.81 (15)
C4A—C5A—C6A—C1A	-0.8 (3)	C4B—C5B—C6B—C1B	0.4 (2)
C4A—C5A—C6A—C7A	-179.09 (16)	C4B—C5B—C6B—C7B	-179.44 (16)
C1A—C6A—C7A—C8A	-173.88 (17)	C1B—C6B—C7B—C8B	-170.15 (17)
C5A—C6A—C7A—C8A	4.5 (3)	C5B—C6B—C7B—C8B	9.7 (3)
C6A—C7A—C8A—C9A	177.51 (16)	C6B—C7B—C8B—C9B	179.51 (16)
C7A—C8A—C9A—O2A	-3.7 (2)	C7B—C8B—C9B—O2B	-2.2 (3)
C7A—C8A—C9A—C10A	176.67 (15)	C7B—C8B—C9B—C10B	177.85 (15)
O2A—C9A—C10A—C15A	-4.2 (2)	O2B—C9B—C10B—C15B	-3.5 (2)
C8A—C9A—C10A—C15A	175.42 (14)	C8B—C9B—C10B—C15B	176.44 (15)
O2A—C9A—C10A—C11A	176.26 (16)	O2B—C9B—C10B—C11B	177.33 (16)
C8A—C9A—C10A—C11A	-4.1 (2)	C8B—C9B—C10B—C11B	-2.7 (2)
C15A—C10A—C11A—C12A	0.1 (2)	C15B—C10B—C11B—C12B	0.4 (2)
C9A—C10A—C11A—C12A	179.65 (15)	C9B-C10B-C11B-C12B	179.52 (15)
C10A—C11A—C12A—C13A	0.3 (2)	C10B—C11B—C12B—C13B	-0.1 (3)
C16A—O3A—C13A—C12A	-174.49 (14)	C16B—O3B—C13B—C12B	-173.44 (14)
C16A—O3A—C13A—C14A	5.5 (2)	C16B—O3B—C13B—C14B	6.2 (2)
C11A—C12A—C13A—O3A	179.47 (14)	C11B—C12B—C13B—O3B	179.27 (15)
C11A—C12A—C13A—C14A	-0.5 (2)	C11B—C12B—C13B—C14B	-0.4 (3)
O3A—C13A—C14A—C15A	-179.74 (15)	O3B—C13B—C14B—C15B	-179.00 (15)
C12A—C13A—C14A—C15A	0.2 (2)	C12B—C13B—C14B—C15B	0.6 (2)
C13A—C14A—C15A—C10A	0.2 (2)	C13B—C14B—C15B—C10B	-0.3 (2)
C11A—C10A—C15A—C14A	-0.4 (2)	C11B—C10B—C15B—C14B	-0.1 (2)
C9A—C10A—C15A—C14A	-179.95 (15)	C9B—C10B—C15B—C14B	-179.32 (15)
C13A—O3A—C16A—C17A	172.30 (13)	C13B—O3B—C16B—C17B	170.35 (14)
O3A—C16A—C17A—C18A	-177.78 (14)	O3B—C16B—C17B—C18B	-178.70 (13)
C16A—C17A—C18A—C19A	176.80 (15)	C16B—C17B—C18B—C19B	178.55 (14)
C17A—C18A—C19A—C20A	-165.05 (15)	C17B—C18B—C19B—C20B	-167.08 (15)
C18A—C19A—C20A—C21A	-67.1 (2)	C18B—C19B—C20B—C21B	-64.9 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C1A-C6A and C1B-C6B rings, respectively.

D—H···A	D—H	H···A	D··· A	D—H···A
$O1B$ —H1 OB ···O2 A^{i}	0.86 (3)	1.92 (3)	2.773 (2)	171 (2)
$C1B$ — $H1BA$ ···O $2A^{i}$	0.93	2.50	3.196 (2)	132
$O1A$ — $H1OA$ ··· $O2B^{ii}$	0.92 (3)	1.85 (3)	2.763 (2)	175 (3)
$C1A$ — $H1AA$ ···O2 B^{ii}	0.93	2.50	3.214 (2)	133
C12 <i>B</i> —H12 <i>B</i> ···O3 <i>A</i> ⁱⁱⁱ	0.93	2.56	3.483 (2)	175
$C12A$ — $H12A$ ···O $3B^{iv}$	0.93	2.56	3.487 (2)	174
C16A—H16A···Cg1 ^v	0.97	2.80	3.653 (2)	147
C16 <i>B</i> —H16 <i>C</i> ··· <i>Cg</i> 3 ^{vi}	0.97	2.73	3.595 (2)	149
C17 B —H17 C ··· $Cg3^{vii}$	0.97	2.74	3.640 (2)	154

Symmetry codes: (i) x+1, y+1, z-1; (ii) x-1, y-1, z+1; (iii) x, y+1, z; (iv) x, y-1, z; (v) -x+1, -y, -z+1; (vi) -x+2, -y+2, -z; (vii) -x+1, -y+2, -z.