

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

8-Chloro-5,5-dimethyl-5,6-dihydrotetrazolo[1,5-c]quinazoline

Hoong-Kun Fun,^a*‡ Chin Sing Yeap,^a§ J. Gowda,^b A. M. A. Khader^b and Balakrishna Kalluraya^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 11 November 2010; accepted 12 November 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.137; data-to-parameter ratio = 16.0.

In the title compound, $C_{10}H_{10}ClN_5$, the tetrazole ring and the phenyl ring make a dihedral angle of 7.7 (2)°. The hexahydropyrimidine ring adopts a screw-boat conformation. In the crystal, intermolecular bifurcated $N-H\cdots(N,N)$ hydrogen bonds link the molecules into [001] chains.

Related literature

For applications of tetrazole derivatives, see: Upadhayaya *et al.* (2004); Poonian *et al.* (1976); Ismail *et al.* (2006); Mulwad & Kewat (2008); Uchida *et al.* (1989). For ring conformations, see: Boeyens (1978). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

$C_{10}H_{10}ClN_5$	b = 21.532 (5) Å
$M_r = 235.68$	c = 9.4337 (16) Å
Monoclinic, $P2_1/c$	$\beta = 130.823 \ (11)^{\circ}$
a = 6.8324 (16) Å	V = 1050.2 (4) Å ³

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.34 \text{ mm}^{-1}$

Data collection

Bruker APEXII DUO CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.948, \ T_{\max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.137$ S = 1.122412 reflections 151 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N5 - H1N5 \cdots N1^{i}$ $N5 - H1N5 \cdots N2^{i}$	0.85 (4) 0.85 (4)	2.35 (4) 2.57 (4)	3.190 (3) 3.326 (3)	173 (6) 150 (4)
6 (i)	1 1			

Symmetry code: (i) x + 1, y, z + 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and CSY thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5733).

References

- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Ismail, M. A. H., Barker, S., Alou El Ella, D. A., Abouzid, K. A. M., Toubar, R. A. & Todd, M. H. (2006). J. Med. Chem. 46, 1526–1535.
- Mulwad, V. V. & Kewat, V. P. (2008). Indian J. Het. Chem. 17, 205-208.
- Poonian, M. S., Nowoswiat, E. F., Blount, J. F. & Kramer, M. J. (1976). J. Med. Chem. 19, 1017–1020.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Uchida, M., Komatsu, M., Morita, S., Kanbe, T., Yamasaki, K. & Nakagawa, K. (1989). Chem. Pharm. Bull. 37, 958–961.
- Upadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). *Eur. J. Med. Chem.* **39**, 575–592.

 $0.16 \times 0.11 \times 0.05 \text{ mm}$

on

D	9660 measured reflections
	2412 independent reflections
lti-scan	1777 reflections with $I > 2\sigma(I)$
9)	$R_{\rm int} = 0.066$
82	

T = 100 K

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.61$ e Å⁻³ $\Delta \rho_{min} = -0.31$ e Å⁻³

Acta Cryst. (2010). E66, o3219

‡ Thomson Reuters ResearcherID: A-3561-2009. § Thomson Reuters ResearcherID: A-5523-2009.

organic compounds

supporting information

Acta Cryst. (2010). E66, o3219 [https://doi.org/10.1107/S160053681004688X]

8-Chloro-5,5-dimethyl-5,6-dihydrotetrazolo[1,5-c]quinazoline

Hoong-Kun Fun, Chin Sing Yeap, J. Gowda, A. M. A. Khader and Balakrishna Kalluraya

S1. Comment

A number of tetrazole derivatives were reported as to be antifungal agents (Upadhayaya *et al.*, 2004), antiviral agents (Poonian *et al.*, 1976), angiotensin II AT¹ receptor antagonists (Ismail *et al.*, 2006), antibacterial agents (Mulwad & Kewat, 2008) and anti-ulcer agents (Uchida *et al.*, 1989). On the basis of these considerations, our particular attention was directed to synthesize some tetrazole derivatives.

The title compound is a three fused-ring structure (Fig. 1). The tetrazole ring and the phenyl ring make dihedral angle of 7.7 (2)°. The hexahydropyrimidine ring adopts a screw-boat conformation, with puckering amplitude Q = 0.308 (3) Å, θ = 61.8 (6)°, φ = 270.4 (7)° (Boeyens, 1978). In the crystal structure, intermolecular bifurcated N5—H1N5…N1 and N5—H1N5…N2 hydrogen bonds link the molecules into chains along *c* axis (Fig. 2, Table 1).

S2. Experimental

To a solution of 2-amino-4-chlorobenzonitrile (4.2 mmol) in *N*,*N*-dimethylformamide was added ammonium chloride (3 eq) and sodium azide (3 eq). The resulting reaction mixture was refluxed for 12 h. The completion of reaction was checked by TLC (100% EA). The reaction mixture was poured into ice-water after cooling to RT and acidified to give tetrazoles as a white mass. The resulting compound was then condensed with acetone to get the title compound: colourless plates were obtained by crystallization from acetone under slow evaporation (Mp. 501 K).

S3. Refinement

The N-bound hydrogen atom was located from difference Fourier map and refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model [U_{iso} (H) = 1.2 or 1.5 U_{eq}]. A rotating-group model were applied for methyl groups.

The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.

Figure 2

The crystal packing of title compound, viewed down b axis, showing the molecules are linked into chains along c axis. Intermolecular hydrogen bonds are shown as dashed lines. 8-Chloro-5,5-dimethyl-5,6-dihydrotetrazolo[1,5-c]quinazoline

Crystal data

C₁₀H₁₀ClN₅ $M_r = 235.68$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.8324 (16) Å b = 21.532 (5) Å c = 9.4337 (16) Å $\beta = 130.823$ (11)° V = 1050.2 (4) Å³ Z = 4

Data collection

Bruker APEXII DUO CCD	9660 measured reflections
diffractometer	2412 independent reflections
Radiation source: fine-focus sealed tube	1777 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.066$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2009)	$k = -27 \rightarrow 27$
$T_{\min} = 0.948, \ T_{\max} = 0.982$	$l = -12 \rightarrow 12$

F(000) = 488

 $\theta = 3.0-29.9^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$

Plate. colourless

 $0.16 \times 0.11 \times 0.05 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.491 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1888 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 1.12	H atoms treated by a mixture of independent
2412 reflections	and constrained refinement
151 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 + 1.9098P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.68351 (15)	0.62515 (4)	0.46138 (11)	0.0285 (2)
N1	0.0252 (5)	0.85800 (13)	-0.2050 (3)	0.0225 (6)

supporting information

N2	0.0079 (5)	0.92121 (14)	-0.2261 (3)	0.0276 (6)
N3	0.1672 (5)	0.94937 (13)	-0.0661 (3)	0.0248 (6)
N4	0.2938 (4)	0.90385 (12)	0.0634 (3)	0.0192 (5)
N5	0.6368 (5)	0.85848 (12)	0.3484 (3)	0.0210 (6)
C1	0.2056 (5)	0.84885 (14)	-0.0218 (4)	0.0190 (6)
C2	0.3106 (5)	0.79248 (14)	0.0880 (4)	0.0185 (6)
C3	0.2129 (6)	0.73316 (15)	0.0145 (4)	0.0216 (7)
H3A	0.0704	0.7285	-0.1122	0.026*
C4	0.3259 (6)	0.68153 (15)	0.1280 (4)	0.0234 (7)
H4A	0.2613	0.6420	0.0797	0.028*
C5	0.5397 (6)	0.69013 (15)	0.3174 (4)	0.0213 (6)
C6	0.6402 (6)	0.74777 (15)	0.3947 (4)	0.0209 (6)
H6A	0.7816	0.7518	0.5218	0.025*
C7	0.5276 (5)	0.80012 (14)	0.2800 (4)	0.0176 (6)
C8	0.4845 (5)	0.91539 (14)	0.2689 (4)	0.0189 (6)
C9	0.6573 (6)	0.96910 (15)	0.3100 (4)	0.0271 (7)
H9A	0.7358	0.9608	0.2569	0.041*
H9B	0.7896	0.9742	0.4431	0.041*
H9C	0.5561	1.0064	0.2561	0.041*
C10	0.3352 (6)	0.92761 (16)	0.3348 (4)	0.0254 (7)
H10A	0.2294	0.8923	0.3065	0.038*
H10B	0.2275	0.9635	0.2718	0.038*
H10C	0.4549	0.9347	0.4675	0.038*
H1N5	0.751 (8)	0.8595 (18)	0.467 (6)	0.039 (11)*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0280 (4)	0.0248 (4)	0.0334 (4)	0.0052 (3)	0.0204 (3)	0.0085 (4)
0.0187 (12)	0.0307 (16)	0.0131 (12)	0.0000 (10)	0.0082 (10)	0.0003 (11)
0.0240 (13)	0.0355 (17)	0.0148 (12)	0.0021 (12)	0.0089 (11)	0.0035 (12)
0.0251 (13)	0.0289 (15)	0.0147 (12)	0.0052 (11)	0.0106 (11)	0.0061 (11)
0.0191 (12)	0.0225 (14)	0.0107 (11)	0.0023 (10)	0.0074 (10)	0.0021 (10)
0.0173 (12)	0.0213 (14)	0.0104 (12)	-0.0010 (10)	0.0029 (10)	-0.0017 (10)
0.0154 (13)	0.0267 (16)	0.0135 (13)	-0.0013 (12)	0.0088 (11)	-0.0040 (12)
0.0167 (13)	0.0237 (17)	0.0151 (13)	0.0009 (12)	0.0104 (11)	-0.0009 (12)
0.0182 (14)	0.0282 (18)	0.0166 (14)	-0.0047 (12)	0.0105 (12)	-0.0053 (13)
0.0237 (15)	0.0227 (17)	0.0253 (16)	-0.0048 (13)	0.0166 (13)	-0.0063 (13)
0.0214 (14)	0.0236 (17)	0.0257 (15)	0.0044 (12)	0.0184 (13)	0.0044 (13)
0.0178 (14)	0.0259 (17)	0.0165 (14)	0.0015 (12)	0.0101 (12)	0.0001 (12)
0.0162 (13)	0.0204 (16)	0.0171 (13)	-0.0006 (11)	0.0113 (11)	-0.0016 (12)
0.0174 (13)	0.0207 (16)	0.0135 (13)	-0.0005 (12)	0.0079 (11)	0.0006 (12)
0.0288 (16)	0.0279 (18)	0.0178 (14)	-0.0080 (14)	0.0122 (13)	-0.0009 (13)
0.0240 (15)	0.0300 (19)	0.0195 (15)	0.0002 (13)	0.0130 (13)	-0.0006 (13)
	U^{11} 0.0280 (4) 0.0187 (12) 0.0240 (13) 0.0251 (13) 0.0191 (12) 0.0173 (12) 0.0154 (13) 0.0167 (13) 0.0182 (14) 0.0237 (15) 0.0214 (14) 0.0178 (14) 0.0178 (14) 0.0174 (13) 0.0288 (16) 0.0240 (15)	U^{11} U^{22} 0.0280 (4) 0.0248 (4) 0.0187 (12) 0.0307 (16) 0.0240 (13) 0.0355 (17) 0.0251 (13) 0.0289 (15) 0.0191 (12) 0.0225 (14) 0.0173 (12) 0.0213 (14) 0.0154 (13) 0.0267 (16) 0.0167 (13) 0.0237 (17) 0.0182 (14) 0.0282 (18) 0.0237 (15) 0.0227 (17) 0.0214 (14) 0.0236 (17) 0.0162 (13) 0.0204 (16) 0.0174 (13) 0.0277 (18) 0.0240 (15) 0.0300 (19)	U^{11} U^{22} U^{33} 0.0280 (4) 0.0248 (4) 0.0334 (4) 0.0187 (12) 0.0307 (16) 0.0131 (12) 0.0240 (13) 0.0355 (17) 0.0148 (12) 0.0251 (13) 0.0289 (15) 0.0147 (12) 0.0191 (12) 0.0225 (14) 0.0107 (11) 0.0173 (12) 0.0213 (14) 0.0104 (12) 0.0154 (13) 0.0267 (16) 0.0135 (13) 0.0167 (13) 0.0237 (17) 0.0151 (13) 0.0182 (14) 0.0282 (18) 0.0166 (14) 0.0237 (15) 0.0227 (17) 0.0253 (16) 0.0178 (14) 0.0259 (17) 0.0165 (14) 0.0162 (13) 0.0204 (16) 0.0171 (13) 0.0174 (13) 0.0277 (16) 0.0135 (13) 0.0288 (16) 0.0279 (18) 0.0178 (14) 0.0240 (15) 0.0300 (19) 0.0195 (15)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0280 (4)$ $0.0248 (4)$ $0.0334 (4)$ $0.0052 (3)$ $0.0204 (3)$ $0.0187 (12)$ $0.0307 (16)$ $0.0131 (12)$ $0.0000 (10)$ $0.0082 (10)$ $0.0240 (13)$ $0.0355 (17)$ $0.0148 (12)$ $0.0021 (12)$ $0.0089 (11)$ $0.0251 (13)$ $0.0289 (15)$ $0.0147 (12)$ $0.0052 (11)$ $0.0106 (11)$ $0.0191 (12)$ $0.0225 (14)$ $0.0107 (11)$ $0.0023 (10)$ $0.0074 (10)$ $0.0173 (12)$ $0.0213 (14)$ $0.0104 (12)$ $-0.0010 (10)$ $0.0029 (10)$ $0.0154 (13)$ $0.0267 (16)$ $0.0135 (13)$ $-0.0013 (12)$ $0.0088 (11)$ $0.0167 (13)$ $0.0237 (17)$ $0.0151 (13)$ $0.0009 (12)$ $0.0104 (11)$ $0.0182 (14)$ $0.0282 (18)$ $0.0166 (14)$ $-0.0047 (12)$ $0.0105 (12)$ $0.0237 (15)$ $0.0227 (17)$ $0.0257 (15)$ $0.0044 (12)$ $0.0184 (13)$ $0.0178 (14)$ $0.0259 (17)$ $0.0165 (14)$ $0.0015 (12)$ $0.0101 (12)$ $0.0162 (13)$ $0.0207 (16)$ $0.0135 (13)$ $-0.0006 (11)$ $0.0113 (11)$ $0.0288 (16)$ $0.0279 (18)$ $0.0178 (14)$ $-0.0080 (14)$ $0.0122 (13)$ $0.0240 (15)$ $0.0300 (19)$ $0.0195 (15)$ $0.0002 (13)$ $0.0130 (13)$

Geometric parameters (Å, °)

Cl1—C5	1.739 (3)	С3—НЗА	0.9300
N1—C1	1.326 (4)	C4—C5	1.396 (4)
N1—N2	1.369 (4)	C4—H4A	0.9300
N2—N3	1.297 (4)	C5—C6	1.374 (4)
N3—N4	1.349 (3)	C6—C7	1.394 (4)
N4—C1	1.334 (4)	С6—Н6А	0.9300
N4—C8	1.489 (3)	С8—С9	1.511 (4)
N5—C7	1.386 (4)	C8—C10	1.525 (4)
N5—C8	1.458 (4)	С9—Н9А	0.9600
N5—H1N5	0.85 (4)	С9—Н9В	0.9600
C1—C2	1.445 (4)	С9—Н9С	0.9600
C2—C3	1.397 (4)	C10—H10A	0.9600
C2—C7	1.413 (4)	C10—H10B	0.9600
C3—C4	1.378 (4)	C10—H10C	0.9600
C1—N1—N2	104.8 (2)	C5—C6—C7	119.2 (3)
N3—N2—N1	111.6 (2)	С5—С6—Н6А	120.4
N2—N3—N4	105.5 (3)	С7—С6—Н6А	120.4
C1—N4—N3	109.3 (2)	N5—C7—C6	121.0 (3)
C1—N4—C8	126.8 (2)	N5—C7—C2	119.8 (3)
N3—N4—C8	123.7 (2)	C6—C7—C2	119.0 (3)
C7—N5—C8	122.4 (2)	N5	104.6 (2)
C7—N5—H1N5	113 (3)	N5	109.6 (2)
C8—N5—H1N5	113 (3)	N4C9C9	109.5 (2)
N1—C1—N4	108.8 (3)	N5	112.2 (2)
N1—C1—C2	131.4 (3)	N4—C8—C10	108.1 (2)
N4—C1—C2	119.8 (2)	C9—C8—C10	112.4 (3)
C3—C2—C7	120.2 (3)	С8—С9—Н9А	109.5
C3—C2—C1	124.0 (3)	С8—С9—Н9В	109.5
C7—C2—C1	115.7 (3)	H9A—C9—H9B	109.5
C4—C3—C2	120.6 (3)	С8—С9—Н9С	109.5
С4—С3—Н3А	119.7	Н9А—С9—Н9С	109.5
С2—С3—НЗА	119.7	Н9В—С9—Н9С	109.5
C3—C4—C5	118.3 (3)	C8—C10—H10A	109.5
C3—C4—H4A	120.9	C8—C10—H10B	109.5
C5—C4—H4A	120.9	H10A—C10—H10B	109.5
C6—C5—C4	122.7 (3)	C8—C10—H10C	109.5
C6—C5—Cl1	118.8 (2)	H10A-C10-H10C	109.5
C4—C5—Cl1	118.5 (2)	H10B—C10—H10C	109.5
	. /		
C1—N1—N2—N3	-0.1 (3)	C4—C5—C6—C7	-0.8 (4)
N1—N2—N3—N4	0.4 (3)	Cl1—C5—C6—C7	179.5 (2)
N2—N3—N4—C1	-0.7 (3)	C8—N5—C7—C6	-153.7 (3)
N2—N3—N4—C8	-175.8 (2)	C8—N5—C7—C2	31.3 (4)
N2—N1—C1—N4	-0.3 (3)	C5—C6—C7—N5	-174.1 (3)
N2—N1—C1—C2	179.9 (3)	C5—C6—C7—C2	1.0 (4)

N2 N/ C1 N1	0.6(3)	C2 C2 C7 N5	1744(3)
NJ-1N4-01-INI	0.0(3)	$C_{3} - C_{2} - C_{7} - N_{3}$	1/
C8—N4—C1—N1	175.6 (2)	C1—C2—C7—N5	-4.6 (4)
N3—N4—C1—C2	-179.6 (2)	C3—C2—C7—C6	-0.7 (4)
C8—N4—C1—C2	-4.6 (4)	C1—C2—C7—C6	-179.7 (2)
N1—C1—C2—C3	-7.2 (5)	C7—N5—C8—N4	-38.5 (3)
N4—C1—C2—C3	173.0 (3)	C7—N5—C8—C9	-155.9 (3)
N1—C1—C2—C7	171.7 (3)	C7—N5—C8—C10	78.4 (3)
N4—C1—C2—C7	-8.0 (4)	C1—N4—C8—N5	25.7 (4)
C7—C2—C3—C4	0.2 (4)	N3—N4—C8—N5	-159.9 (2)
C1—C2—C3—C4	179.2 (3)	C1—N4—C8—C9	143.2 (3)
C2—C3—C4—C5	-0.1 (4)	N3—N4—C8—C9	-42.5 (4)
C3—C4—C5—C6	0.4 (4)	C1—N4—C8—C10	-94.0 (3)
C3—C4—C5—C11	-179.9 (2)	N3—N4—C8—C10	80.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N5—H1 <i>N</i> 5…N1 ⁱ	0.85 (4)	2.35 (4)	3.190 (3)	173 (6)
N5—H1 $N5$ ···N2 ⁱ	0.85 (4)	2.57 (4)	3.326 (3)	150 (4)

Symmetry code: (i) x+1, y, z+1.