V = 1642.06 (7) Å³

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.45 \times 0.4 \times 0.18 \; \mathrm{mm}$

2613 reflections with $I > 2\sigma(I)$

Z = 4

T = 293 K

 $R_{\rm int} = 0.030$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Phenylbiguanidinium hydrogen succinate methanol monosolvate

Irena Matulková,^{a,b}* Ivana Císařová^c and Ivan Němec^c

^aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic, ^bDepartment of Spectroscopy, J. Heyrovský Institute of Physical Chemistry of the ASCR, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic, and ^cDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic

Correspondence e-mail: irena.mat@atlas.cz

Received 4 November 2010; accepted 8 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; some non-H atoms missing; R factor = 0.056; wR factor = 0.174; data-to-parameter ratio = 18.7.

In the crystal of the title compound, $C_8H_{12}N_5^+$, $C_4H_5O_4^-$, CH_3OH , the hydrogen succinate anions form infinite [010] chains *via* short, almost symmetrical, $O \cdots H \cdots O$ hydrogen bonds. The 2-phenylbiguanidium cations interconnect these chains into layers lying parallel to the *bc* plane by way of N-H \cdots O links. These planes only weakly interact in the direction of the *a* axis *via* $C-H\cdots\pi$ contacts between offset phenyl rings, leaving as much as 17% of the unit-cell volume accessible for the solvent. However, the methanol solvent molecules could not be resolved due to extensive disorder and their assumed presence was removed from the overall scattering by the *PLATON* SQUEEZE procedure.

Related literature

Biguanides forms stable complexes, see: Marchi *et al.* (1999); Ray (1961); Anderson *et al.* (1995) and also have applications in medicine, see: Sirtori & Pasik (1994); Clement & Girreser (1999); Thompson *et al.* (1999); Ross *et al.* (2004); Woo *et al.* (1999); Watkins *et al.* (1987); Morain *et al.* (1994); Shapiro *et al.* (1959*a,b*). Ionic crystal structures containing biguanide cations are formed by relatively strong hydrogen bonds, see: Martin *et al.* (1996); Martin & Pinkerton (1996); Pinkerton *et al.* (1978); Matulková *et al.* (2008, 2010). For the SQUEEZE method used to solve the structure, see: van der Sluis & Spek (1990).

Experimental

Crystal data

$C_8H_{12}N_5^+ \cdot C_4H_5O_4^- \cdot CH_4O$	
$M_r = 327.35$	
Monoclinic, $P2_1/c$	
a = 10.3280(3)Å	
b = 6.4590 (1) Å	
c = 24.6770 (6) Å	
$\beta = 94.0480 \ (13)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer 18123 measured reflections 3568 independent reflections

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.056 & 191 \text{ parameters} \\ wR(F^2) = 0.174 & H\text{-atom parameters constrained} \\ S = 1.07 & \Delta\rho_{\max} = 0.25 \text{ e } \text{\AA}^{-3} \\ 3568 \text{ reflections} & \Delta\rho_{\min} = -0.23 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1	is	the	centroidof	the	C3-C8	ring.
-----	----	-----	------------	-----	-------	-------

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O3^{i}$	0.93	2.18	3.021 (2)	149
$N1 - H1 \cdots O4^{i}$	0.93	2.64	3.5217 (17)	158
$N2-H2A\cdots O3^{i}$	0.87	2.09	2.8855 (17)	152
$N2 - H2B \cdots O4^{ii}$	0.92	2.14	3.0248 (19)	162
$N4-H4A\cdotsO1^{iii}$	0.93	2.13	3.0273 (18)	161
$N4 - H4B \cdot \cdot \cdot O2^{iv}$	0.96	1.90	2.8605 (16)	180
$N5-H5B\cdotsO1^{iv}$	0.90	2.15	3.0440 (17)	170
O2−H2···O4 ⁱⁱ	1.20	1.25	2.4500 (16)	173
$C6-H6\cdots Cg1^{v}$	0.93	3.10	3.676 (2)	122

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) x, y - 1, z; (iii) -x, -y, -z + 2; (iv) $-x, -y - 1, -z + 2; -x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *COLLECT* (Hooft, 1998) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *COLLECT* and *DENZO*; data reduction: *COLLECT* and *DENZO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of the Long-term Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5725).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst. 27, 435–436.
- Anderson, K. B., Franich, R. A., Kroese, H. W. & Meder, R. (1995). *Polyhedron*, 14, 1149–1153.
- Clement, B. & Girreser, U. (1999). Magn. Reson. Chem. 37, 662-666.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Marchi, A., Marvelli, L., Cattabriga, M., Rossi, R., Neves, M., Bertolasi, V. & Ferretti, V. (1999). J. Chem. Soc. Dalton Trans. pp. 1937–1943.

organic compounds

Martin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048-1052.

- Martin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966–970.
- Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 886, 103–120.
- Matulková, I., Němec, I., Císařová, I., Němec, P. & Vaněk, P. (2010). J. Mol. Struct. 966, 23–32.
- Morain, P., Abraham, C., Portevin, B. & De Nanteuil, G. (1994). Mol. Pharmacol. 46, 732-742.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton. Trans. pp. 989–996.
- Ray, P. (1961). Chem. Rev. 61, 313-359.

- Ross, S. A., Gulve, E. A. & Wang, M. (2004). Chem. Rev. 104, 1255-1282.
- Shapiro, S. L., Parrino, V. A. & Freedman, L. (1959a). J. Am. Chem. Soc. 81, 2220–2225.
- Shapiro, S. L., Parrino, V. A., Rogow, E. & Freedman, L. (1959b). J. Am. Chem. Soc. 81, 3725–3728.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirtori, C. R. & Pasik, C. (1994). Pharmacol. Res. 30, 187-228.
- Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561-2571.
- Watkins, W. M., Chulay, J. D., Sixsmith, D. G., Spencer, H. C. & Howells, R. E. (1987). J. Pharm. Pharmacol. 39, 261–265.
- Woo, L. C. Y., Yuen, V. G., Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). J. Inorg. Biochem. 76, 251–257.

supporting information

Acta Cryst. (2010). E66, o3187–o3188 [https://doi.org/10.1107/S160053681004585X]

2-Phenylbiguanidinium hydrogen succinate methanol monosolvate

Irena Matulková, Ivana Císařová and Ivan Němec

S1. Comment

Biguanides are strong σ - and π -donating ligands, which form stable complexes (Marchi *et al.*, 1999; Ray, 1961) with transition metal ions in high or unusual oxidation states. Biguanide complexes of boron have also been investigated as potential compounds for wood conservation (Anderson *et al.*, 1995).

Another application of biguanides lies in the field of medicine (Sirtori & Pasik, 1994; Clement & Girreser, 1999). *N*-dimethylbiguanide and *N*-phenylethylbiguanide are used for the treatment of diabetes mellitus (Thompson *et al.*, 1999; Ross *et al.*, 2004; Woo *et al.*, 1999), therapeutic treatment of pain, anxiety, memory disorders (Morain *et al.*, 1994). Biguanide and its derivatives are also produced as antimalarial drugs (Watkins *et al.*, 1987) and drugs with hypoglycaemic activity (Marchi *et al.*, 1999; Sirtori & Pasik, 1994; Shapiro *et al.*, 1959*a*,*b*).

We have prepared and discussed *N*-phenylbiguanide compounds within our project of searching for new materials with nonlinear optical properties (Matulková *et al.*, 2010; Matulková *et al.*, 2008), where *N*-phenylbiguanidinium(1+) cations can act as an polarizable compound with delocalized π -electron. The molecular conformation of title compound, (I), is illustrated in Fig. 1.

The hydrogen-bonding geometries in title compound are listed in list of hydrogen bonds and illustrated in Fig. 2. A number of intra- and intermolecular hydrogen bonds stabilize the molecular conformation. The crystal structure is built up chains (along the axis **b**) of hydrogen succinate anions with the shared hydrogen atoms with occupancy 0.5 (hydrogen bond O2 - H2···O4 with D···A distances of 2.451 (2) Å). These chains are interconnected by 2-phenylbiguanidium cations to form a three-dimensional network. A residue electron density of disordered molecules of methanol was found on the diferential Fourier map and the crystal structure was solved by a SQUEEZE method (van der Sluis & Spek, 1990). Free cavities of maximum on the Fourier map are indicated by blue spheres and are located in the 30% of crystal structure. The cavities can be filled by spheres of two types with the radii 2.247 Å and 2.076 Å (see Fig. 3). The unit cell contains two spheres of each size.

S2. Experimental

The crystals of the title compound, were obtained from solution of 0.2 g of *N*-phenylbiguanide (98%, Aldrich) and 0.14 g of succinic acid (p.a., Lachema) in 10 ml of water. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in vacuum desiccator over KOH. The melting point ranges 410–412 K.

The infrared spectra were recorded at room temperature using DRIFTS and the nujol or fluorolube mull techniques on a Nicolet Magna 760 FTIR spectrometer with 2 cm⁻¹ resolution (4 cm⁻¹ resolution in FAR IR region) and Happ-Genzel apodization in the 85–4000 cm⁻¹ region.

FTIR spectrum (cm⁻¹): 3451 m; 3350 m; 3296 m; 3184 m; 2938 w; 2725 mb; 2660 mb; 2550 mb; 1712 m; 1674 m; 1640 *vs*; 1605 m; 1583 m; 1538 *vs*; 1497 s; 1455 m; 1429 m; 1419 m; 1334 w; 1310 w; 1294 w; 1256 m; 1198 m; 1176

m; 1074 w; 1054 wb; 1031 w; 957 mb; 842 w; 818 w; 804 w; 772 w; 747 m; 722 w; 698 m; 638 m; 579 m; 549 mb; 528 sh; 498 vw; 485 vw; 446 w; 414 vw; 367 wb; 261 mb; 221 w; 179 w; 143 w.

The Raman spectra of polycrystalline samples were recorded at room temperature on a Nicolet Magna 760 FTIR spectrometer equipped with the Nicolet Nexus FT Raman module (2 cm⁻¹ resolution, Happ–Genzel apodization, 1064 nm Nd:YVO4 laser excitation, 450 mW power at the sample) in the 100–3700 cm⁻¹ region.

FT Raman spectrum (cm⁻¹): 3452 vw; 3335 vwb; 3200 vw; 3079 sh; 3066 m; 2966 m; 2953 m; 2918 m; 1668 w; 1639 w; 1604 *vs*; 1591 m; 1563 m; 1546 m; 1499 m; 1450 w; 1437 w; 1428 w; 1418 m; 1408 m; 1379 vw; 1341 vw; 1327 vw; 1295 s; 1255 s; 1178 m; 1156 m; 1095 w; 1079 w; 1054 w; 1030 m; 1002 *vs*; 952 w; 937 w; 923 m; 909 vw; 844 m; 767 w; 748 w; 722 w; 681 w; 633 w; 615 m; 572 vw; 538 w; 502 w; 488 w; 414 wb; 387 w; 374 w; 340 w; 283 w; 265 m; 220 m; 188 m; 141 *vs*; 124 m.

S3. Refinement

H atoms attached to C and N atoms were calculated in geometrically idealized positions, with $Csp^3 - H = 0.97$ Å and $Csp^2 - H = 0.93$ Å, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.5 U_{eq}(C)$. The positions of H atoms attached to O and N atoms were localized in difference Fourier maps, and refined isotropically.

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Part of the crystal structure of (I) showing formation of cation layers along [010].

Figure 3

Part of the crystal structure of (I) with blue sphere filling the cavity.

Figure 4

FTIR (compiled from nujol and fluorolube mulls) and FT Raman spectra of (I).

2-Phenylbiguanidinium hydrogen succinate methanol monosolvate

Crystal data

C₈H₁₂N₅⁺·C₄H₅O₄⁻·CH₄O $M_r = 327.35$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.3280 (3) Å b = 6.4590 (1) Å c = 24.6770 (6) Å $\beta = 94.0480$ (13)° V = 1642.06 (7) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Horizontally mounted graphite crystal monochromator Detector resolution: 9.091 pixels mm⁻¹ ω and π scans to fill the Ewald sphere 18123 measured reflections F(000) = 696 $D_x = 1.324 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3693 reflections $\theta = 1-27.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KPlate, colourless $0.45 \times 0.4 \times 0.18 \text{ mm}$

3568 independent reflections 2613 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 27.1^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -13 \rightarrow 13$ $k = -8 \rightarrow 8$ $l = -31 \rightarrow 31$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.174$	H-atom parameters constrained
S = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.1087P)^2 + 0.1338P]$
3568 reflections	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
191 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
	1997), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.055 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.20697 (15)	-0.1226 (2)	0.77926 (5)	0.0515 (4)
H1	0.1757	-0.1468	0.7435	0.062*
N2	0.07708 (16)	-0.3948 (2)	0.79668 (5)	0.0570 (4)
H2A	0.0599	-0.4106	0.7620	0.068*
H2B	0.0280	-0.4630	0.8208	0.068*
N3	0.18707 (15)	-0.2116 (2)	0.86872 (5)	0.0514 (4)
N4	0.16449 (16)	-0.2862 (2)	0.95713 (5)	0.0537 (4)
H4A	0.1524	-0.1453	0.9625	0.064*
H4B	0.1638	-0.3785	0.9874	0.064*
N5	0.18754 (16)	-0.5585 (2)	0.90047 (5)	0.0575 (4)
H5A	0.2005	-0.6075	0.8702	0.069*
H5B	0.1909	-0.6467	0.9288	0.069*
C1	0.15804 (17)	-0.2481 (2)	0.81647 (6)	0.0464 (4)
C2	0.17836 (16)	-0.3547 (2)	0.90737 (6)	0.0448 (4)
01	-0.16551 (14)	-0.15632 (17)	1.00242 (4)	0.0577 (4)
O2	-0.16362 (15)	-0.43722 (16)	0.95237 (5)	0.0616 (4)
H2	-0.1523	-0.4961	0.9068	0.074*
O3	-0.10001 (17)	0.1366 (2)	0.81889 (5)	0.0738 (5)
O4	-0.13315 (14)	0.42420 (17)	0.86173 (4)	0.0598 (4)
C3	0.29311 (18)	0.0463 (2)	0.78891 (6)	0.0519 (4)
C4	0.3920 (2)	0.0464 (3)	0.82884 (8)	0.0687 (6)
H4	0.4044	-0.0663	0.8521	0.082*
C5	0.4738 (3)	0.2177 (5)	0.83414 (11)	0.0929 (9)

supporting information

Н5	0.5407	0.2191	0.8614	0.112*
C6	0.4578 (3)	0.3832 (4)	0.80008 (14)	0.0964 (10)
H6	0.5130	0.4967	0.8042	0.116*
C7	0.3612 (3)	0.3805 (4)	0.76041 (14)	0.0911 (9)
H7	0.3508	0.4928	0.7369	0.109*
C8	0.2768 (2)	0.2135 (3)	0.75394 (9)	0.0694 (6)
H8	0.2103	0.2139	0.7265	0.083*
C9	-0.16134 (17)	-0.2385 (2)	0.95785 (6)	0.0464 (4)
C10	-0.15527 (19)	-0.1185 (2)	0.90552 (6)	0.0488 (4)
H10A	-0.0830	-0.1701	0.8864	0.059*
H10B	-0.2341	-0.1447	0.8828	0.059*
C11	-0.13977 (19)	0.1122 (2)	0.91303 (6)	0.0462 (4)
H11A	-0.2155	0.1663	0.9293	0.055*
H11B	-0.0647	0.1387	0.9379	0.055*
C12	-0.12325 (17)	0.2254 (2)	0.86057 (6)	0.0462 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0785 (10)	0.0498 (8)	0.0273 (6)	-0.0067 (6)	0.0109 (6)	0.0028 (5)
N2	0.0825 (11)	0.0601 (9)	0.0291 (7)	-0.0165 (7)	0.0088 (6)	-0.0007 (6)
N3	0.0828 (10)	0.0438 (7)	0.0288 (7)	-0.0077 (7)	0.0109 (6)	0.0018 (5)
N4	0.0905 (11)	0.0458 (8)	0.0258 (6)	-0.0013 (7)	0.0104 (6)	0.0035 (5)
N5	0.0926 (12)	0.0439 (8)	0.0368 (7)	0.0057 (7)	0.0099 (7)	0.0031 (6)
C1	0.0672 (10)	0.0430 (8)	0.0302 (7)	0.0002 (7)	0.0121 (7)	0.0014 (6)
C2	0.0593 (10)	0.0457 (8)	0.0300 (7)	-0.0025 (7)	0.0065 (6)	0.0021 (6)
O1	0.1019 (10)	0.0397 (6)	0.0324 (6)	-0.0008 (6)	0.0104 (6)	0.0029 (4)
O2	0.1145 (11)	0.0315 (6)	0.0402 (6)	-0.0014 (6)	0.0168 (6)	0.0058 (4)
O3	0.1439 (14)	0.0514 (7)	0.0279 (6)	-0.0011 (7)	0.0179 (7)	0.0000 (5)
O4	0.1054 (10)	0.0345 (6)	0.0410 (6)	-0.0023 (6)	0.0155 (6)	0.0084 (4)
C3	0.0733 (11)	0.0461 (9)	0.0391 (8)	-0.0031 (8)	0.0240 (8)	-0.0013 (6)
C4	0.0815 (14)	0.0792 (14)	0.0468 (10)	-0.0154 (10)	0.0140 (10)	0.0015 (9)
C5	0.0854 (16)	0.119 (2)	0.0775 (16)	-0.0400 (15)	0.0293 (13)	-0.0254 (15)
C6	0.105 (2)	0.0770 (16)	0.114 (2)	-0.0389 (14)	0.0597 (19)	-0.0213 (15)
C7	0.110 (2)	0.0545 (12)	0.116 (2)	-0.0070 (12)	0.0548 (19)	0.0143 (13)
C8	0.0849 (14)	0.0561 (11)	0.0711 (13)	0.0021 (9)	0.0319 (11)	0.0170 (9)
C9	0.0715 (11)	0.0329 (7)	0.0357 (8)	0.0001 (7)	0.0097 (7)	0.0041 (6)
C10	0.0817 (12)	0.0329 (8)	0.0325 (7)	-0.0001 (7)	0.0086 (7)	0.0027 (5)
C11	0.0779 (11)	0.0335 (7)	0.0281 (7)	-0.0031 (7)	0.0087 (7)	0.0026 (5)
C12	0.0741 (11)	0.0366 (8)	0.0281 (7)	-0.0040 (7)	0.0050 (7)	0.0029 (5)

Geometric parameters (Å, °)

N1—C1	1.3495 (19)	C3—C4	1.368 (3)
N1—C3	1.417 (2)	C3—C8	1.385 (2)
N1—H1	0.9313	C4—C5	1.393 (3)
N2—C1	1.333 (2)	C4—H4	0.9300
N2—H2A	0.8679	C5—C6	1.363 (4)

supporting information

N2—H2B	0 9206	С5—Н5	0 9300
N3—C1	1 3242 (19)	C6-C7	1.348(5)
N3—C2	1.3212(19) 1.3358(19)	С6—Н6	0.9300
N4—C2	1 3223 (18)	C7—C8	1 389 (4)
N4—H4A	0.9291	C7—H7	0.9300
N4—H4B	0.9561	C8—H8	0.9300
N5—C2	1 331 (2)	C9-C10	1.511(2)
N5—H5A	0.8301	C10—C11	1.509 (2)
N5—H5B	0.9016	C10—H10A	0.9700
01—C9	1.2245 (18)	С10—Н10В	0.9700
02—C9	1.2909 (19)	C11—C12	1.5069 (19)
O2—H2	1.2016	С11—Н11А	0.9700
O3—C12	1.2164 (18)	C11—H11B	0.9700
O4—C12	1.2884 (19)		
C1—N1—C3	127.49 (14)	C4—C5—H5	119.4
C1—N1—H1	115.0	C7—C6—C5	119.3 (2)
C3—N1—H1	117.4	С7—С6—Н6	120.3
C1—N2—H2A	121.6	С5—С6—Н6	120.3
C1—N2—H2B	117.6	C6—C7—C8	121.3 (2)
H2A—N2—H2B	119.8	С6—С7—Н7	119.4
C1—N3—C2	123.36 (14)	С8—С7—Н7	119.4
C2—N4—H4A	119.0	C3—C8—C7	119.1 (2)
C2—N4—H4B	121.6	С3—С8—Н8	120.4
H4A—N4—H4B	119.4	С7—С8—Н8	120.4
C2—N5—H5A	120.7	O1—C9—O2	121.57 (13)
C2—N5—H5B	121.7	O1—C9—C10	123.48 (13)
H5A—N5—H5B	117.2	O2—C9—C10	114.95 (13)
N3—C1—N2	125.19 (14)	C11—C10—C9	114.32 (12)
N3—C1—N1	119.06 (15)	C11—C10—H10A	108.7
N2—C1—N1	115.64 (14)	C9—C10—H10A	108.7
N4—C2—N5	117.58 (14)	C11—C10—H10B	108.7
N4—C2—N3	116.65 (14)	C9—C10—H10B	108.7
N5-C2-N3	125.71 (13)	H10A—C10—H10B	107.6
С9—О2—Н2	114.2	C12—C11—C10	113.04 (12)
C4—C3—C8	119.99 (19)	C12—C11—H11A	109.0
C4—C3—N1	123.32 (16)	C10—C11—H11A	109.0
C8—C3—N1	116.63 (18)	C12—C11—H11B	109.0
C3—C4—C5	119.0 (2)	C10—C11—H11B	109.0
C3—C4—H4	120.5	H11A—C11—H11B	107.8
C5—C4—H4	120.5	O3—C12—O4	120.62 (13)
C6—C5—C4	121.2 (3)	O3—C12—C11	122.59 (14)
C6—C5—H5	119.4	O4—C12—C11	116.78 (12)

Cg1 is the centroid of the C3–C8 ring.					
D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>	
N1—H1···O3 ⁱ	0.93	2.18	3.021 (2)	149	
N1—H1···O4 ⁱ	0.93	2.64	3.5217 (17)	158	
N2—H2A····O3 ⁱ	0.87	2.09	2.8855 (17)	152	
N2—H2B····O4 ⁱⁱ	0.92	2.14	3.0248 (19)	162	
N4—H4A····O1 ⁱⁱⁱ	0.93	2.13	3.0273 (18)	161	
N4—H4 <i>B</i> ···O2 ^{iv}	0.96	1.90	2.8605 (16)	180	
N5—H5 B ···O1 ^{iv}	0.90	2.15	3.0440 (17)	170	
O2—H2···O4 ⁱⁱ	1.20	1.25	2.4500 (16)	173	
C6—H6···· $Cg1^{v}$	0.93	3.10	3.676 (2)	122	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+3/2; (ii) *x*, *y*-1, *z*; (iii) -*x*, -*y*, -*z*+2; (iv) -*x*, -*y*-1, -*z*+2; (v) -*x*+1, *y*+1/2, -*z*+3/2.