organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(2-Bromoethoxy)-4-(4-bromophenyl)furan-5(2*H*)-one

Zhu-Ping Xiao,* Wen-Bin Yan, Zhu-Xiang Liu, Li-hua Chen and Xiao-Chun Peng

College of Chemistry & Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China Correspondence e-mail: xiaozhuping2005@163.com

Received 31 October 2010; accepted 31 October 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; disorder in main residue; R factor = 0.061; wR factor = 0.187; data-to-parameter ratio = 16.7.

In the title compound, $C_{12}H_{10}Br_2O_3$, the dihedral angle between the furan-5(2*H*)-one ring and the benzene ring is 1.2 (3)°. Two intramolecular C-H···O interactions occur in the molecule, both of which generate *S*(6) rings. The bromoethyl fragment is disordered over two sets of sites in a 0.773 (8):0.227 (8) ratio. In the crystal, inversion dimers linked by pairs of C-H··· π interactions occur.

Related literature

For background to furanones, see: Bailly *et al.* (2008); Weber *et al.* (2005).

Experimental

Crystal data

c = 13.958 (2) Å $\beta = 95.831 (3)^{\circ}$ $V = 1249.6 (3) \text{ Å}^{3}$ Z = 4Mo K α radiation

 $0.20 \times 0.10 \times 0.10 \ \text{mm}$

7195 measured reflections

 $R_{\rm int} = 0.025$

29 restraints

 $\Delta \rho_{\rm max} = 1.37 \text{ e} \text{ Å}^{-1}$

 $\Delta \rho_{\rm min} = -1.15 \text{ e} \text{ Å}^{-3}$

2582 independent reflections

1765 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 6.48 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.357, T_{\rm max} = 0.564$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.187$ S = 1.052582 reflections 155 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 benzene ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2 - H2 \cdots O1$ $C6 - H6 \cdots O3$ $C9 - H9B \cdots Cg1^{i}$	0.93 0.93 0.97	2.35 2.25 2.80	3.018 (10) 2.916 (8) 3.632 (9)	129 128 144

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The work was financed by the Scientific Research Fund of Hunan Provincial Education Department (Project 09B083) of China and by a grant (No. JSDXKYZZ0801) from Jishou University for talent introduction, Hunan Province, China

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5720).

References

Bailly, F., Queffèlec, C., Mbemba, G., Mouscadet, J. F., Pommery, N., Pommery, J., Hènichart, J. P. & Cotelle, P. (2008). *Eur. J. Med. Chem.* 43, 1222–1229. Bruker (2007). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Weber, V., Rubat, C., Duroux, E., Lartigue, C., Madesclaire, M. & Coudert, P. (2005). Bioorg. Med. Chem. 13, 4552–4564.

supporting information

Acta Cryst. (2010). E66, o3068 [https://doi.org/10.1107/S1600536810044508]

3-(2-Bromoethoxy)-4-(4-bromophenyl)furan-5(2H)-one

Zhu-Ping Xiao, Wen-Bin Yan, Zhu-Xiang Liu, Li-hua Chen and Xiao-Chun Peng

S1. Comment

Many compounds with γ -butyrolactone-core (furanone) show diverse biological activities such as antitumor and antiinflammatory activity (Bailly *et al.*, 2008; Weber *et al.*, 2005). Recently, we focused our efforts to synthesize enamines with γ -butyrolactone-core for antibacterial activity screening. Herein, we report the crystal structure of the title compound (I).

Bond distance C7—C10 (1.334 (10) Å) is followed in the range of a typical double bond (1.32–1.38 Å), and the title compound was therefore identified as a furan-5(2*H*)-one not a furan-2(3*H*)-one. C10—O3 (1.348 (8) Å) bond has shorter bond distance than the standard C—O single bond (1.41–1.44 Å), but longer than C—O double bond (1.19–1.23 Å). This clearly indicated that an *sp*³ orbital of O3 is conjugated with the π molecular orbital of C7—C10 double bond, which was supported by the small torsion angle (0.4 (12) °) of C1—C7—C10—O3. The stereochemistry of the double bond in lactone ring was assigned as (*E*)-configuration based on X-ray crystallography of the title compound (Fig. 1). The butyrolactone moiety makes a dihedral angle of 1.2 (3) ° with the 4-fluorophenyl group. The side chain bromoethyl group is disorder (Fig. 1). C—H···Π contacts link molecules into dimers (Fig. 2), and the result dimers are packed by van der waals.

S2. Experimental

3-(4-Bromophenyl)-4-hydroxyfuran-5(2*H*)-one (0.77 g, 3 mmol) was added to a solution of 1,2-dibromoethane (2.8 g, 15 mmol) and triethylamine (0.7 g, 7 mmol) in dry acetone. The stirring was maintained at reflux temperature for 5 h. After the solvent was removed, the residue was partitioned between EtOAc and water. The organic layer was then dryed over MgSO4 and concentrated under reduced pressure. Flash chromatography (EtOAc/petroleum ether, 1/1, v/v) gave a fraction, which was partially evaporated to give the colorless blocks of (I).

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 and 0.96 Å for the aromatic and CH₂ type H atoms, respectively. $U_{iso} = 1.2U_{eq}$ (parent atoms) were assigned for all H atoms.

Molecular structure of the title compound, showing isplacement ellipsoids drawn at the 30% probability level.

Figure 2

Dimers are formed through intermolecular C—H $\cdots \pi$ hydrogen bond pairs. Dashed lines indicate C—H $\cdots \pi$ contacts.

3-(2-Bromoethoxy)-4-(4-bromophenyl)furan-5(2H)-one

Crystal data

$C_{12}H_{10}Br_{2}O_{3}$ $M_{r} = 362.02$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 8.6171 (13) \text{ Å}$ $b = 10.4434 (16) \text{ Å}$ $c = 13.958 (2) \text{ Å}$ $\beta = 95.831 (3)^{\circ}$	F(000) = 704 $D_x = 1.924 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1832 reflections $\theta = 2.6-26.1^{\circ}$ $\mu = 6.48 \text{ mm}^{-1}$ T = 298 K Block, colorless
V = 1249.6 (3) A ³ Z = 4	$0.20 \times 0.10 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.357, T_{\max} = 0.564$	7195 measured reflections 2582 independent reflections 1765 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 26.5^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -10 \rightarrow 10$ $k = -6 \rightarrow 13$ $l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from
$wR(F^2) = 0.187$	neighbouring sites
S = 1.05	H-atom parameters constrained
2582 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1008P)^2 + 2.0749P]$
155 parameters	where $P = (F_o^2 + 2F_c^2)/3$
29 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.37 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.50480 (10)	0.34315 (8)	0.21873 (6)	0.0737 (4)	
Br2A	0.2920 (5)	0.92938 (17)	0.48473 (18)	0.0900 (8)	0.773 (8)
Br2B	0.2207 (13)	0.9329 (7)	0.4681 (7)	0.0900 (8)	0.227 (8)
C1	0.2553 (7)	0.4284 (6)	0.4943 (5)	0.0478 (14)	
C2	0.2843 (9)	0.3041 (7)	0.4667 (5)	0.0600 (18)	
H2	0.2534	0.2368	0.5041	0.072*	
C3	0.3561 (9)	0.2770 (7)	0.3870 (6)	0.0627 (18)	
Н3	0.3711	0.1923	0.3696	0.075*	
C4	0.4069 (8)	0.3750 (7)	0.3319 (5)	0.0516 (15)	
C5	0.3815 (9)	0.5002 (6)	0.3576 (5)	0.0562 (17)	
Н5	0.4147	0.5668	0.3205	0.067*	
C6	0.3076 (8)	0.5270 (6)	0.4379 (5)	0.0566 (17)	
H6	0.2920	0.6117	0.4549	0.068*	
C7	0.1745 (8)	0.4574 (7)	0.5800 (5)	0.0491 (15)	
C8	0.1126 (9)	0.3606 (9)	0.6426 (6)	0.067 (2)	
С9	0.0595 (10)	0.5553 (9)	0.7061 (5)	0.069 (2)	
H9A	0.1208	0.5923	0.7614	0.083*	
H9B	-0.0425	0.5954	0.6988	0.083*	
C10	0.1405 (8)	0.5708 (7)	0.6165 (5)	0.0548 (16)	
C11	0.1273 (12)	0.7904 (7)	0.6271 (7)	0.092 (3)	
H11A	0.1406	0.7743	0.6959	0.110*	0.773 (8)
H11B	0.0172	0.8050	0.6085	0.110*	0.773 (8)
H11C	0.2125	0.8202	0.6724	0.110*	0.227 (8)
H11D	0.0412	0.7671	0.6633	0.110*	0.227 (8)
C12A	0.2190 (15)	0.9106 (9)	0.6052 (6)	0.0900 (8)	0.773 (8)

supporting information

H12A	0.3085	0.9160	0.6532	0.108*	0.773 (8)
H12B	0.1534	0.9840	0.6150	0.108*	0.773 (8)
C12B	0.076 (3)	0.899 (2)	0.5565 (19)	0.0900 (8)	0.227 (8)
H12C	0.0599	0.9763	0.5929	0.108*	0.227 (8)
H12D	-0.0235	0.8763	0.5214	0.108*	0.227 (8)
01	0.1076 (8)	0.2448 (6)	0.6373 (5)	0.0886 (18)	
02	0.0467 (7)	0.4217 (6)	0.7160 (4)	0.0808 (17)	
03	0.1739 (7)	0.6861 (5)	0.5802 (4)	0.0731 (16)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0856 (6)	0.0761 (6)	0.0639 (5)	0.0142 (4)	0.0292 (4)	-0.0115 (4)
Br2A	0.102 (2)	0.0635 (7)	0.1132 (11)	-0.0048 (10)	0.0551 (13)	-0.0016 (6)
Br2B	0.102 (2)	0.0635 (7)	0.1132 (11)	-0.0048 (10)	0.0551 (13)	-0.0016 (6)
C1	0.046 (3)	0.045 (4)	0.052 (3)	-0.003 (3)	0.008 (3)	0.007 (3)
C2	0.080 (5)	0.038 (4)	0.064 (4)	-0.003 (3)	0.016 (4)	0.012 (3)
C3	0.076 (5)	0.038 (4)	0.076 (5)	0.008 (3)	0.017 (4)	-0.002 (3)
C4	0.055 (4)	0.049 (4)	0.053 (3)	0.004 (3)	0.015 (3)	-0.008 (3)
C5	0.079 (5)	0.040 (4)	0.054 (4)	-0.005 (3)	0.024 (3)	0.002 (3)
C6	0.076 (5)	0.038 (3)	0.060 (4)	-0.004 (3)	0.028 (3)	0.006 (3)
C7	0.052 (4)	0.054 (4)	0.043 (3)	-0.005 (3)	0.012 (3)	0.005 (3)
C8	0.060 (4)	0.081 (6)	0.061 (4)	-0.002 (4)	0.015 (3)	0.022 (4)
С9	0.074 (5)	0.089 (6)	0.049 (4)	-0.004 (4)	0.026 (3)	0.000 (4)
C10	0.053 (4)	0.068 (5)	0.046 (3)	0.000 (3)	0.018 (3)	0.001 (3)
C11	0.116 (7)	0.071 (5)	0.096 (6)	-0.002 (5)	0.054 (5)	-0.024 (4)
C12A	0.102 (2)	0.0635 (7)	0.1132 (11)	-0.0048 (10)	0.0551 (13)	-0.0016 (6)
C12B	0.102 (2)	0.0635 (7)	0.1132 (11)	-0.0048 (10)	0.0551 (13)	-0.0016 (6)
01	0.106 (5)	0.067 (4)	0.099 (4)	-0.010 (3)	0.037 (3)	0.031 (3)
O2	0.084 (4)	0.098 (5)	0.067 (3)	-0.003 (3)	0.039 (3)	0.021 (3)
O3	0.111 (4)	0.048 (3)	0.069 (3)	0.000 (3)	0.053 (3)	-0.006 (2)

Geometric parameters (Å, °)

Br1—C4	1.895 (6)	C8—O2	1.377 (10)
Br2A—C12A	1.864 (5)	С9—О2	1.407 (11)
Br2B—C12B	1.878 (6)	C9—C10	1.501 (9)
C1—C2	1.384 (10)	С9—Н9А	0.9700
C1—C6	1.397 (9)	С9—Н9В	0.9700
C1—C7	1.476 (9)	C10—O3	1.348 (8)
C2—C3	1.357 (11)	C11—O3	1.352 (9)
С2—Н2	0.9300	C11—C12A	1.531 (5)
C3—C4	1.378 (10)	C11—C12B	1.539 (6)
С3—Н3	0.9300	C11—H11A	0.9700
C4—C5	1.379 (10)	C11—H11B	0.9700
C5—C6	1.372 (9)	C11—H11C	0.9700
С5—Н5	0.9300	C11—H11D	0.9700
С6—Н6	0.9300	C12A—H12A	0.9700

C7—C10	1.334 (10)	C12A—H12B	0.9700
С7—С8	1.471 (10)	C12B—H12C	0.9700
C8—O1	1.212 (10)	C12B—H12D	0.9700
$C^{2}-C^{1}-C^{6}$	117.2 (6)	03 - C11 - C12B	111.5 (12)
$C_2 C_1 C_7$	117.2(0)	C_{12A} C_{11} C_{12B}	523(13)
$C_{2} = C_{1} = C_{7}$	122.0(0) 120.8(6)	$C_{12}A - C_{11} - C_{12}B$	100.1
$C_0 = C_1 = C_1$	120.8(0)		109.1
$C_3 = C_2 = C_1$	122.2 (0)	CI2A—CII—HIIA	109.1
C3—C2—H2	118.9	CI2B—CII—HIIA	139.4
C1—C2—H2	118.9	O3—C11—H11B	109.1
C2—C3—C4	120.0 (6)	C12A—C11—H11B	109.1
С2—С3—Н3	120.0	C12B—C11—H11B	60.0
С4—С3—Н3	120.0	H11A—C11—H11B	107.9
C3—C4—C5	119.4 (6)	O3—C11—H11C	109.3
C3—C4—Br1	121.9 (5)	C12A—C11—H11C	59.7
C5—C4—Br1	118.6 (5)	C12B—C11—H11C	109.3
C6—C5—C4	120.3 (6)	H11A—C11—H11C	53.5
С6—С5—Н5	119.9	H11B-C11-H11C	141.2
C4—C5—H5	119.9	03-C11-H11D	109.3
C_{5} C_{6} C_{1}	120.8 (7)		138.3
$C_{5} = C_{6} = C_{1}$	110.6	$C_{12}R$ C_{11} $H_{11}D$	100.3
C_{1}	119.0		57 4
C1 - C0 - H0	119.0		57.4
C10 - C7 - C8	106.0 (6)	HIIB—CII—HIID	55.1
C10-C7-C1	129.2 (6)	HIIC—CII—HIID	108.0
C8—C7—C1	124.8 (7)	C11—C12A—Br2A	119.6 (6)
01—C8—O2	119.5 (7)	C11—C12A—H12A	107.4
O1—C8—C7	131.4 (8)	Br2A—C12A—H12A	107.4
O2—C8—C7	109.0 (7)	C11—C12A—H12B	107.4
O2—C9—C10	103.7 (6)	Br2A—C12A—H12B	107.4
О2—С9—Н9А	111.0	H12A—C12A—H12B	106.9
С10—С9—Н9А	111.0	C11—C12B—Br2B	113.0 (7)
O2—C9—H9B	111.0	C11—C12B—H12C	109.0
C10—C9—H9B	111.0	Br2B—C12B—H12C	109.0
H9A—C9—H9B	109.0	C11—C12B—H12D	109.0
C7-C10-O3	125.9 (6)	Br2B—C12B—H12D	109.0
C7 $C10$ $C9$	111 1 (6)	HI2C CI2B HI2D	107.8
$C_{1} = C_{10} = C_{2}$	111.1(0) 123.0(6)	$\frac{1112}{C} = \frac{12}{C} = \frac{112}{C}$	107.0
03 - 010 - 03	123.0(0)	$C_{0} = 0_{2} = C_{9}$	110.1(0)
03—C11—C12A	112.3 (6)	C10-03-C11	116.9 (5)
C6—C1—C2—C3	-1.9 (11)	C8—C7—C10—O3	-178.9 (7)
C7—C1—C2—C3	178.8 (7)	C1—C7—C10—O3	0.4 (12)
C1—C2—C3—C4	1.8 (12)	C8—C7—C10—C9	1.8 (8)
C2—C3—C4—C5	-1.1 (11)	C1—C7—C10—C9	-178.9 (7)
C2-C3-C4-Br1	-178.9 (6)	O2—C9—C10—C7	-1.5 (9)
C3—C4—C5—C6	0.5 (11)	O2—C9—C10—O3	179.1 (7)
Br1-C4-C5-C6	178.4 (6)	O3—C11—C12A—Br2A	31.9 (14)
C4—C5—C6—C1	-0.6 (12)	C12B—C11—C12A—Br2A	-68.7 (13)
C2—C1—C6—C5	1.3 (11)	O3—C11—C12B—Br2B	-49 (2)

supporting information

C7—C1—C6—C5	-179.4 (7)	C12A—C11—C12B—Br2B	53.0 (14)	
C2-C1-C7-C10	178.8 (7)	O1—C8—O2—C9	-177.4 (8)	
C6—C1—C7—C10	-0.5 (11)	C7—C8—O2—C9	0.4 (8)	
C2—C1—C7—C8	-2.0 (11)	C10—C9—O2—C8	0.6 (8)	
C6—C1—C7—C8	178.7 (7)	C7-C10-O3-C11	179.0 (8)	
C10—C7—C8—O1	176.1 (9)	C9—C10—O3—C11	-1.7 (11)	
C1—C7—C8—O1	-3.2 (13)	C12A—C11—O3—C10	158.9 (8)	
С10—С7—С8—О2	-1.4 (8)	C12B-C11-O3-C10	-144.3 (13)	
C1—C7—C8—O2	179.3 (6)			

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С2—Н2…О1	0.93	2.35	3.018 (10)	129
С6—Н6…О3	0.93	2.25	2.916 (8)	128
C9—H9 <i>B</i> ··· <i>Cg</i> 1 ⁱ	0.97	2.80	3.632 (9)	144

Symmetry code: (i) -x, -y+1, -z+1.