Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,5-Bis(4-methoxyphenyl)-1,3,4oxadiazole

Hoong-Kun Fun,^a*‡ Jia Hao Goh,^a§ Nithinchandra^b and B. Kalluraya^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 28 October 2010; accepted 30 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.047; wR factor = 0.137; data-to-parameter ratio = 19.3.

In the title compound, $C_{16}H_{14}N_2O_3$, the essentially planar 1,3,4-oxadiazole ring [maximum deviation = 0.0021 (11) Å] is inclined at dihedral angles of 8.06 (6) and 11.21 (6)° with respect to the two benzene rings; the dihedral angle between the latter rings is 11.66 (5)°. In the crystal, short intermolecular C···O interactions [2.9968 (15) Å] connect adjacent molecules into chains propagating in [203]. The crystal structure is further stabilized by weak intermolecular C- $H \cdot \cdot \pi$ interactions.

Related literature

For general background to and applications of the title compound, see: Andersen *et al.* (1994); Clitherow *et al.* (1996); Hegde *et al.* (2008); Rai *et al.* (2008); Showell *et al.* (1991). For closely related 2,5-diphenyl-1,3,4-oxadiazole structures, see: Reck *et al.* (2003*a,b*); Franco *et al.* (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{14}N_{2}O_{3}\\ M_{r}=282.29\\ Monoclinic, P2_{1}/c\\ a=10.7525 \ (2) \ \text{\AA}\\ b=11.8973 \ (2) \ \text{\AA}\\ c=11.6340 \ (2) \ \text{\AA}\\ \beta=115.434 \ (1)^{\circ} \end{array}$

 $V = 1344.04 (4) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 100 K 0.53 × 0.49 × 0.09 mm

‡ Thomson Reuters ResearcherID: A-3561-2009. § Thomson Reuters ResearcherID: C-7576-2009.

17061 measured reflections

 $R_{\rm int} = 0.027$

4744 independent reflections

3744 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEXII CCD diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{min} = 0.950, T_{max} = 0.992$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 246 parameters $wR(F^2) = 0.137$ All H-atom parameters refinedS = 1.03 $\Delta \rho_{max} = 0.38 \text{ e } \text{Å}^{-3}$ 4744 reflections $\Delta \rho_{min} = -0.30 \text{ e } \text{Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1 and Cg2 are the centroids of C9–C14 and C1–C6 benzene rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \text{C15}-\text{H15}A\cdots\text{Cg1}^{\text{i}}\\ \text{C15}-\text{H15}B\cdots\text{Cg2}^{\text{ii}} \end{array}$	$1.031 (14) \\ 0.992 (14)$	2.563 (16) 2.994 (16)	3.4903 (14) 3.8804 (14)	149.4 (10) 149.4 (11)
Symmetry codes: (i) x -	− 1, <i>y</i> , <i>z</i> − 1; (ii)	$x, -y - \frac{1}{2}, z - \frac{3}{2}$.		

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5714).

References

- Andersen, K. E., Jørgensen, A. S. & Braestrup, C. (1994). *Eur. J. Med. Chem.* **29**, 393–399.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). *Bioorg. Med. Chem. Lett.* 6, 833–838.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Franco, O., Reck, G., Orgzall, I., Schulz, B. W. & Schulz, B. (2003). J. Mol. Struct. 649, 219–230.
- Hegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.
- Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.
- Reck, G., Orgzall, I. & Schulz, B. (2003a). Acta Cryst. E59, o1135-o1136.
- Reck, G., Orgzall, I., Schulz, B. & Dietzel, B. (2003b). Acta Cryst. C59, o634– o635.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Showell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Suanders, J., Freedman, S. B., Patel, S. B. & Baker, R. (1991). *J. Med. Chem.* 34, 1086–1094.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o3072 [https://doi.org/10.1107/S1600536810044405]

2,5-Bis(4-methoxyphenyl)-1,3,4-oxadiazole

Hoong-Kun Fun, Jia Hao Goh, Nithinchandra and B. Kalluraya

S1. Comment

Heterocyclic compounds are becoming increasingly important in recent years due to their pharmacological activities (Rai *et al.*, 2008). Nitrogen- and oxygen-containing five/six-membered heterocyclic compounds are of enormous significance in the field of medicinal chemistry (Hegde *et al.*, 2008). Oxadiazoles play a very vital role in the preparation of various biologically active drugs with anti-inflammatory (Andersen *et al.*, 1994) and anti-cancer (Showell *et al.*, 1991) activities. The results of biological studies showed that oxadiazole derivatives also possess significant anti-inflammatory, analgesic and minimum ulcerogenic and lipid per-oxidation (Clitherow *et al.*, 1996) properties.

In the title oxadiazole compound (Fig. 1), the 1,3,4-oxadiazole ring (C7/C8/N1/N2/O1) is essentially planar, with a maximum deviation of -0.0021 (11) at atom N1. The C1-C6 and C9-C14 phenyl rings are inclined at dihedral angles of 11.21 (6) and 8.06 (6)°, respectively, with the 1,3,4-oxadiazole ring. The geometric parameters agree well with those observed in closely related 2,5-diphenyl-1,3,4-oxadiazole structures (Reck *et al.*, 2003*a*,*b*; Franco *et al.*, 2003).

In the crystal, no significant intermolecular hydrogen bond is observed. The interesting feature of the crystal structure is the intermolecular short C15···O3 interactions [2.9968 (15) Å, symmetry code: x+1, -y+1/2, z+3/2], which is significantly shorter than the sum of the Van der Waals radii of the relevant atoms (3.22 Å), interconnecting adjacent molecules into one-dimensional chains propagating along the [203] direction (Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular C15—H15A···Cg1 and C15—H15B···Cg2 interactions (Table 1) where Cg1 and Cg2 are the centroids of C9-C14 and C1-C6 phenyl rings, respectively.

S2. Experimental

An equimolar mixture of 4-methoxybenzoic acid (0.01 mol) and 4-methoxybenzhydrazide was dissolved in POCl₃ (25–30 ml) by gentle warming. The solution is refluxed for about 12 h. Excess of POCl₃ is distilled off, and then the reaction mixture is poured into crushed ice. The separated solid was filtered, washed with water and dried. It was then recrystallized from ethanol. Yellow blocks of (I) were obtained from ethanol by slow evaporation.

S3. Refinement

All H atoms were located from difference Fourier map and allowed to refine freely with range of C—H = 0.916(14) - 1.031(14) Å.

Figure 1

The asymmetric unit of the title compound, showing 50 % probability displacement ellipsoids for non-H atoms.

Figure 2

The crystal structure of the title compound, viewed along the *a* axis, showing molecules being interconnected into onedimensional chains. H atoms have been omitted for clarity and intermolecular short interactions are shown as dashed lines.

2,5-Bis(4-methoxyphenyl)-1,3,4-oxadiazole

Crystal data

2	
$C_{16}H_{14}N_2O_3$	V = 1344.04 (4) Å ³
$M_r = 282.29$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 592
Hall symbol: -P 2ybc	$D_{\rm x} = 1.395 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.7525 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.8973 (2) Å	Cell parameters from 5014 reflections
c = 11.6340 (2) Å	$\theta = 2.6 - 32.2^{\circ}$
$\beta = 115.434 \ (1)^{\circ}$	$\mu=0.10~\mathrm{mm^{-1}}$

T = 100 KBlock, yellow

Data collection

Bruker SMART APEXII CCD diffractometer	17061 measured reflections 4744 independent reflections
Radiation source: fine-focus sealed tube	3744 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
φ and ω scans	$\theta_{\rm max} = 32.3^\circ, \ \theta_{\rm min} = 2.6^\circ$
Absorption correction: multi-scan	$h = -16 \rightarrow 15$
(SADABS; Bruker, 2009)	$k = -17 \rightarrow 17$
$T_{\min} = 0.950, \ T_{\max} = 0.992$	$l = -14 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$P[E^2 > 2\pi(E^2)] = 0.047$	Hydrogen site location: inferred from

 $0.53 \times 0.49 \times 0.09 \text{ mm}$

Least-squares matrix. Tun	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
<i>S</i> = 1.03	All H-atom parameters refined
4744 reflections	$w = 1/[\sigma^2(F_o^2) + (0.079P)^2 + 0.1649P]$
246 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.38 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Z	T.T.	4. / T T
	$U_{\rm iso}$	*/ <i>U</i> _{eq}
0.21170	0 (6) 0.01	1974 (15)
006 (7) -0.358	83 (8) 0.03	333 (2)
634 (6) 0.8045	1 (7) 0.02	2542 (17)
0.1419	9 (9) 0.02	2542 (19)
0.2725	5 (8) 0.02	2513 (19)
-0.113	16 (10) 0.02	243 (2)
45 (9) -0.231	02 (10) 0.02	257 (2)
539 (9) -0.249	04 (10) 0.02	247 (2)
-0.148	29 (10) 0.02	264 (2)
/63 (8) -0.031	71 (10) 0.02	234 (2)
-0.012	31 (9) 0.02	2039 (18)
0.1107	3 (9) 0.02	2031 (18)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

supporting information

C8	0.95953 (9)	0.32608 (7)	0.30883 (9)	0.01932 (18)
C9	1.04150 (9)	0.28123 (7)	0.43534 (9)	0.01863 (17)
C10	1.06169 (9)	0.16598 (8)	0.45607 (9)	0.01989 (18)
C11	1.13636 (9)	0.12351 (8)	0.57833 (9)	0.02060 (18)
C12	1.19097 (9)	0.19768 (8)	0.68094 (9)	0.01974 (18)
C13	1.17027 (10)	0.31372 (8)	0.66105 (10)	0.0232 (2)
C14	1.09745 (10)	0.35469 (8)	0.53959 (10)	0.02276 (19)
C15	0.42071 (11)	0.18563 (12)	-0.47047 (11)	0.0320 (2)
C16	1.29532 (13)	0.05018 (10)	0.82938 (11)	0.0312 (2)
H1A	0.6395 (13)	0.4157 (12)	-0.1004 (13)	0.031 (3)*
H2A	0.5040 (16)	0.3408 (13)	-0.2994 (15)	0.044 (4)*
H4A	0.6699 (14)	0.0323 (13)	-0.1637 (14)	0.034 (4)*
H5A	0.8051 (14)	0.1104 (12)	0.0334 (13)	0.033 (4)*
H10A	1.0288 (13)	0.1131 (11)	0.3879 (13)	0.028 (3)*
H11A	1.1508 (14)	0.0475 (12)	0.5874 (14)	0.033 (3)*
H13A	1.2011 (15)	0.3619 (13)	0.7306 (14)	0.039 (4)*
H14A	1.0822 (13)	0.4342 (12)	0.5266 (13)	0.031 (3)*
H15A	0.3446 (14)	0.2322 (11)	-0.4612 (13)	0.031 (3)*
H15B	0.4821 (14)	0.2357 (12)	-0.4910 (14)	0.030 (3)*
H15C	0.3802 (16)	0.1299 (14)	-0.5399 (15)	0.043 (4)*
H16A	1.2087 (16)	0.0060 (13)	0.8025 (15)	0.044 (4)*
H16B	1.3518 (15)	0.0229 (13)	0.7875 (14)	0.040 (4)*
H16C	1.3490 (16)	0.0457 (14)	0.9238 (16)	0.046 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0201 (3)	0.0161 (3)	0.0210 (3)	0.0006 (2)	0.0069 (2)	0.0022 (2)
O2	0.0298 (4)	0.0347 (4)	0.0238 (4)	-0.0009 (3)	0.0003 (3)	0.0011 (3)
O3	0.0325 (4)	0.0234 (4)	0.0183 (3)	0.0021 (3)	0.0089 (3)	0.0011 (3)
N1	0.0316 (4)	0.0193 (4)	0.0244 (4)	0.0024 (3)	0.0112 (3)	0.0035 (3)
N2	0.0324 (4)	0.0184 (4)	0.0236 (4)	0.0022 (3)	0.0111 (3)	0.0020 (3)
C1	0.0247 (4)	0.0219 (5)	0.0262 (5)	0.0025 (3)	0.0108 (4)	0.0062 (4)
C2	0.0220 (4)	0.0283 (5)	0.0246 (5)	0.0024 (3)	0.0080 (4)	0.0086 (4)
C3	0.0197 (4)	0.0282 (5)	0.0224 (4)	-0.0015 (3)	0.0054 (3)	0.0031 (4)
C4	0.0243 (4)	0.0222 (5)	0.0265 (5)	0.0002 (3)	0.0050 (4)	0.0023 (4)
C5	0.0210 (4)	0.0217 (4)	0.0237 (4)	0.0009 (3)	0.0058 (3)	0.0050 (3)
C6	0.0183 (4)	0.0213 (4)	0.0219 (4)	0.0005 (3)	0.0090 (3)	0.0045 (3)
C7	0.0204 (4)	0.0192 (4)	0.0223 (4)	0.0031 (3)	0.0101 (3)	0.0054 (3)
C8	0.0210 (4)	0.0165 (4)	0.0217 (4)	0.0007 (3)	0.0103 (3)	-0.0001 (3)
C9	0.0192 (4)	0.0161 (4)	0.0213 (4)	0.0001 (3)	0.0092 (3)	-0.0003 (3)
C10	0.0201 (4)	0.0161 (4)	0.0220 (4)	-0.0010 (3)	0.0076 (3)	-0.0020 (3)
C11	0.0222 (4)	0.0156 (4)	0.0228 (4)	-0.0009(3)	0.0086 (3)	-0.0005 (3)
C12	0.0212 (4)	0.0206 (4)	0.0185 (4)	0.0006 (3)	0.0096 (3)	0.0004 (3)
C13	0.0284 (4)	0.0195 (4)	0.0223 (4)	0.0010(3)	0.0113 (4)	-0.0039 (3)
C14	0.0275 (4)	0.0163 (4)	0.0246 (4)	0.0017 (3)	0.0112 (4)	-0.0015 (3)
C15	0.0237 (4)	0.0470 (7)	0.0213 (5)	0.0004 (4)	0.0059 (4)	0.0067 (4)
C16	0.0390 (6)	0.0239 (5)	0.0242 (5)	0.0018 (4)	0.0074 (4)	0.0053 (4)

Geometric parameters (Å, °)

01	1.3652 (11)	C6—C7	1.4552 (13)	
01—C7	1.3704 (11)	C8—C9	1.4537 (13)	
O2—C3	1.3597 (13)	C9—C10	1.3930 (12)	
O2—C15	1.4359 (13)	C9—C14	1.4036 (13)	
O3—C12	1.3641 (11)	C10—C11	1.3937 (13)	
O3—C16	1.4193 (13)	C10—H10A	0.954 (14)	
N1—C7	1.2954 (13)	C11—C12	1.3952 (13)	
N1—N2	1.4110 (12)	C11—H11A	0.916 (14)	
N2—C8	1.3010(12)	C12—C13	1.4017 (14)	
C1—C2	1.3905 (15)	C13—C14	1.3774 (14)	
C1—C6	1.3975 (13)	C13—H13A	0.929 (16)	
C1—H1A	0.934 (14)	C14—H14A	0.960 (14)	
C2—C3	1.3923 (15)	C15—H15A	1.031 (14)	
C2—H2A	0.985 (16)	C15—H15B	0.992 (14)	
C3—C4	1.4029 (14)	C15—H15C	0.990 (16)	
C4—C5	1.3819 (14)	C16—H16A	0.996 (16)	
C4—H4A	0.944 (15)	C16—H16B	0.982 (16)	
C5—C6	1.3992 (14)	C16—H16C	0.999 (17)	
С5—Н5А	0.943 (14)			
C8—O1—C7	102.83 (7)	C10—C9—C8	121.21 (8)	
C3—O2—C15	117.56 (9)	C14—C9—C8	119.66 (8)	
C12—O3—C16	117.39 (8)	C9—C10—C11	120.82 (8)	
C7—N1—N2	106.41 (8)	C9—C10—H10A	122.1 (8)	
C8—N2—N1	106.13 (8)	C11-C10-H10A	117.1 (8)	
C2C1C6	120.85 (9)	C10-C11-C12	119.35 (9)	
C2C1H1A	119.5 (9)	C10-C11-H11A	118.0 (9)	
C6—C1—H1A	119.6 (9)	C12—C11—H11A	122.5 (9)	
C1—C2—C3	119.80 (9)	O3—C12—C11	124.75 (9)	
C1—C2—H2A	118.4 (9)	O3—C12—C13	115.05 (8)	
C3—C2—H2A	121.8 (9)	C11—C12—C13	120.20 (9)	
O2—C3—C2	125.20 (9)	C14—C13—C12	119.87 (9)	
O2—C3—C4	115.14 (9)	C14—C13—H13A	120.6 (10)	
C2—C3—C4	119.66 (9)	C12—C13—H13A	119.5 (10)	
C5—C4—C3	120.21 (10)	C13—C14—C9	120.66 (9)	
С5—С4—Н4А	121.6 (9)	C13—C14—H14A	119.5 (8)	
С3—С4—Н4А	118.2 (9)	C9—C14—H14A	119.8 (8)	
C4—C5—C6	120.55 (9)	O2—C15—H15A	112.1 (8)	
С4—С5—Н5А	117.9 (9)	O2—C15—H15B	110.8 (8)	
С6—С5—Н5А	121.6 (9)	H15A—C15—H15B	110.0 (11)	
C1—C6—C5	118.92 (9)	O2—C15—H15C	104.8 (10)	
C1—C6—C7	120.62 (9)	H15A—C15—H15C	110.8 (12)	
C5—C6—C7	120.46 (8)	H15B—C15—H15C	108.1 (12)	
N1C7O1	112.27 (9)	O3—C16—H16A	110.8 (9)	
N1C7C6	129.63 (9)	O3—C16—H16B	110.5 (9)	
O1—C7—C6	118.09 (8)	H16A—C16—H16B	111.3 (13)	

supporting information

N2—C8—O1 N2—C8—C9 O1—C8—C9 C10—C9—C14	112.35 (8) 128.77 (9) 118.84 (8) 119.09 (9)	O3—C16—H16C H16A—C16—H16C H16B—C16—H16C	104.4 (10) 109.8 (13) 109.8 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.41 \ (11) \\ 0.44 \ (16) \\ 9.99 \ (16) \\ -170.60 \ (10) \\ 178.82 \ (10) \\ -0.55 \ (16) \\ -179.38 \ (10) \\ 0.05 \ (16) \\ 0.57 \ (16) \\ 0.57 \ (16) \\ 0.57 \ (16) \\ 0.57 \ (16) \\ 0.18 \ (15) \\ 179.80 \ (9) \\ -0.69 \ (15) \\ 179.69 \ (9) \\ 0.35 \ (11) \\ -178.82 \ (9) \\ -0.15 \ (10) \\ 179.12 \ (8) \\ -11.61 \ (16) \\ 168.01 \ (10) \\ 169.27 \ (9) \end{array}$	$\begin{array}{c} N1 & - N2 & - C8 & - O1 \\ N1 & - N2 & - C8 & - C9 \\ C7 & - O1 & - C8 & - N2 \\ C7 & - O1 & - C8 & - C9 \\ N2 & - C8 & - C9 & - C10 \\ O1 & - C8 & - C9 & - C10 \\ N2 & - C8 & - C9 & - C14 \\ O1 & - C8 & - C9 & - C14 \\ O1 & - C8 & - C9 & - C14 \\ C14 & - C9 & - C10 & - C11 \\ C8 & - C9 & - C10 & - C11 \\ C9 & - C10 & - C11 & - C12 \\ C16 & - O3 & - C12 & - C11 \\ C16 & - O3 & - C12 & - C13 \\ C10 & - C11 & - C12 & - C13 \\ C10 & - C11 & - C12 & - C13 \\ O3 & - C12 & - C13 & - C14 \\ C11 & - C12 & - C13 & - C14 \\ C12 & - C13 & - C14 & - C9 \\ C10 & - C9 & - C14 & - C13 \\ C8 & - C9 & - C14 & - C13 \\ \end{array}$	0.33 (11) - $177.28 (9)$ - $0.13 (10)$ 177.74 (8) - $175.90 (10)$ 6.62 (13) 6.42 (16) - $171.05 (8)$ - $0.04 (14)$ - $177.72 (9)$ 0.20 (14) 2.71 (14) - $177.29 (9)$ - $179.73 (8)$ 0.27 (14) 179.08 (9) - $0.92 (15)$ 1.10 (15) - $0.62 (14)$ 177.10 (9)
C5—C6—C7—O1	-11.12 (13)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of C9-C14 and C1-C6 benzene rings, respectively.

D—H···A	D—H	H···A	D…A	D—H··· A
C15—H15 A ··· $Cg1^{i}$	1.031 (14)	2.563 (16)	3.4903 (14)	149.4 (10)
C15—H15 <i>B</i> ··· <i>Cg</i> 2 ⁱⁱ	0.992 (14)	2.994 (16)	3.8804 (14)	149.4 (11)

Symmetry codes: (i) *x*-1, *y*, *z*-1; (ii) *x*, -*y*-1/2, *z*-3/2.