Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Chloromethyl-1H-1,2,3-benzotriazole

Xue-wen Zhu, ${ }^{\text {a,b }}$ * Ying-Jun Zhang, ${ }^{\text {b }}$ Chun-Xia Zhang, ${ }^{\text {b }}$ Gang-Sen Li ${ }^{\text {b }}$ and Heng-Yu Qian ${ }^{\text {b }}$

${ }^{\text {a D Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's }}$ Republic of China, and ${ }^{\mathbf{b}}$ Key Laboratory of Surface and Interface Science of Henan School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
Correspondence e-mail: zhuxuew@126.com
Received 24 October 2010; accepted 8 November 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.035 ; w R$ factor $=0.088$; data-to-parameter ratio $=15.3$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClN}_{3}$, the benzotriazole ring is essentially planar with a maximum deviation of $0.0110(15) \AA$, and makes a dihedral angle of $0.46(8)^{\circ}$ with the benzene ring. In the crystal, molecules are linked through intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming chains along the c axis.

Related literature

For bond-length data, see: Alkorta et al. (2004); Wang et al. (2008). For applications of 1-(chloromethyl)benzotriazole, see: Katritzky et al. (1996). For the preparation of the title compound, see: Burckhalter et al. (1952). For the biological activity of benzotriazole derivatives, see: Jiao et al. (2005).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClN}_{3} \quad M_{r}=167.60$

Monoclinic, $P 2_{1} / c$
$a=7.5081$ (17) A
$b=9.6045(14) \AA$
$c=10.984$ (2) \AA
$\beta=108.49(2)^{\circ}$ 。
$V=751.2(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.21 \times 0.20 \times 0.19 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\text {min }}=0.914, T_{\text {max }}=0.922$

2865 measured reflections
1530 independent reflections 1218 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035 \quad 100$ parameters
$w R\left(F^{2}\right)=0.088$
H -atom parameters constrained
$S=1.06$
1530 reflections
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.97	2.47	$3.360(2)$	152

Symmetry code: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank Yang Xiao-gan for the X-ray diffraction analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2325).

References

Alkorta, I., Elguero, J., Jagerovic, N., Fruchier, A. \& Yap, G. P. A. (2004). J. Heterocycl. Chem. 41, 285-289.
Burckhalter, J. H., Stephens, V. C. \& Hall, L. A. R. (1952). J. Am. Chem. Soc. 74, 3868-3870.
Jiao, K., Wang, Q.-X., Sun, W. \& Jian, F.-F. (2005). J. Inorg. Biochem. 99, 13691375.

Katritzky, A. R., Ghiviriga, I., Oniciu, D. C. \& Soti, F. (1996). J. Heterocycl. Chem. 33, 1927-1934.
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. (2004). SADABS. University of Göttingen, Germany
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, S.-Q., Jian, F.-F. \& Liu, H.-Q. (2008). Acta Cryst. E64, o1782.

supporting information

Acta Cryst. (2010). E66, o3173 [https://doi.org/10.1107/S1600536810046052]

1-Chloromethyl-1H-1,2,3-benzotriazole

Xue-wen Zhu, Ying-Jun Zhang, Chun-Xia Zhang, Gang-Sen Li and Heng-Yu Qian

S1. Comment

Benzotriazole derivatives exhibit a good degree of anti-inflammatory, diuretic and antihypertensive activities (Jiao et al., 2005). The title compound (common name: 1-(chloromethyl)-benzotriazole), as one of the derivatives of benzotriazole, has been synthesized (Burckhalter et al., 1952)and used to synthesize 1-(mercaptomethyl)benzotriazole and other derivates(Katritzky et al. 1996). Now, we report herein the crystal structure of the benzotriazole derivative, (I).
The asymmetric unit of (I) comprises of one molecule of the compound (Fig. 1). The bond lengths and angles are found to have normal values (Alkorta et al, 2004; Wang et al., 2008). The benzotriazole ring is essentially planar with the maximum deviation form planarity being $0.0110(15) \AA$ for atom N 1 . The dihedral angle formed by the ring 1 ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{C} 6 / \mathrm{C} 1$) and the ring $2(\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6)$ is $0.46(8)^{\circ}$. In the chloromethyl group, the $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{N}$ bond lengths are 1.7951 (18) \AA and 1.424 (2) \AA, respectively (Fig. 1). There is a $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interaction (Table 1, Fig. 2) stabilizing the observed molecular conformation, and the structure is further stalilized by pi \cdots pi contacts involving both of the aromatic rings $(C g(1)-\mathrm{C}(g) 2=3.7003(14) \AA$, which $C g(1)$ is the centroid of the ring 1 and $C g(2)$ is the centroid of the ring 2).

S2. Experimental

The title compound was synthesized from 1-hydroxymethylbenzotriazole and thionyl chloride as described in the literature with a yield of 78% (Burckhalter et al., 1952). To 12 g of 1-hydroxymethylbenzotriazole kept at ice-bath temperature, 40 ml of thionyl chloride was added dropwise. The mixture was then stirred and refluxed for 90 minutes. Excess thionyl chloride was removed by distillation, last traces by heating for 15 minutes with 50 ml of methanol. After cooling and collecting on a funnel, the product was then recrystallized from benzene. Crystal suitable for X-ray diffraction analysis was obtained by crystallization from methanol.

S3. Refinement

H atoms were included in calculated positions and refined as riding atoms with fixed $\mathrm{C}-\mathrm{H}$ distances $[\mathrm{C}-\mathrm{H}=0.97 \AA$ for CH_{2}, and $0.93 \AA$ for aromatic CH$]$ and $U_{\mathrm{iso}}(\mathrm{H})$ assigned to $1.2 U_{\mathrm{eq}}(\mathrm{C})$ of their bonding carbon atom.

Figure 1
Molecular structure of the title compound showing the atom numbering scheme and displacement dllipsoids drawn at the 30\% probability level.

Figure 2

Packing diagram viewed paralled to the c axis. Hydrogen bonds are indicated by dashed lines.

1-Chloromethyl-1H-1,2,3-benzotriazole

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClN}_{3}$

$M_{r}=167.60$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=7.5081$ (17) \AA
$b=9.6045(14) \AA$
$c=10.984$ (2) \AA
$\beta=108.49$ (2) ${ }^{\circ}$
$V=751.2(3) \AA^{3}$
$Z=4$
$F(000)=344$
$D_{\mathrm{x}}=1.482 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 409.5 K
Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$
Cell parameters from 1327 reflections
$\theta=3.6-26.4^{\circ}$
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.21 \times 0.20 \times 0.19 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Eos Gemini
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.914, T_{\text {max }}=0.922$
2865 measured reflections
1530 independent reflections
1218 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-9 \rightarrow 8$
$k=-12 \rightarrow 9$
$l=-8 \rightarrow 13$
2865 standard reflections every 0 min intensity decay: none

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.088$
$S=1.06$
1530 reflections
100 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0381 P)^{2}+0.0967 P\right]\) where \(P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.23\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}\)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.28373(7)$	$0.06214(5)$	$0.48763(5)$	$0.0569(2)$
N1	$0.12629(19)$	$0.31134(15)$	$0.42214(12)$	$0.0387(3)$
C6	$0.2688(2)$	$0.44038(19)$	$0.63087(16)$	$0.0411(4)$
H6A	0.2580	0.3716	0.6877	0.049^{*}
N2	$0.0960(2)$	$0.34462(18)$	$0.29614(13)$	$0.0509(4)$
C7	$0.0840(2)$	$0.17530(18)$	$0.45677(18)$	$0.0436(4)$
H7A	-0.0195	0.1369	0.3878	0.052^{*}
H7B	0.0453	0.1810	0.5329	0.052^{*}
N3	$0.1527(2)$	$0.47155(18)$	$0.29024(14)$	$0.0534(4)$
C2	$0.2235(2)$	$0.52323(19)$	$0.41342(16)$	$0.0403(4)$
C1	$0.2084(2)$	$0.42052(17)$	$0.49813(15)$	$0.0332(4)$
C4	$0.3611(3)$	$0.6730(2)$	$0.5873(2)$	$0.0557(5)$
H4A	0.4140	0.7581	0.6204	0.067^{*}
C3	$0.3011(3)$	$0.6533(2)$	$0.4584(2)$	$0.0514(5)$
H3B	0.3111	0.7231	0.4023	0.062^{*}

C5	$0.3451(3)$	$0.5681(2)$	$0.67153(19)$	$0.0504(5)$
H5A	0.3884	0.5860	0.7592	0.061^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0606(3)$	$0.0432(3)$	$0.0670(4)$	$0.0114(2)$	$0.0204(3)$	$0.0072(2)$
N1	$0.0447(8)$	$0.0379(8)$	$0.0319(7)$	$0.0053(6)$	$0.0098(6)$	$0.0008(6)$
C6	$0.0460(10)$	$0.0417(10)$	$0.0365(9)$	$0.0045(8)$	$0.0142(8)$	$0.0023(8)$
N2	$0.0602(10)$	$0.0574(11)$	$0.0318(8)$	$0.0121(8)$	$0.0099(7)$	$0.0023(7)$
C7	$0.0432(10)$	$0.0380(10)$	$0.0489(10)$	$0.0000(8)$	$0.0135(8)$	$-0.0045(8)$
N3	$0.0648(11)$	$0.0583(11)$	$0.0393(8)$	$0.0149(9)$	$0.0198(8)$	$0.0126(8)$
C2	$0.0421(10)$	$0.0433(10)$	$0.0390(9)$	$0.0114(8)$	$0.0178(8)$	$0.0094(8)$
C1	$0.0325(8)$	$0.0337(9)$	$0.0348(9)$	$0.0063(7)$	$0.0125(7)$	$0.0021(7)$
C4	$0.0531(12)$	$0.0403(11)$	$0.0729(13)$	$-0.0051(9)$	$0.0188(10)$	$-0.0092(11)$
C3	$0.0534(12)$	$0.0393(11)$	$0.0682(13)$	$0.0027(9)$	$0.0286(10)$	$0.0137(10)$
C5	$0.0539(11)$	$0.0513(12)$	$0.0432(10)$	$0.0019(9)$	$0.0114(9)$	$-0.0100(9)$

Geometric parameters ($A,{ }^{\circ}$)

C11-C7	1.7950 (18)	C7-H7B	0.9700
N1-C1	1.360 (2)	N3-C2	1.380 (2)
N1-N2	1.3674 (19)	C2-C1	1.385 (2)
N1-C7	1.424 (2)	C2-C3	1.401 (3)
C6-C5	1.367 (3)	C4-C3	1.356 (3)
C6-C1	1.396 (2)	C4-C5	1.399 (3)
C6-H6A	0.9300	C4-H4A	0.9300
N2-N3	1.299 (2)	C3-H3B	0.9300
C7-H7A	0.9700	C5-H5A	0.9300
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	109.78 (14)	N3-C2-C3	130.89 (17)
C1-N1-C7	129.74 (13)	C1-C2-C3	120.79 (16)
N2-N1-C7	120.34 (14)	N1-C1-C2	104.75 (14)
C5-C6-C1	115.31 (17)	N1-C1-C6	132.87 (15)
C5-C6-H6A	122.3	C2-C1-C6	122.38 (16)
C1-C6-H6A	122.3	C3-C4-C5	121.34 (18)
N3-N2-N1	108.53 (14)	C3-C4-H4A	119.3
N1-C7-Cl1	111.25 (12)	C5-C4-H4A	119.3
N1-C7-H7A	109.4	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	117.14 (17)
$\mathrm{Cl1}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.4	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	121.4
N1-C7-H7B	109.4	C2-C3-H3B	121.4
$\mathrm{Cl1}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.4	C6-C5-C4	123.04 (18)
H7A-C7-H7B	108.0	C6-C5-H5A	118.5
N2-N3-C2	108.61 (14)	C4-C5-H5A	118.5
N3-C2-C1	108.32 (16)		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	-1.26 (19)	N3-C2-C1-N1	-0.84 (18)
C7-N1-N2-N3	-177.32 (15)	C3-C2-C1-N1	179.33 (15)

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{Cl} 1$	$-84.43(19)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{Cl} 1$	$90.74(16)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 2$	$0.7(2)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 1$	$0.1(2)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3$	$179.91(18)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$1.27(18)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$176.84(16)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-179.43(17)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-3.9(3)$

$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$179.77(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$-0.1(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$-179.59(17)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$-0.4(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$-0.3(3)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.37(18)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.4(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$0.5(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.2(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7 — \mathrm{H} 7 A \cdots \mathrm{~N} 3{ }^{\mathrm{i}}$	0.97	2.47	$3.360(2)$	152

Symmetry code: (i) $-x, y-1 / 2,-z+1 / 2$.

