Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N^{3}-[(E)-Morpholin-4-ylmethylidene]-1-phenyl-1H-1,2,4-triazole-3,5-diamine monohydrate

V. M. Chernyshev, ${ }^{\text {a }}{ }^{*}$ A. V. Astakhov, ${ }^{\text {a }}$ V. V. Ivanov ${ }^{\text {a }}$ and Z. A. Starikova ${ }^{\text {b }}$
${ }^{\text {a }}$ South-Russia State Technical University, 346428 Novocherkassk, Russian Federation, and ${ }^{\mathbf{b}}$ A. N. Nesmeyanov Institute of Organoelement Compounds, 119991 Moscow, Russian Federation
Correspondence e-mail: chern13@yandex.ru

Received 13 November 2010; accepted 15 November 2010

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.088 ;$ data-to-parameter ratio $=13.2$.

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$, the mean planes of the benzene and 1,2,4-triazole rings form a dihedral angle of $54.80(5)^{\circ}$. The N atom of the amino group adopts a trigonalpyramidal configuration. Conjugation in the amidine $\mathrm{N}=\mathrm{C}$ N fragment results in sufficient shortening of the formal single bond. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link molecules into double layers parallel to the $b c$ plane.

Related literature

The title compound was synthesized according to Astakhov \& Chernyshev (2010). The synthesis of 3,5-diamino-1-phenyl-1,2,4-triazole is described by Steck et al. (1958). Intramolecular reactions of N-substituted aminomethylene malonates accompanied by nucleophilic substitution of malonic ester were described by Sunder \& Peet (1980); Yamazaki et al. (1988); Selic et al. (1998, 2000); Tkachev et al. (2007). Analogous intermolecular reaction affording substituted formamidines was described by Rajappa et al. (1970); Bao et al. (2008). For examples of the use of the triazolyl-substituted amidines in the synthesis of annulated heterocycles, see: Dolzhenko et al. (2007, 2008a,b). For crystal structures of substituted 3,5-diamino-1,2,4-triazoles, see: Ried et al. (1983); Dunstan et al. (1998); Chernyshev et al. (2006, 2007, 2009). For crystal structures of hetaryl substituted amidines, see: Ryng \& Glowiak (1998); Kurbatov et al. (2006); Xie et al. (2007); Lyakhov et al. (2008); Quiroga et al. (2010). The synthesis of mesoionic [1,2,4]triazolo[4,3-a]pyrimidines from N-(5-amino-1- R-1,2,4-triazol-3-yl)-substituted enaminoesters was described by Chernyshev et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002). For values of bond lengths in organic compounds, see: Allen et al. (1987). For the correlation of bond lengths with bond orders between
$s p^{2}$ hybridized C and N atoms, see: Burke-Laing \& Laing (1976).

Experimental

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$

$$
\gamma=95.331(1)^{\circ}
$$

$M_{r}=290.33$
Triclinic, $P \overline{1}$
$a=8.7886$ (7) Å
$V=700.00(9) \AA^{3}$
$Z=2$
$b=9.0100$ (7) \AA
Mo $K \alpha$ radiation
$c=9.4373$ (7) \AA
$\mu=0.10 \mathrm{~mm}^{-1}$
$\alpha=99.938(1)^{\circ}$
$T=100 \mathrm{~K}$
$\beta=105.933(1)^{\circ}$
$0.55 \times 0.30 \times 0.25 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5231 measured reflections 2724 independent reflections 2510 reflections with $I>2 \sigma(I)$
$T_{\text {min }}=0.948, T_{\text {max }}=0.976$ $R_{\text {int }}=0.015$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$	H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.088$	\quad independent and constrained
$S=1.00$	\quad refinement
2724 reflections	$\Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3}$
206 parameters	$\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\text {i }}$	0.89 (2)	2.08 (2)	2.929 (2)	159 (1)
$\mathrm{N} 5-\mathrm{H} 5 B \cdots \mathrm{O} 2^{\text {ii }}$	0.89 (2)	2.04 (2)	2.906 (2)	164 (1)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 3$	0.89 (2)	2.07 (2)	2.929 (2)	164 (1)
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 4^{\text {iii }}$	0.91 (2)	2.01 (2)	2.916 (2)	172 (1)

Symmetry codes: (i) $x, y-1, z-1$; (ii) $x, y-1, z$; (iii) $-x+2,-y+1,-z+1$.
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

The authors thank the Ministry of Education and Science of the Russian Federation for the financial support of this work through the Federal Target Program "Research and Educational Personnel of Innovative Russia at 2009-2013 Years", State contract P302, project NK-109P/2.

[^0]
organic compounds

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Astakhov, A. V. \& Chernyshev, V. M. (2010). Chem. Heterocycl. Comp. In the press.
Bao, K., Zhang, W., Bu, X., Song, Zh., Zhang, L. \& Cheng, M. (2008). Chem. Commun. pp. 5429-5431.
Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burke-Laing, M. \& Laing, M. (1976). Acta Cryst. B32, 3216-3224.
Chernyshev, V. M., Astakhov, A. V. \& Starikova, Z. A. (2010). Tetrahedron, 66, 3301-3313.
Chernyshev, V. M., Kosov, A. E., Gladkov, E. S., Shishkina, S. V., Taranushich, V. A., Desenko, S. M. \& Shishkin, O. V. (2006). Russ. Chem. Bull. 55, 338344.

Chernyshev, V. M., Rakitov, V. A., Blinov, V. V., Taranushich, V. A. \& Starikova, Z. A. (2009). Chem. Heterocycl. Compd, 45, 436-444.
Chernyshev, V. M., Rakitov, V. A., Taranushich, V. A. \& Starikova, Z. A. (2007). Chem. Heterocycl. Compd, 43, 776-780.

Dolzhenko, A. V., Dolzhenko, A. V. \& Chui, W. K. (2007). Tetrahedron, 63, 12888-12895.
Dolzhenko, A. V., Nan, B. J., Dolzhenko, A. V., Chui, G. N. Ch. \& Chui, W. K. (2008a). J. Fluorine Chem. 129, 429-434.
Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. \& Chui, W. K. (2008b). Tetrahedron Lett. 49, 7180-7183.
Dunstan, A. R., Weber, H.-P., Rihs, G., Widmer, H. \& Dziadulewicz, E. K. (1998). Tetrahedron Lett. 39, 7983-7986.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kurbatov, E. S., Starikova, Z. A., Krasnikov, V. V. \& Mezheritsky, V. V. (2006). Russ. J. Org. Chem. 42, 1578-1580.
Lyakhov, A. S., Vorobiov, A. N., Ivashkevich, L. S. \& Gaponik, P. N. (2008). Acta Cryst. C64, o414-o416.
Quiroga, J., Trilleras, J., Hursthouse, M. B., Cobo, J. \& Glidewell, C. (2010). Acta Cryst. C66, o245-o248.
Rajappa, S., Nagarajan, K. \& Akerkar, A. S. (1970). Indian J. Chem. 8, 499501.

Ried, W., Broft, G. W. \& Bats, J. W. (1983). Chem. Ber. 116, 1547-1563.
Ryng, S. \& Glowiak, T. (1998). J. Chem. Crystallogr. 28, 373-378.
Selic, L., Jakse, R., Lampic, K., Golic, L., Golic-Grdadolnik, S. \& Stanovnik, B. (2000). Helv. Chim. Acta, 83, 2802-2811.

Selic, L. \& Stanovnik, B. (1998). J. Heterocycl. Chem. 35, 1527-1529.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Steck, E. A., Brundage, R. P. \& Fletcher, L. T. (1958). J. Am. Chem. Soc. 80, 3929-3931.
Sunder, Sh. \& Peet, N. P. (1980). J. Heterocycl. Chem. 17, 1527-1529.
Tkachev, R. P., Bityukova, O. S., Dyachenko, V. D., Tkacheva, V. P. \& Dyachenko, A. D. (2007). Russ. J. Gen. Chem. 77, 116-123.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xie, D.-M., Shu, Z., Shen, L., Ding, Z.-W. \& Jin, Z.-M. (2007). Acta Cryst. E63, o4562.
Yamazaki, Ch., Takahashi, T. \& Hata, K. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 1897-1903.

supporting information

Acta Cryst. (2010). E66, 03247-o3248 [https://doi.org/10.1107/S160053681004729X]

N^{3}-[(E)-Morpholin-4-ylmethylidene]-1-phenyl-1H-1,2,4-triazole-3,5-diamine monohydrate

V. M. Chernyshev, A. V. Astakhov, V. V. Ivanov and Z. A. Starikova

S1. Comment

Recently, we have reported a simple method for the synthesis of mesoionic 3-amino-5-oxo-2-R-2,5-di-hydro-[1,2,4]triazolo[4,3-a]pyrimidines by heating of N-(5-amino-1- R-1,2,4-triazol-3-yl)-substituted enaminoesters in alkaline alcoholic solutions (Chernyshev et al., 2010). In the analogous conditions, N-(5-amino-1-R-1,2,4-triazol-3-yl)substituted aminomethylene malonates 1 (Fig. 1) furnished mesoionic 3-amino-6-(ethoxycarbonyl)-2- R-5-oxo-5H-[1,2,4]triazolo[4,3- a]pyrimidines 2 in high yield (Astakhov \& Chernyshev, 2010). However, when the compounds 1 were heated with aliphatic amines in acetonitrile, nucleophilic substitution of malonic ester affording the amidines $\mathbf{3}$ was observed instead of the expected reactions of heterocyclization or amidation (Fig. 1). This reaction is analogous to the previously described intramolecular heterocyclizations of N -substituted aminomethylene malonates (Sunder \& Peet, 1980; Yamazaki et al., 1988; Selic et al., 1998, 2000; Tkachev et al., 2007). However, we could find the intermolecular variant of the reaction in two publications (Rajappa et al., 1970; Bao et al., 2008), only. Good yields of the compounds 3 allow to expect that the reaction will be a useful tool for the selective synthesis of N-hetaryl substituted formamidines. Analogous compounds are valuable building blocks for the preparation of annulated heterocycles (Dolzhenko et al., 2007, 2008a,b).

For unambiguous confirmation of structure of the compounds 3 (Fig. 1), we performed an X-ray investigation of the title compound. In accordance with the X-ray diffraction data (Fig. 2), the benzene and triazole rings are not coplanar, the dihedral angle is $54.80(5)^{\circ}$. Bond lengths and angles in the triazole cycle are within the normal ranges and are comparable with those found in the other substituted 3,5-diamino-1,2,4-triazoles (Ried et al., 1983; Dunstan et al., 1998; Chernyshev et al., 2006, 2007, 2009). The nitrogen atom of the amino group is in a trigonal pyramidal configuration (sum of valence angles is 349.8°) and deviates from the triazole plane by only 0.020 (2) \AA. Conjugation between the unshared electron pair of N5 and the π system of the triazole fragment leads to a shortening of the N5-C5 bond (1.352 (2) \AA) relative to the standard length of a purely single Nsp2-Csp2 bond (1.43-1.45 A) (Burke-Laing \& Laing, 1976; Allen et al., 1987). The N 3 atom deviates from the least-squares plane of the triazole cycle by 0.056 (2) \AA. The dihedral angle between the planes of the triazole cycle and amidine fragment $(\mathrm{H} 1 / \mathrm{C} 1 / \mathrm{N} 3 / \mathrm{N} 6)$ of the molecule is $8.66(7)^{\circ}$. The amidine fragment is in the E configuration, as in the majority of other (het)aryl substituted formamidines (Cambridge Structural Database, Version 5.31 of November 2009, including updates up to August 2010, Allen, 2002). Although the formally single bond N6-C1 (1.337 (2) \AA) is longer than the double bond N3-C1 (1.297 (2) \AA), it is sufficiently shorter than the purely single Nsp2-Csp2 bond (1.43-1.45 Å) (Burke-Laing \& Laing,1976; Allen et al., 1987). Apparently, that is caused by conjugation of the N6 atom lone pair with the N3-C1 double bond, analogously to the other hetaryl substituted formamidines (Ryng \& Glowiak, 1998; Kurbatov et al., 2006; Xie et al., 2007; Lyakhov et al., 2008; Quiroga et al., 2010). Atom N6 of morpholine cycle has a slightly pyramidalized trigonal configuration (sum of valence angles is
359.1°). The morpholine ring adopts the usual chair conformation.
In the crystal, the molecules $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}$ with the parallel oriented triazole and morpholine cycles form stacks along the a axis of the triclinic cell (Fig. 3). The nearest molecules in the stacks adopt inverse orientation, i. e. they are space related by the inversion centres with coordinates $[0,0,0]$. The pairs of the nearest inversely oriented molecules in the stacks are connected with two water molecules located between them by means of the hydrogen bonds $\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~N} 3$ and $\mathrm{O} 2-$ H2B $\cdots \mathrm{N} 4$ (Table 1). These stacks together with the water molecules form rows which are parallel to the ($01 \overline{1}$) plane (Fig. 3). In these rows the inversely oriented molecules $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}$ of the neighboring stacks are linked with each other by the chains of N5—H5A $\cdots \mathrm{O} 1$ hydrogen bonds. The rows are connected with one another by the system of $\mathrm{N} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2$ hydrogen bonds (Table 1). In the crystal, parallel to (100), one can see two types of molecular layers consisting of the molecules $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}$ (Fig. 4). The adjacent layers are related by the inversion centres. In the each layer the nearest molecules $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}$ are displaced from each other by the cell parameter along the b and c axes. The neighbouring layers from both sides of the (100) crystallographic planes are pairwise linked by the $\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~N} 3, \mathrm{O} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{~N} 4$ and $\mathrm{N} 5-$ H5B $\cdots \mathrm{O} 2$ hydrogen bonds. Thus, the crystal structure consists of the $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O} \times \mathrm{H}_{2} \mathrm{O}$ molecular double layers in the direction of normal to the (100) plane.

S2. Experimental

The crystals of $N^{3}-[(E)$-morpholin-4-ylmethylidene]-1-phenyl-1H-1,2,4- triazole-3,5-diamine hydrate suitable for X-ray analysis were grown by slow evaporation from 1:9 water: acetonitrile mixture at room temperature. The title compound was prepared by the following procedure.
A mixture of diethyl 2-(((5-amino-1-phenyl-1H-1,2,4-triazol-3-yl)amino)methylene)malonate (1a, $R^{1}=\mathrm{Ph}, 0.69 \mathrm{~g}, 2$ mmol), morpholine $(0.37 \mathrm{~g}, 4.2 \mathrm{mmol})$ and acetonitrile (5 ml) was refluxed for 5 h , then cooled to $0^{\circ} \mathrm{C}$. The precipitate formed was isolated by filtration, recrystallized from acetonitrile and dried at $130^{\circ} \mathrm{C}$ to give $0.46 \mathrm{~g}(84 \%$ yield) of white powder, m. p. $208-208.5^{\circ} \mathrm{C}$. Spectrum ${ }^{1} \mathrm{H}$ NMR (300 MHz), $\delta: 3.42-3.61\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 6.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.25-7.53$ (m, 5H, Ph), 8.26 (s, 1H, CH). Spectrum ${ }^{13} \mathrm{C}$ NMR (125 MHz), $\delta: 42.52,48.58,65.44,66.57,121.68,125.75,129.16$, 137.71, $153.59\left(\mathrm{C} 5\right.$ of triazole), $155.03(\mathrm{~N}-\mathrm{CH}=\mathrm{N}), 163.52(\mathrm{C} 3$ of triazole). MS (EI, 70 eV$), m / z(\%): 272\left(M^{+}, 100\right)$, 241 (25), 186 (17), 175 (17), 77 (27). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}$: C 57.34; H 5.92; N 30.86. Found: C 57.35; H 5.94; N 30.88 .

For the preparation of compound 1 a a solution of 3,5-diamino-1-phenyl-1,2,4-triazole ($1.05 \mathrm{~g}, 6 \mathrm{mmol}$) and diethyl 2-(ethoxymethylene)malonate ($1.56 \mathrm{~g}, 7.2 \mathrm{mmol}$) in $\operatorname{EtOH}(5 \mathrm{ml})$ was refluxed for 2 h , then water (5 ml) was added. After cooling to $20^{\circ} \mathrm{C}$, the precipitate formed was isolated by filtration and recrystallized from ethanol. Yield 2.07 g (97%) of white powder, m. p. $140-141^{\circ} \mathrm{C}$. Spectrum ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta: 1.22\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.24(\mathrm{t}$, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.12\left(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.20\left(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, $7.33-7.54(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 8.53(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 10.56(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 345\left(M^{+}\right.$, 21), 254 (18), 253 (99), 186 (21), 119 (37), 105 (16), 91 (34), 77 (100). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 55.64; H, 5.55; N, 20.28. Found: C, 55.81; H, 5.62; N, 20.04. Starting 3,5-diamino-1-phenyl-1,2,4-triazole was synthesized by known method (Steck, et al., 1958).

S3. Refinement

The hydrogen atoms of NH_{2} group and $\mathrm{H}_{2} \mathrm{O}$ molecule were found in difference Fourier synthesis and were refined in isotropic approximation. C-bound H atoms were geometrically positioned ($\mathrm{C}-\mathrm{H} 0.93-0.97 \AA$) and refined in riding model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

$+$

Figure 1
Reactions of the compounds $\mathbf{1}$ with sodium ethoxide and aliphatic amines.

Figure 2
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3
Molecular packing in the crystal, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Figure 4
The crystal packing of the title compound viewed approximately along the b axis and showing double layers parallel to the $b c$ planes. Hydrogen bonds are shown as dashed lines.
N^{3}-[(E)-Morpholin-4-ylmethylidene]-1-phenyl-1H-1,2,4- triazole-3,5-diamine monohydrate

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& c=9.4373(7) \AA \\
& \alpha=99.938(1)^{\circ} \\
& \beta=105.933(1)^{\circ} \\
& \gamma=95.331(1)^{\circ} \\
& V=700.00(9) \AA^{3} \\
& Z=2
\end{aligned}
$$

$F(000)=308$
$D_{\mathrm{x}}=1.377 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 208 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 334 reflections

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min }=0.948, T_{\max }=0.976$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.088$
$S=1.00$
2724 reflections
206 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
\theta & =3-26^{\circ} \\
\mu & =0.10 \mathrm{~mm}^{-1} \\
T & =100 \mathrm{~K}
\end{aligned}
$$

Plate, colourless
$0.55 \times 0.30 \times 0.25 \mathrm{~mm}$

> 5231 measured reflections
> 2724 independent reflections
> 2510 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.015$
> $\theta_{\max }=26.0^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-10 \rightarrow 10$
> $k=-11 \rightarrow 11$
> $l=-11 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0447 P)^{2}+0.3407 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.18$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.71171(11)$	$0.75346(9)$	$0.92066(9)$	$0.0197(2)$
N1	$0.75642(11)$	$0.22365(11)$	$0.11933(11)$	$0.0140(2)$
N2	$0.73939(12)$	$0.36780(11)$	$0.19018(11)$	$0.0149(2)$
N4	$0.82835(11)$	$0.22141(11)$	$0.36142(11)$	$0.0140(2)$
N5	$0.83821(12)$	$-0.00456(11)$	$0.19122(12)$	$0.0163(2)$
H5A	$0.7927(19)$	$-0.0581(18)$	$0.0975(19)$	$0.025(4)^{*}$
H5B	$0.8474(19)$	$-0.0575(18)$	$0.2638(19)$	$0.027(4)^{*}$
N3	$0.77750(11)$	$0.48235(11)$	$0.44096(11)$	$0.0146(2)$
N6	$0.79432(12)$	$0.56639(11)$	$0.69189(11)$	$0.0154(2)$
C5	$0.80778(13)$	$0.13965(13)$	$0.22417(12)$	$0.0132(2)$
C3	$0.78422(13)$	$0.35886(13)$	$0.33343(13)$	$0.0131(2)$

C1	$0.81153(13)$	$0.46393(13)$	$0.57891(13)$	$0.0139(2)$
H1	0.8498	0.3750	0.6003	0.017^{*}
C6	$0.85744(15)$	$0.55214(13)$	$0.84809(13)$	$0.0179(3)$
H6A	0.9620	0.6136	0.8926	0.021^{*}
H6B	0.8697	0.4468	0.8515	0.021^{*}
C7	$0.74577(17)$	$0.60386(14)$	$0.93772(14)$	$0.0225(3)$
H7A	0.6468	0.5329	0.9031	0.027^{*}
H7B	0.7949	0.6046	1.0433	0.027^{*}
C8	$0.63106(14)$	$0.74989(14)$	$0.76612(13)$	$0.0173(2)$
H8A	0.5986	0.8484	0.7557	0.021^{*}
H8B	0.5356	0.6743	0.7322	0.021^{*}
C9	$0.73945(15)$	$0.71137(13)$	$0.66976(13)$	$0.0179(3)$
H9A	0.6819	0.7038	0.5646	0.021^{*}
H9B	0.8306	0.7912	0.6975	0.021^{*}
C10	$0.71449(14)$	$0.18521(13)$	$-0.04071(12)$	$0.0141(2)$
C11	$0.56426(14)$	$0.20692(14)$	$-0.12420(13)$	$0.0179(3)$
H11	0.4903	0.2391	-0.0761	0.021^{*}
C12	$0.52581(15)$	$0.18009(14)$	$-0.27987(14)$	$0.0206(3)$
H12	0.4252	0.1937	-0.3365	0.025^{*}
C13	$0.63660(15)$	$0.13300(14)$	$-0.35193(13)$	$0.0188(3)$
H13	0.6114	0.1180	-0.4562	0.023^{*}
C14	$0.78489(14)$	$0.10853(13)$	$-0.26786(13)$	$0.0167(2)$
H14	0.8581	0.0749	-0.3162	0.020^{*}
C15	$0.82470(14)$	$0.13401(13)$	$-0.11178(13)$	$0.0154(2)$
H15	0.9239	0.1170	-0.0555	0.019^{*}
O2	$0.88944(11)$	$0.77890(11)$	$0.38883(10)$	$0.0217(2)$
H2A	$0.840(2)$	$0.688(2)$	$0.389(2)$	$0.041(5)^{*}$
H2B	$0.979(2)$	$0.788(2)$	$0.467(2)$	$0.048(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0301(5)$	$0.0169(4)$	$0.0141(4)$	$0.0069(4)$	$0.0092(4)$	$0.0025(3)$
N1	$0.0184(5)$	$0.0133(5)$	$0.0105(5)$	$0.0043(4)$	$0.0048(4)$	$0.0016(4)$
N2	$0.0192(5)$	$0.0134(5)$	$0.0131(5)$	$0.0043(4)$	$0.0063(4)$	$0.0015(4)$
N4	$0.0147(5)$	$0.0149(5)$	$0.0122(5)$	$0.0028(4)$	$0.0039(4)$	$0.0027(4)$
N5	$0.0218(5)$	$0.0148(5)$	$0.0120(5)$	$0.0049(4)$	$0.0037(4)$	$0.0027(4)$
N3	$0.0166(5)$	$0.0150(5)$	$0.0128(5)$	$0.0035(4)$	$0.0055(4)$	$0.0018(4)$
N6	$0.0205(5)$	$0.0156(5)$	$0.0114(5)$	$0.0062(4)$	$0.0052(4)$	$0.0034(4)$
C5	$0.0108(5)$	$0.0158(5)$	$0.0132(5)$	$0.0012(4)$	$0.0037(4)$	$0.0036(4)$
C3	$0.0117(5)$	$0.0147(5)$	$0.0135(5)$	$0.0018(4)$	$0.0047(4)$	$0.0029(4)$
C1	$0.0140(5)$	$0.0134(5)$	$0.0147(5)$	$0.0023(4)$	$0.0047(4)$	$0.0025(4)$
C6	$0.0241(6)$	$0.0168(6)$	$0.0121(6)$	$0.0059(5)$	$0.0032(5)$	$0.0037(4)$
C7	$0.0373(7)$	$0.0187(6)$	$0.0164(6)$	$0.0082(5)$	$0.0133(5)$	$0.0061(5)$
C8	$0.0177(6)$	$0.0177(6)$	$0.0163(6)$	$0.0041(4)$	$0.0054(5)$	$0.0021(4)$
C9	$0.0252(6)$	$0.0171(6)$	$0.0146(6)$	$0.0087(5)$	$0.0082(5)$	$0.0053(4)$
C10	$0.0181(6)$	$0.0128(5)$	$0.0112(5)$	$0.0011(4)$	$0.0044(4)$	$0.0029(4)$
C11	$0.0161(6)$	$0.0215(6)$	$0.0172(6)$	$0.0039(5)$	$0.0064(5)$	$0.0039(5)$

C12	$0.0176(6)$	$0.0266(6)$	$0.0160(6)$	$0.0031(5)$	$0.0014(5)$	$0.0060(5)$
C13	$0.0243(6)$	$0.0190(6)$	$0.0113(5)$	$-0.0017(5)$	$0.0043(5)$	$0.0025(4)$
C14	$0.0211(6)$	$0.0143(5)$	$0.0164(6)$	$0.0012(4)$	$0.0099(5)$	$0.0016(4)$
C15	$0.0161(5)$	$0.0136(5)$	$0.0168(6)$	$0.0024(4)$	$0.0047(4)$	$0.0036(4)$
O2	$0.0204(5)$	$0.0227(5)$	$0.0224(5)$	$0.0028(4)$	$0.0027(4)$	$0.0121(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C8	$1.4292(14)$	C7-H7A	0.9700
O1-C7	$1.4338(15)$	C7-H7B	0.9700
N1-C5	$1.3536(15)$	C8-C9	$1.5109(16)$
N1-N2	$1.3956(13)$	C8-H8A	0.9700
N1-C10	$1.4238(14)$	C8-H8B	0.9700
N2-C3	$1.3193(15)$	C9-H9A	0.9700
N4-C5	$1.3305(15)$	C9-H9B	0.9700
N4-C3	$1.3783(15)$	C10-C11	$1.3900(16)$
N5-C5	$1.3517(15)$	C10-C15	$1.3906(16)$
N5-H5A	$0.893(17)$	C11-C12	$1.3858(17)$
N5-H5B	$0.890(17)$	C11-H11	0.9300
N3-C1	$1.2968(15)$	C12-C13	$1.3897(18)$
N3-C3	$1.3880(15)$	C12-H12	0.9300
N6-C1	$1.3367(15)$	C13-C14	$1.3866(17)$
N6-C6	$1.4584(14)$	C13-H13	0.9300
N6-C9	$1.4623(15)$	C14-C15	$1.3893(16)$
C1-H1	0.9300	C14-H14	0.9300
C6-C7	$1.5167(17)$	C15-H15	0.9300
C6-H6A	0.9700	O2-H2A	$0.89(2)$
C6-H6B	0.9700	O2-H2B	$0.91(2)$
C8-O1-C7	$109.34(9)$	H7A-C7-H7B	108.1
C5-N1-N2	$109.50(9)$	O1-C8-C9	$110.45(9)$
C5-N1-C10	$130.86(10)$	O1-C8-H8A	109.6
N2-N1-C10	$119.58(9)$	C9-C8-H8A	109.6
C3-N2-N1	$101.95(9)$	O1-C8-H8B	109.6
C5-N4-C3	$103.04(9)$	C9-C8-H8B	109.6
C5-N5-H5A	$117.9(10)$	H8A-C8-H8B	108.1
C5-N5-H5B	$116.4(10)$	N6-C9-C8	$109.22(9)$
H5A-N5-H5B	$115.6(14)$	N6-C9-H9A	109.8
C1-N3-C3	$116.52(10)$	C8-C9-H9A	109.8
C1-N6-C6	$121.12(10)$	N6-C9-H9B	109.8
C1-N6-C9	$122.19(10)$	C8-C9-H9B	109.8
C6-N6-C9	$115.74(9)$	H9A-C9-H9B	108.3
N4-C5-N5	$126.03(10)$	C11-C10-C15	$120.75(10)$
N4-C5-N1	$110.18(10)$	C11-C10-N1	$118.68(10)$
N5-C5-N1	$123.76(10)$	C15-C10-N1	$120.49(10)$
N2-C3-N4	$115.33(10)$	C12-C11-C10	$119.35(11)$
N2-C3-N3	$118.89(10)$	C12-C11-H11	120.3
N4-C3-N3	$125.73(10)$	C10-C11-H11	120.3

N3-C1-N6	123.28 (11)
N3-C1-H1	118.4
N6-C1-H1	118.4
N6-C6-C7	110.52 (10)
N6-C6-H6A	109.5
C7-C6-H6A	109.5
N6-C6-H6B	109.5
C7-C6-H6B	109.5
H6A-C6-H6B	108.1
O1-C7-C6	110.56 (10)
O1-C7-H7A	109.5
C6-C7-H7A	109.5
O1-C7-H7B	109.5
C6-C7-H7B	109.5
C5-N1-N2-C3	0.70 (11)
C10-N1-N2-C3	178.22 (9)
C3-N4-C5-N5	178.66 (11)
C3-N4-C5-N1	0.87 (12)
N2-N1-C5-N4	-1.03 (12)
C10-N1-C5-N4	-178.18 (10)
N2-N1-C5-N5	-178.89 (10)
C10-N1-C5-N5	3.96 (19)
N1-N2-C3-N4	-0.16 (12)
N1-N2-C3-N3	-177.65 (9)
C5-N4-C3-N2	-0.43 (12)
C5-N4-C3-N3	176.86 (10)
C1-N3-C3-N2	175.10 (10)
C1-N3-C3-N4	-2.11 (16)
C3-N3-C1-N6	-172.89 (10)
C6-N6-C1-N3	-170.20 (11)
C9-N6-C1-N3	-1.83 (17)
C1-N6-C6-C7	-143.44 (11)
C9-N6-C6-C7	47.47 (14)

$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$120.41(11)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	119.8
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	119.8
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$119.80(11)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$	120.1
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	120.1
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$120.40(11)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$	119.8
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14$	119.8
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	120.4
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$	120.4
$\mathrm{C} 10-\mathrm{C} 15-\mathrm{H} 15$	$101.2(16)$
$\mathrm{H} 2 \mathrm{~A}-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$	
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$62.51(13)$
$\mathrm{N} 6-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1$	$-52.83(13)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9$	$-64.75(12)$
$\mathrm{C} 1-\mathrm{N} 6-\mathrm{C} 9-\mathrm{C} 8$	$142.14(11)$
$\mathrm{C} 6-\mathrm{N} 6-\mathrm{C} 9-\mathrm{C} 8$	$-48.90(13)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 6$	$56.40(13)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11$	$124.87(13)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11$	$-52.04(14)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 15$	$-58.21(16)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 15$	$124.87(11)$
$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-1.36(18)$
N1-C10-C11-C12	$175.55(10)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-0.46(18)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$1.84(18)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-1.42(18)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	$-0.37(17)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$1.77(17)$
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$-175.08(10)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 — \mathrm{H} 5 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.89(2)$	$2.08(2)$	$2.929(2)$	$159(1)$
$\mathrm{N} 5 — \mathrm{H} 5 B \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.89(2)$	$2.04(2)$	$2.906(2)$	$164(1)$
$\mathrm{O} 2 — \mathrm{H} 2 A \cdots \mathrm{~N} 3$	$0.89(2)$	$2.07(2)$	$2.929(2)$	$164(1)$
$\mathrm{O} 2 — \mathrm{H} 2 B \cdots \mathrm{~N} 44^{\mathrm{iii}}$	$0.91(2)$	$2.01(2)$	$2.916(2)$	$172(1)$

Symmetry codes: (i) $x, y-1, z-1$; (ii) $x, y-1, z$; (iii) $-x+2,-y+1,-z+1$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2798).

