organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diethyl [4-(1,3-benzothiazol-2-yl)benzyl]phosphonate

Rong Peng* and Huisheng Li

Department of Chemistry and Biology, Xiangfan University, Xiangfan 441053, People's Republic of China Correspondence e-mail: cch510@126.com

Received 5 November 2010; accepted 13 November 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.064; wR factor = 0.150; data-to-parameter ratio = 14.1.

In the title molecule, $C_{18}H_{20}NO_3PS$, the benzene ring and the benzothiazole mean plane are almost coplanar, forming a dihedral angle of 2.29 (2)°. The two ethyl groups are each disordered over two conformations in ratios that refined to 0.59 (1):0.41 (1) and 0.56 (1):0.44 (1). In the crystal, weak intermolecular $C-H\cdots O$ hydrogen bonds link the molecules into layers parallel to the *bc* plane.

Related literature

For the cardiovascular activity of benzothiazole-substituted benzylphosphonate derivatives, see: Yoshino *et al.* (1986). For the crystal structure of a related benzothiazole-substituted derivative, see: Bhatia *et al.* (1991).

Experimental

Crystal data

 $C_{18}H_{20}NO_{3}PS$ $M_{r} = 361.38$ Monoclinic, $P2_{1}/c$ a = 11.0441 (19) Åb = 8.0927 (14) Åc = 20.933 (4) Å $\beta = 94.943 (3)^{\circ}$ $V = 1863.9 (6) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*_{min} = 0.980, *T*_{max} = 0.986

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.150$ S = 0.963641 reflections 259 parameters $\mu = 0.27 \text{ mm}^{-1}$ T = 298 K $0.20 \times 0.20 \times 0.20 \text{ mm}$

11571 measured reflections 3641 independent reflections 2005 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.104$

8 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.25$ e Å⁻³ $\Delta \rho_{min} = -0.20$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C5-H5\cdotsO1^{i}\\ C13-H13\cdotsO1^{ii} \end{array}$	0.93 0.93	2.45 2.53	3.261 (5) 3.310 (4)	146 141
Symmetry codes: (i) –	$x + 2, y - \frac{1}{2}, -z$	$x + \frac{3}{2}$; (ii) $-x + 2$	2, -y + 1, -z + 2.	

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Xiangfan University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2793).

References

Bhatia, S. C., Kumar, A., Gautam, P. & Jain, P. C. (1991). Acta Cryst. C47, 1908– 1911.

Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yoshino, K., Kohno, T., Uno, T., Morita, T. & Tsukamoto, G. (1986). J. Med. Chem. 29, 820–825.

supporting information

Acta Cryst. (2010). E66, o3236 [https://doi.org/10.1107/S1600536810047045]

Diethyl [4-(1,3-benzothiazol-2-yl)benzyl]phosphonate

Rong Peng and Huisheng Li

S1. Comment

It was found that benzothiazole-substituted benzylphosphonates derivatives could exhibit excellent cardiovascular activities (Yoshino *et al.*, 1986). We herein report the structure of the diethyl 4-(benzo[*d*]thiazol-2-yl)benzylphosphonate (I) (Fig. 1).

In (I), the bond lengths and angles are normal and comparable with those observed in the related compound (Bhatia *et al.*, 1991). The benzene ring and the benzothiazole mean plane are almost coplanar forming a dihedral angle of 2.29 (2)°. Weak intermolecular C—H…O hydrogen bonds (Table 1) link the molecules into layers parallel to *bc* plane.

S2. Experimental

The title compound was synthesized according to the method of Yoshino *et al.* (1986). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solution in hexane-MeOH (3:1).

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ (methyl C) was applied. Two ethyl groups (C15/C16 and C17/C18) were found to be disordered over two orientations. The occupancies of the disordered positions C15/C15', C17/C17' refined to 0.59 (1):0.41 (1) and 0.56 (1):0.44 (1), respectively.

Figure 1

The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Diethyl [4-(1,3-benzothiazol-2-yl)benzyl]phosphonate

Crystal data

C₁₈H₂₀NO₃PS $M_r = 361.38$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.0441 (19) Å b = 8.0927 (14) Å c = 20.933 (4) Å $\beta = 94.943$ (3)° V = 1863.9 (6) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.980, T_{\max} = 0.986$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2]$
where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 760

 $\theta = 2.6 - 19.8^{\circ}$

 $\mu = 0.27 \text{ mm}^{-1}$ T = 298 K

Block, yellow

 $R_{\rm int} = 0.104$

 $h = -12 \rightarrow 13$

 $l = -25 \rightarrow 23$

 $k = -9 \rightarrow 9$

 $0.20 \times 0.20 \times 0.20$ mm

 $\theta_{\rm max} = 26.0^\circ, \, \theta_{\rm min} = 1.9^\circ$

11571 measured reflections 3641 independent reflections

2005 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.288 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1606 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	1.1588 (3)	0.1221 (4)	0.69500 (17)	0.0623 (10)	
C2	1.2308 (3)	0.2279 (4)	0.73429 (17)	0.0595 (9)	
C3	1.3327 (4)	0.2969 (5)	0.7108 (2)	0.0774 (11)	
Н3	1.3822	0.3682	0.7363	0.093*	

C4	1.3602 (4)	0.2599 (5)	0.6504 (2)	0.0840 (12)	
H4	1.4286	0.3074	0.6350	0.101*	
C5	1.2893 (4)	0.1538 (5)	0.6113 (2)	0.0865 (12)	
Н5	1.3103	0.1307	0.5702	0.104*	
C6	1.1881 (4)	0.0827 (5)	0.63310 (19)	0.0811 (12)	
H6	1.1401	0.0101	0.6074	0.097*	
C7	1.0931 (3)	0.1737 (4)	0.80139 (17)	0.0566 (9)	
C8	1.0286 (3)	0.1760 (4)	0.85962 (17)	0.0550 (9)	
C9	0.9251(3)	0.0812 (4)	0.86477(18)	0.0681 (10)	
H9	0.8941	0.0177	0.8301	0.082*	
C10	0.8674(3)	0.0802 (4)	0.9212 (2)	0.0705(10)	
H10	0 7980	0.0162	0.9237	0.085*	
C11	0.9113(3)	0.0102 0.1726 (4)	0.9237 0.97371 (18)	0.0609 (9)	
C12	10131(3)	0.2685(4)	0.9797(18)	0.0639(10)	
H12	1.0432	0 3334	1 0024	0.077*	
C13	1.0732 1.0714 (3)	0.2703 (4)	0.91201 (18)	0.077	
H13	1 1401	0.3356	0.9096	0.075*	
C14	0.8502(3)	0.5550 0.1645(5)	1.03566 (18)	0.073 (11)	
H144	0.9076	0.2020	1.05500 (10)	0.089*	
H14R	0.8313	0.0499	1.0703	0.089*	
C15	0.5008 (10)	0.0499 0.2379 (17)	0.9677(8)	0.089	0.59(1)
H15A	0.4858	0.3496	0.9819	0.006*	0.59(1)
H15R	0.4421	0.1645	0.9848	0.096*	0.59(1)
C16	0.4421	0.1043	0.9040	0.090	0.59(1)
U16A	0.491 (2)	0.229 (3)	0.8903 (9)	0.127(7) 0.101*	0.59(1)
П10А U16D	0.3330	0.2909	0.8805	0.191*	0.39(1)
	0.4130	0.2090	0.8793	0.191*	0.39(1)
C17	0.5015	0.11/1 0.2458 (18)	0.0030	0.191°	0.39(1)
	0.0829 (11)	0.5456 (16)	1.1595 (0)	0.001 (4)	0.50(1)
П1/А 1117D	0.0131	0.4103	1.1057	0.098	0.30(1)
П1/D С19	0.7330	0.4137	1.1362	0.098	0.30(1)
	0.698 (2)	0.221 (3)	1.2130 (9)	0.102 (7)	0.56(1)
HIðA	0.6202	0.1/31	1.2193	0.152*	0.56(1)
HI8B	0.7292	0.2754	1.2518	0.152*	0.56(1)
HI8C	0.7530	0.1365	1.2022	0.152*	0.56(1)
	0.5313 (16)	0.286 (3)	0.9542 (13)	0.095 (7)	0.41 (1)
HISC	0.5686	0.3679	0.9281	0.114*	0.41 (1)
HISD	0.4836	0.3439	0.9840	0.114*	0.41 (1)
C16'	0.453 (3)	0.175 (4)	0.9131 (15)	0.114 (9)	0.41 (1)
HI6D	0.4893	0.154/	0.8738	0.171*	0.41 (1)
HI6E	0.3745	0.2248	0.9037	0.171*	0.41 (1)
HI6F	0.4436	0.0718	0.9350	0.171*	0.41 (1)
C17/	0.7377 (13)	0.300 (3)	1.1609 (8)	0.084 (5)	0.44 (1)
H17C	0.7514	0.4181	1.1565	0.101*	0.44 (1)
H17D	0.8162	0.2461	1.1638	0.101*	0.44 (1)
C18′	0.679 (3)	0.271 (4)	1.2219 (12)	0.091 (8)	0.44 (1)
H18D	0.5941	0.2968	1.2155	0.137*	0.44 (1)
H18E	0.7169	0.3392	1.2553	0.137*	0.44 (1)
H18F	0.6886	0.1566	1.2340	0.137*	0.44(1)

supporting information

N1	1.1913 (2)	0.2556 (3)	0.79452 (14)	0.0638 (8)
01	0.7282 (2)	0.4580 (3)	1.02534 (11)	0.0758 (7)
O3	0.6649 (2)	0.2406 (3)	1.10323 (12)	0.0780 (8)
O2	0.6244 (2)	0.1867 (3)	0.98898 (12)	0.0767 (8)
P1	0.71450 (8)	0.28288 (12)	1.03709 (5)	0.0610 (3)
S1	1.03702 (9)	0.05586 (12)	0.73533 (5)	0.0754 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.057 (2)	0.065 (2)	0.062 (2)	0.0036 (18)	-0.0136 (18)	-0.0071 (19)
C2	0.049 (2)	0.072 (2)	0.056 (2)	0.0097 (18)	-0.0021 (18)	-0.0063 (19)
C3	0.061 (3)	0.095 (3)	0.075 (3)	0.002 (2)	0.000 (2)	-0.020 (2)
C4	0.066 (3)	0.105 (3)	0.082 (3)	0.012 (2)	0.009 (2)	-0.012 (3)
C5	0.097 (3)	0.096 (3)	0.066 (3)	0.016 (3)	0.005 (3)	-0.009 (2)
C6	0.096 (3)	0.085 (3)	0.058 (3)	0.004 (2)	-0.012 (2)	-0.015 (2)
C7	0.047 (2)	0.055 (2)	0.066 (2)	0.0101 (17)	-0.0098 (18)	-0.0057 (17)
C8	0.0395 (19)	0.055 (2)	0.068 (2)	0.0065 (16)	-0.0079 (17)	-0.0057 (18)
C9	0.058 (2)	0.074 (3)	0.070 (3)	-0.0026 (19)	-0.008 (2)	-0.014 (2)
C10	0.045 (2)	0.077 (3)	0.087 (3)	-0.0060 (18)	-0.006 (2)	0.000 (2)
C11	0.046 (2)	0.067 (2)	0.069 (3)	0.0102 (18)	-0.0033 (19)	0.006 (2)
C12	0.055 (2)	0.069 (2)	0.066 (2)	0.0032 (19)	-0.0060 (19)	-0.0095 (19)
C13	0.048 (2)	0.060 (2)	0.078 (3)	-0.0030 (17)	-0.0071 (19)	-0.007 (2)
C14	0.060 (2)	0.085 (3)	0.076 (3)	0.010 (2)	-0.005 (2)	0.015 (2)
C15	0.038 (6)	0.082 (7)	0.119 (10)	-0.003 (5)	0.000 (6)	-0.027 (7)
C16	0.136 (18)	0.147 (19)	0.090 (9)	0.005 (9)	-0.043 (10)	-0.011 (9)
C17	0.089 (10)	0.092 (8)	0.065 (7)	-0.006 (7)	0.014 (7)	-0.008 (5)
C18	0.111 (11)	0.116 (14)	0.072 (11)	0.034 (8)	-0.022 (9)	0.001 (9)
C15′	0.047 (10)	0.119 (16)	0.117 (17)	-0.015 (8)	-0.010 (10)	-0.007 (10)
C16′	0.081 (14)	0.109 (16)	0.14 (2)	0.002 (10)	-0.043 (14)	-0.013 (14)
C17′	0.067 (11)	0.113 (14)	0.074 (9)	-0.014 (9)	0.016 (8)	-0.021 (9)
C18′	0.088 (13)	0.110 (18)	0.075 (11)	-0.012 (13)	0.005 (8)	-0.016 (10)
N1	0.0427 (18)	0.077 (2)	0.070 (2)	0.0028 (15)	-0.0056 (15)	-0.0137 (16)
01	0.0827 (18)	0.0666 (16)	0.0759 (17)	-0.0010 (13)	-0.0063 (14)	0.0039 (13)
O3	0.0760 (18)	0.0861 (18)	0.0732 (17)	-0.0192 (13)	0.0138 (14)	-0.0070 (15)
O2	0.0601 (16)	0.0811 (17)	0.0856 (18)	0.0031 (13)	-0.0133 (14)	-0.0165 (14)
P1	0.0519 (6)	0.0678 (7)	0.0622 (6)	-0.0007 (5)	-0.0016 (5)	0.0004 (5)
S 1	0.0690 (7)	0.0816 (7)	0.0724 (7)	-0.0100 (5)	-0.0119 (5)	-0.0187 (5)

Geometric parameters (Å, °)

C1—C2	1.389 (5)	C15—C16	1.492 (15)	
C1—C6	1.399 (5)	C15—H15A	0.9700	
C1—S1	1.734 (4)	C15—H15B	0.9700	
C2—C3	1.384 (5)	C16—H16A	0.9600	
C2—N1	1.388 (4)	C16—H16B	0.9600	
C3—C4	1.359 (5)	C16—H16C	0.9600	
С3—Н3	0.9300	С17—ОЗ	1.454 (11)	

supporting information

C4—C5	1.383 (5)	C17—C18	1.504 (16)
C4—H4	0.9300	C17—H17A	0.9700
C5—C6	1.370 (5)	C17—H17B	0.9700
С5—Н5	0.9300	C18—H18A	0.9600
С6—Н6	0.9300	C18—H18B	0.9600
C7—N1	1.289 (4)	C18—H18C	0.9600
C7—C8	1.464 (5)	C15′—O2	1.452 (16)
C7—S1	1.749 (3)	C15′—C16′	1.477 (18)
C8—C13	1.385 (4)	С15′—Н15С	0.9700
C8—C9	1.389 (5)	C15′—H15D	0.9700
C9—C10	1.390 (5)	C16'—H16D	0.9600
C9—H9	0.9300	C16'—H16E	0.9600
C10—C11	1 382 (5)	C16'—H16F	0.9600
C10—H10	0.9300	C17'-03	1474(14)
C_{11} C_{12}	1 380 (5)	C17' - C18'	1.171(11) 1.501(17)
$C_{11} = C_{12}$	1.500(5)	C17' = C18	0.0700
C12 - C12	1.314(3) 1.295(5)	C17' = H17D	0.9700
C12—C13	1.365 (3)	$C_{12} - H_{12} D$	0.9700
C12—H12	0.9300	C187—H18D	0.9600
C13—H13	0.9300	CI87—HI8E	0.9600
CI4—PI	1.781 (3)	C18'—H18F	0.9600
CI4—HI4A	0.9700	OI—PI	1.448 (2)
C14—H14B	0.9700	O3—P1	1.570 (3)
C15—O2	1.459 (11)	O2—P1	1.561 (2)
C2—C1—C6	121.5 (4)	O2—C15—H15B	110.5
C2-C1-S1	109.3 (3)	C16—C15—H15B	110.5
C6—C1—S1	129.2 (3)	H15A—C15—H15B	108.7
C3—C2—N1	125.9 (3)	O3—C17—C18	102.1 (13)
C3—C2—C1	118.7 (4)	O3—C17—H17A	111.3
N1—C2—C1	115.4 (3)	C18—C17—H17A	111.3
C4—C3—C2	119.7 (4)	O3—C17—H17B	111.3
С4—С3—Н3	120.2	C18—C17—H17B	111.3
С2—С3—Н3	120.2	H17A—C17—H17B	109.2
C3—C4—C5	121.8 (4)	Q2-C15'-C16'	107.9 (19)
C3—C4—H4	119.1	02-C15'-H15C	110.1
C5-C4-H4	119.1	$C_{16'} - C_{15'} - H_{15C}$	110.1
C_{6}	120.0(4)	$\Omega^2 - C_{15'} - H_{15D}$	110.1
C6-C5-H5	120.0 (4)	$C_{16} - C_{15} - H_{15}$	110.1
C_{4} C_{5} H_{5}	120.0	H_{15} C_{15} H_{15}	108.4
$C_{4} = C_{5} = C_{1}$	120.0	$C_{15'} = C_{15'} = H_{16D}$	100.4
$C_5 = C_6 = U_6$	110.2 (4)	$C_{15} = C_{16} = H_{16}$	109.5
$C_{1} = C_{0} = H_{0}$	120.9		109.5
	120.9		109.5
$N1 - C / - C \delta$	124.1 (3)		109.5
N1 - C - S1	115.8 (3)		109.5
C8—C7—S1	120.0 (3)	HI6E—CI6'—HI6F	109.5
C13—C8—C9	118.0 (4)	03-C17'-C18'	113.6 (17)
C13—C8—C7	120.6 (3)	O3—C17′—H17C	108.8

C8—C9—C10	120.7 (3)	O3—C17′—H17D	108.8
С8—С9—Н9	119.7	C18'—C17'—H17D	108.9
С10—С9—Н9	119.7	H17C—C17′—H17D	107.7
C11—C10—C9	121.2 (3)	C17'—C18'—H18D	109.5
C11—C10—H10	119.4	C17'—C18'—H18E	109.5
С9—С10—Н10	119.4	H18D—C18′—H18E	109.5
C12—C11—C10	117.9 (4)	C17'—C18'—H18F	109.5
C12—C11—C14	121.7 (3)	H18D—C18′—H18F	109.5
C10—C11—C14	120.4 (3)	H18E—C18′—H18F	109.5
C11—C12—C13	121.4 (3)	C7—N1—C2	110.6 (3)
C11—C12—H12	119.3	C17—O3—C17′	27.9 (6)
C13—C12—H12	119.3	C17—O3—P1	123.6 (7)
C12—C13—C8	120.8 (3)	C17′—O3—P1	116.4 (8)
С12—С13—Н13	119.6	C15′—O2—C15	23.9 (10)
С8—С13—Н13	119.6	C15′—O2—P1	115.5 (10)
C11—C14—P1	115.4 (2)	C15—O2—P1	125.6 (7)
C11—C14—H14A	108.4	O1—P1—O2	116.64 (14)
P1-C14-H14A	108.4	O1—P1—O3	114.38 (15)
C11—C14—H14B	108.4	O2—P1—O3	102.06 (14)
P1—C14—H14B	108.4	O1—P1—C14	115.01 (17)
H14A—C14—H14B	107.5	O2—P1—C14	102.21 (16)
O2—C15—C16	106.0 (13)	O3—P1—C14	104.79 (16)
O2—C15—H15A	110.5	C1—S1—C7	88.84 (18)
C16—C15—H15A	110.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C5—H5…O1 ⁱ	0.93	2.45	3.261 (5)	146
C13—H13…O1 ⁱⁱ	0.93	2.53	3.310 (4)	141

Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) -x+2, -y+1, -z+2.