

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[2-Hydroxy-N'-(4-oxo-4-phenylbutan-2vlidene)benzohydrazidato(2-)]pyridinecopper(II)

Shu-Ping Zhang, Ying Wei and Si-Chang Shao*

Department of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China

Correspondence e-mail: shaosic@fync.edu.cn

Received 28 October 2010; accepted 17 November 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.057; wR factor = 0.131; data-to-parameter ratio = 16.0.

The mononuclear title complex, $[Cu(C_{17}H_{14}N_2O_3)(C_5H_5N)]$, was synthesized by the reaction of CuCl₂·2H₂O with N-(4-oxo-4-phenylbutan-2-ylidene)benzohydrazide (H_2L) . The central Cu^{II} atom exhibits a distorted square-planar coordination geometry, defined by two O atoms, one N atom from the ligand and one pyridine N atom with Cu-N distances of 1.874 (4) and 1.963 (4) Å, while the Cu–O distances are 1.857 (3) and 1.890 (3) Å. An intramolecular $O-H\cdots N$ interaction occurs.

Related literature

For the biological properties of Schiff base-metal complexes, see: Cozzi (2004). For metallobiomolecules, see: Singh et al. (2007). For metal ions bonded to biologically active compounds, see: Canpolat & Kaya (2004); Yildiz et al. (2004). For a related structure, see: Shen et al. (1997).

V = 3705.6 (7) Å³

Mo $K\alpha$ radiation

 $0.28 \times 0.20 \times 0.20$ mm

13526 measured reflections

4034 independent reflections

3340 reflections with $I > 2\sigma(I)$

 $\mu = 1.21 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.050$

Z = 8

Experimental

Crystal data

[Cu(C₁₇H₁₄N₂O₃)(C₅H₅N)] $M_r = 436.94$ Orthorhombic, C222₁ a = 7.7096 (8) Å b = 22.906(2) Å c = 20.983 (2) Å

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.728, T_{\max} = 0.794$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.131$	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$
S = 1.08	Absolute structure: Flack (1983)
4034 reflections	1761 Friedel pairs
252 parameters	Flack parameter: 0.08 (3)
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °)

riyarogen bona geometry (ri,).					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$	
O1-H1···N1	0.82	1.78	2.500 (5)	146	

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Anhui Provincial Education Commission (No. KJ2009A047Z)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2325).

References

Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Canpolat, E. & Kaya, M. (2004). J. Coord. Chem. 57, 1217-1223.

Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shen, X., Wu, D., Huang, X., Liu, Q., Huang, Z. & Kang, B. (1997). Polyhedron, 16, 1477-1482.

Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394-402. Yildiz, M., Dulger, B., Koyuncu, S. Y. & Yapici, B. M. (2004). J. Indian Chem. Soc. 81. 7-12.

supporting information

Acta Cryst. (2010). E66, m1635 [https://doi.org/10.1107/S1600536810047719]

[2-Hydroxy-N'-(4-oxo-4-phenylbutan-2-ylidene)benzohydrazidato(2-)]pyridine-copper(II)

Shu-Ping Zhang, Ying Wei and Si-Chang Shao

S1. Comment

Schiff base metal complexes have been widely studied because they have industrial, antifungal, antibacterial, anticancer and herbicidal applications (Cozzi, 2004). It is well known that N atoms play a key role in the coordination of metals at the active sites of numerous metallobiomolecules (Singh, *et al.*, 2007). They serve as models for biological important species and find applications in biomimetic catalytic reactions. Chelating ligands containing N and O donor atoms show broad biological activity and are of special interest because of the variety of ways in which they are bonded to metal ions. It is known that the existence of metal ions bonded to biologically active compounds may enhance their activities (Canpolat, *et al.*, 2004; Yildiz, *et al.*, 2004). Therefore, it is an important study to design and synthesis of new multidentate ligands cotaining N and O atoms and apply to synthesize complexes.

The asymmetric unit is composed of one mononuclear complex, (Fig.1). The central Cu^{II} atom exhibits a distorted square-plannar coordination geometry, defined by two O atoms, one N atom from the ligand molecule and one N atom of the pyridine molecule with Cu—N distances of 1.874 (4) and 1.963 (4) Å while Cu—O distances are 1.857 (3) and 1.890 (3) Å respectively. The Cu—N and Cu—O distances are comparable to those found in other crystallographically characterized Cu^{II} complex (Shen, *et al.* 1997). The crystal structure of the title compound is stabilized by one intramolecular O—H···N interactions with average H···N distances 1.78Å and O—H···N angle 146.3°.

S2. Experimental

All reagents and solvents were used as obtained commercially without further purification. $CuCl_2.2H_2O$ (0.170 mg, 0.1 mmol) was dissolved in 6 ml deionized water, giving a transparent solution, and 1 mL pyridine solution dissolved with *L* (28.2 mg, 0.1 mmol) was dropwised for 0.5 h. After stirring for 8 h, the solution was filtered. Black single crystals of the title compound were obtained from the filtrate after 3 weeks. Analysis calculated (%): C, 60.47; H, 4.38; N, 9.62%; Found: C, 60.15; H, 4.59; N, 9.49%.

S3. Refinement

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93–0.96Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for the CH while $U_{iso}(H) = 1.5U_{eq}(C)$ for the CH₃ groups. The hydroxyl H atoms were located from difference maps and refined with the O—H distances restrained to 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

[2-Hydroxy-N'-(4-oxo-4-phenylbutan-2- ylidene)benzohydrazidato(2-)]pyridinecopper(II)

Crystal data

 $[Cu(C_{17}H_{14}N_2O_3)(C_5H_5N)]$ $M_r = 436.94$ Orthorhombic, C222₁ Hall symbol: C 2c 2 a = 7.7096 (8) Å b = 22.906 (2) Å c = 20.983 (2) Å V = 3705.6 (7) Å³ Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.728, T_{\max} = 0.794$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.131$ S = 1.084034 reflections 252 parameters 0 restraints F(000) = 1800 $D_x = 1.566 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3542 reflections $\theta = 2.1-23.1^{\circ}$ $\mu = 1.21 \text{ mm}^{-1}$ T = 298 KBlock, dark green $0.28 \times 0.20 \times 0.20 \text{ mm}$

13526 measured reflections 4034 independent reflections 3340 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 27.0^\circ, \theta_{min} = 1.8^\circ$ $h = -9 \rightarrow 9$ $k = -29 \rightarrow 27$ $l = -26 \rightarrow 26$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0614P)^2 + 1.8583P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} = 0.003$	Absolute structure: Flack (1983), 1761 Friedel
$\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$	pairs
$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$	Absolute structure parameter: 0.08 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.26164 (7)	0.56424 (2)	0.75389 (2)	0.03955 (17)	
C1	0.4395 (6)	0.4324 (2)	0.8613 (2)	0.0396 (11)	
C2	0.5248 (7)	0.4551 (2)	0.9121 (2)	0.0496 (13)	
H2	0.5322	0.4955	0.9165	0.059*	
C3	0.5994 (7)	0.4205 (3)	0.9567 (2)	0.0558 (14)	
H3	0.6569	0.4370	0.9913	0.067*	
C4	0.5895 (8)	0.3611 (3)	0.9504 (3)	0.0653 (17)	
H4	0.6401	0.3369	0.9807	0.078*	
C5	0.5071 (9)	0.3384 (2)	0.9008 (2)	0.0534 (12)	
Н5	0.5021	0.2980	0.8964	0.064*	
C6	0.4294 (7)	0.3728 (2)	0.8558 (2)	0.0440 (12)	
C7	0.3627 (6)	0.4715 (2)	0.8143 (2)	0.0386 (11)	
C8	0.0179 (5)	0.60424 (13)	0.58645 (12)	0.0411 (11)	
C9	0.0827 (5)	0.66043 (14)	0.57885 (14)	0.0524 (13)	
H9A	0.1631	0.6751	0.6078	0.063*	
C10	0.0275 (5)	0.69465 (12)	0.52805 (16)	0.0589 (15)	
H10A	0.0709	0.7322	0.5230	0.071*	
C11	-0.0925 (5)	0.67268 (15)	0.48484 (14)	0.0617 (16)	
H11A	-0.1295	0.6956	0.4509	0.074*	
C12	-0.1574 (4)	0.61649 (16)	0.49245 (15)	0.0614 (15)	
H12A	-0.2377	0.6018	0.4635	0.074*	
C13	-0.1022 (5)	0.58227 (12)	0.54325 (16)	0.0589 (15)	
H13A	-0.1456	0.5447	0.5483	0.071*	
C14	0.0822 (6)	0.5682 (2)	0.6383 (2)	0.0423 (11)	
C15	0.0672 (6)	0.5104 (2)	0.6359 (2)	0.0435 (12)	
H15	0.0074	0.4954	0.6011	0.052*	
C16	0.1308 (6)	0.4698 (2)	0.6795 (2)	0.0391 (11)	
C17	0.1033 (7)	0.4076 (2)	0.6673 (2)	0.0476 (12)	
H17A	0.0384	0.3908	0.7017	0.071*	
H17B	0.2134	0.3883	0.6638	0.071*	
H17C	0.0399	0.4029	0.6282	0.071*	
C18	0.3924 (7)	0.6464 (2)	0.8448 (2)	0.0532 (14)	

H18	0.4366	0.6128	0.8636	0.064*	
C19	0.4202 (9)	0.6974 (3)	0.8736 (3)	0.0635 (17)	
H19	0.4847	0.6989	0.9110	0.076*	
C20	0.3560 (11)	0.7459 (3)	0.8488 (3)	0.080(2)	
H20	0.3752	0.7818	0.8682	0.096*	
C21	0.2630 (12)	0.7419 (2)	0.7953 (3)	0.085 (2)	
H21	0.2139	0.7750	0.7771	0.102*	
C22	0.2413 (9)	0.6887 (2)	0.7680 (2)	0.0658 (17)	
H22	0.1769	0.6862	0.7307	0.079*	
N1	0.2780 (5)	0.44657 (14)	0.76881 (16)	0.0376 (8)	
N2	0.2134 (4)	0.48748 (16)	0.72866 (15)	0.0353 (8)	
N3	0.3066 (5)	0.64115 (17)	0.79176 (17)	0.0400 (9)	
01	0.3475 (6)	0.34649 (15)	0.80904 (17)	0.0602 (10)	
H1	0.3070	0.3710	0.7848	0.090*	
O2	0.3808 (5)	0.52533 (13)	0.82017 (15)	0.0428 (8)	
O3	0.1558 (5)	0.59686 (14)	0.68281 (15)	0.0499 (9)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0412 (3)	0.0412 (3)	0.0363 (3)	0.0042 (3)	-0.0104 (3)	-0.0039 (2)
C1	0.034 (2)	0.045 (3)	0.039 (2)	0.004 (2)	0.0083 (18)	0.008 (2)
C2	0.058 (4)	0.050 (3)	0.041 (3)	0.005 (3)	0.000 (2)	-0.002(2)
C3	0.059 (4)	0.066 (4)	0.043 (3)	0.008 (3)	-0.006 (2)	0.007 (2)
C4	0.056 (4)	0.085 (5)	0.055 (3)	0.014 (4)	0.005 (3)	0.027 (3)
C5	0.058 (3)	0.050 (3)	0.052 (3)	0.007 (3)	0.010 (3)	0.011 (2)
C6	0.050 (3)	0.041 (3)	0.041 (3)	0.006 (2)	0.014 (2)	-0.003 (2)
C7	0.030 (2)	0.050 (3)	0.036 (2)	0.002 (2)	-0.004(2)	-0.004(2)
C8	0.035 (3)	0.058 (3)	0.031 (2)	0.005 (3)	-0.005 (2)	-0.008(2)
C9	0.060 (3)	0.056 (3)	0.041 (3)	0.003 (3)	-0.004(2)	-0.005 (2)
C10	0.064 (4)	0.061 (3)	0.052 (3)	0.005 (3)	-0.001 (3)	0.003 (3)
C11	0.064 (4)	0.082 (5)	0.039 (3)	0.018 (3)	-0.002 (3)	-0.002 (3)
C12	0.058 (3)	0.075 (4)	0.051 (3)	0.007 (3)	-0.018 (3)	0.007 (3)
C13	0.049 (3)	0.074 (4)	0.054 (3)	0.006 (3)	-0.021 (3)	0.003 (3)
C14	0.034 (2)	0.056 (3)	0.036 (2)	0.012 (3)	-0.0044 (19)	-0.003(2)
C15	0.040 (3)	0.057 (3)	0.034 (2)	-0.002 (2)	-0.008(2)	-0.013 (2)
C16	0.032 (2)	0.042 (3)	0.043 (2)	-0.002(2)	0.007 (2)	-0.009(2)
C17	0.050 (3)	0.047 (3)	0.046 (3)	-0.004(3)	-0.011 (2)	-0.008(2)
C18	0.061 (4)	0.051 (3)	0.048 (3)	0.003 (3)	-0.019 (3)	-0.007(2)
C19	0.084 (4)	0.049 (3)	0.057 (3)	0.007 (3)	-0.026 (3)	-0.006 (3)
C20	0.124 (7)	0.044 (3)	0.072 (4)	0.005 (4)	-0.018 (4)	-0.013 (3)
C21	0.133 (7)	0.045 (3)	0.078 (4)	0.028 (4)	-0.036 (5)	-0.012 (3)
C22	0.097 (5)	0.053 (3)	0.048 (3)	0.014 (4)	-0.028 (4)	0.002 (2)
N1	0.038 (2)	0.0335 (19)	0.0408 (17)	0.0034 (16)	0.0008 (17)	0.0041 (14)
N2	0.0283 (19)	0.045 (2)	0.0327 (16)	0.0030 (16)	0.0005 (15)	-0.0042 (15)
N3	0.043 (2)	0.042 (2)	0.0355 (18)	0.0042 (18)	-0.0054 (16)	0.0018 (17)
O1	0.081 (3)	0.040 (2)	0.059 (2)	0.003 (2)	-0.015 (2)	-0.0024 (18)
O2	0.051 (2)	0.0356 (19)	0.0417 (17)	0.0018 (15)	-0.0138 (16)	-0.0037 (14)

supporting information

03	0.064 (2)	0.044 (2)	0.0417 (17)	0.0059 (18)	-0.0178 (16)	-0.0048 (16)
Geome	etric parameters (.	(Å, °)				
Cu1—	03	1.857 (3)		C11—H11A		0.9300
Cu1—	N2	1.874 (4)		C12—C13		1.3900
Cu1—	02	1.890 (3)		C12—H12A		0.9300
Cu1—	N3	1.963 (4)		C13—H13A		0.9300
C1—C	22	1.357 (7)		C14—O3		1.276 (5)
C1—C	26	1.373 (7)		C14—C15		1.328 (7)
C1—C	27	1.457 (7)		C15—C16		1.394 (7)
C2—C	23	1.355 (7)		С15—Н15		0.9300
C2—H	12	0.9300		C16—N2		1.278 (6)
C3—C	24	1.369 (9)		C16—C17		1.462 (7)
C3—F	13	0.9300		С17—Н17А		0.9600
C4—C	25	1.327 (8)		C17—H17B		0.9600
C4—F	14	0.9300		C17—H17C		0.9600
C5—C	<u> </u>	1 367 (7)		C18 - N3		1 300 (6)
С5—Н	15	0.9300		C18 - C19		1 332 (8)
C6—C)1	1 314 (6)		C18—H18		0.9300
C7—C)2	1.347(6) 1.247(5)		C19-C20		1 323 (8)
C7—N	J1	1.217 (6)		C19—H19		0.9300
C8-C	<u>'9</u>	1.291 (0)		C_{20} C_{21}		1 335 (9)
C8—C	113	1.3900		C20 C21		0.9300
C8_C	714	1.5500		$C_{20} = C_{20}$		1 356 (7)
C0	514 510	1.455 (5)		C21 C22		0.9300
C9F	ΙQ Δ	0.9300		$C_{21} = M_{21}$		1 300 (6)
C_{10}	C11	1 3000		C22 H22		0.0300
C10	H10A	0.9300		N1 N2		1 355 (5)
C_{10}	C12	1 3000		$M = M^2$		0.8200
C11—	012	1.3900		01—111		0.8200
03—0	Cu1—N2	93.64 (15)	С12—С13—Н13А		120.0
03—0	Cu1—O2	173.85 (1	5)	C8—C13—H13A		120.0
N2—C	Cu1—O2	82.05 (14)	O3—C14—C15		125.4 (4)
03—0	Cu1—N3	92.39 (15)	O3—C14—C8		114.0 (4)
N2—C	Cu1—N3	172.50 (1	5)	C15—C14—C8		120.6 (4)
02—0	Cu1—N3	92.27 (14)	C14—C15—C16		127.5 (4)
С2—С	С1—С6	118.3 (5)		C14—C15—H15		116.2
С2—С	С1—С7	119.5 (5)		C16—C15—H15		116.2
С6—С	С1—С7	122.1 (5)		N2-C16-C15		119.6 (4)
С3—С	C2—C1	121.6 (5)		N2-C16-C17		121.5 (4)
С3—С	С2—Н2	119.2		C15—C16—C17		118.9 (4)
C1—C	С2—Н2	119.2		C16—C17—H17A		109.5
С2—С	C3—C4	119.4 (5)		C16—C17—H17B		109.5
С2—С	С3—Н3	120.3		H17A—C17—H17	В	109.5
C4—C	С3—Н3	120.3		C16—C17—H17C		109.5
C5—C	C4—C3	119.5 (5)		H17A—C17—H17	С	109.5
C5—C	C4—H4	120.2		H17B-C17-H17	С	109.5

C3—C4—H4	120.2	N3—C18—C19	123.4 (5)
C4—C5—C6	121.7 (5)	N3—C18—H18	118.3
С4—С5—Н5	119.2	C19—C18—H18	118.3
С6—С5—Н5	119.2	C20-C19-C18	119.9 (6)
O1—C6—C5	117.5 (5)	C20—C19—H19	120.0
O1—C6—C1	123.1 (5)	C18—C19—H19	120.0
C5—C6—C1	119.4 (5)	C19—C20—C21	118.3 (6)
O2—C7—N1	124.5 (4)	С19—С20—Н20	120.9
O2—C7—C1	119.7 (4)	С21—С20—Н20	120.9
N1-C7-C1	115.7 (4)	C20—C21—C22	118.9 (6)
C9—C8—C13	120.0	C20—C21—H21	120.6
C9—C8—C14	119.3 (3)	C22—C21—H21	120.6
C13 - C8 - C14	120.6 (3)	N3—C22—C21	122.9 (5)
C10-C9-C8	120.0	N3—C22—H22	118.5
C10-C9-H9A	120.0	C_{21} C_{22} H_{22}	118.5
C8 - C9 - H9A	120.0	C7—N1—N2	109.9 (4)
C9-C10-C11	120.0	C_16 N2 N1	109.9(1) 117.8(4)
C_{P} C_{10} H_{10A}	120.0	$C_{10} = N_2 = N_1$	117.0(4)
$C_{11} = C_{10} = H_{10A}$	120.0	N1 N2 Cu1	128.0(3)
C_{12} C_{11} C_{10}	120.0	11-112-Cul	115.0(3)
$C_{12} = C_{11} = C_{10}$	120.0	$C_{22} = N_3 = C_{10}$	110.0(4)
C12—C11—H11A	120.0	C_{22} N2 C_{22}	122.0(3)
	120.0		121.2 (4)
	120.0		109.5
CII—CI2—HI2A	120.0	C/O2Cul	109.9 (3)
C13—C12—H12A	120.0	C14—O3—Cu1	125.2 (3)
C12—C13—C8	120.0		
C6 C1 C2 C3	0.2 (8)	N3 C18 C19 C20	1.4.(10)
C_{1}^{-} C_{1}^{-} C_{2}^{-} C_{3}^{-}	-179.5(5)	$C_{18} = C_{19} = C_{20} = C_{20}$	1.4(10)
$C_1 = C_2 = C_3$	1/9.3(3)	$C_{10} = C_{10} = C_{20} = C_{21}$	-1.4(13)
$C_1 = C_2 = C_3 = C_4$	0.2(9)	$C_{19} = C_{20} = C_{21} = C_{22}$	1.4(13)
$C_2 = C_3 = C_4 = C_5$	0.1(9)	$C_{20} = C_{21} = C_{22} = N_3$	0.3(13)
$C_{3} - C_{4} - C_{5} - C_{6}$	-0.9(10)	$O_2 - C_1 - N_1 - N_2$	0.3(0)
C4 = C5 = C6 = C1	-1/8.3(3)	C1 - C/ - N1 - N2	180.0(3)
$C_4 - C_5 - C_6 - C_1$	1.5 (9)	C13 - C16 - N2 - N1	-1/7.9(4)
$C_2 - C_1 - C_0 - O_1$	1/8.9(3)	C17 - C10 - N2 - N1	1.1(0)
$C_{}C_{-$	-1.3(8)	C13 = C10 = N2 = Cu1	1.0(0)
$C_2 - C_1 - C_6 - C_5$	-1.0(7)	C1/-C10-N2-Cul	-1/9.4(4)
C/-CI-C6-C5	1/8./(5)	C = NI = N2 = C16	1//.6 (4)
$C_2 = C_1 = C_1 = O_2$	2.3 (7)	C/—NI—N2—Cul	-1.9 (4)
C6-C1-C/-O2	-177.4 (5)	03—Cu1—N2—C16	-1.8 (4)
C2-C1-C7-N1	-177.4 (4)	O2—Cu1—N2—C16	-177.4 (4)
C6-C1-C7-N1	3.0(7)	O3—Cu1—N2—N1	177.7 (3)
C13—C8—C9—C10	0.0	02—Cu1—N2—N1	2.1 (3)
C14—C8—C9—C10	177.5 (4)	C21—C22—N3—C18	1.5 (10)
C8—C9—C10—C11	0.0	C21—C22—N3—Cu1	176.4 (6)
C9—C10—C11—C12	0.0	C19—C18—N3—C22	-2.4 (8)
C10-C11-C12-C13	0.0	C19—C18—N3—Cu1	-177.3 (5)
C11—C12—C13—C8	0.0	O2—Cu1—N3—C22	-175.0 (5)

supporting information

C9—C8—C13—C12	0.0	O3-Cu1-N3-C18	-176.3 (4)
C14—C8—C13—C12	-177.4 (4)	O2-Cu1-N3-C18	-0.3 (4)
C9—C8—C14—O3	19.2 (5)	N1-C7-O2-Cu1	1.4 (6)
C13—C8—C14—O3	-163.4 (3)	C1-C7-O2-Cu1	-178.3 (3)
C9—C8—C14—C15	-158.8 (4)	N2-Cu1-O2-C7	-1.8 (3)
C13—C8—C14—C15	18.7 (6)	N3-Cu1-O2-C7	173.3 (4)
O3—C14—C15—C16	-1.8 (9)	C15-C14-O3-Cu1	1.0 (7)
C8—C14—C15—C16	175.9 (4)	C8-C14-O3-Cu1	-176.8 (3)
C14—C15—C16—N2	0.4 (8)	N2-Cu1-O3-C14	0.5 (4)
C14—C15—C16—N2	0.4 (8)	N2—Cu1—O3—C14	0.5 (4)
C14—C15—C16—C17	-178.7 (5)	N3—Cu1—O3—C14	-175.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.82	1.78	2.500 (5)	146