Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Hydroxyphenyl)-3-(3,4,5-trimethoxyphenyl)thiourea

Hyeong Choi,^a Byung Hee Han,^a Yong Suk Shim,^a Sung Kwon Kang^a* and Chang Keun Sung^b

^aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and ^bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea Correspondence e-mail: skkang@cnu.ac.kr

Received 21 November 2010; accepted 22 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.121; data-to-parameter ratio = 14.5.

In the title compound, $C_{16}H_{18}N_2O_4S$, the dihedral angle between the hydroxyphenyl ring and the plane of the thiourea moiety is 54.53 (8)°. The H atoms of the NH groups of thiourea are positioned *anti* to each other. In the crystal, intermolecular $N-H\cdots S$, $N-H\cdots O$, and $O-H\cdots S$ hydrogen bonds link the molecules into a three-dimensional network.

Related literature

For general background to tyrosinase, see: Ha *et al.* (2007); Kubo *et al.* (2000). For the development of tyrosinase inhibitors, see: Kojima *et al.* (1995); Cabanes *et al.* (1994); Casanola-Martin *et al.* (2006); Son *et al.* (2000); Iida *et al.* (1995). For thiourea derivatives, see: Thanigaimalai *et al.* (2010); Klabunde *et al.* (1998); Criton (2006); Daniel (2006); Yi *et al.* (2009); Liu *et al.* (2009).

Experimental

Crystal data $C_{16}H_{18}N_2O_4S$ $M_r = 334.38$ Monoclinic, P_{21}/c a = 10.5705 (5) Å b = 12.8195 (7) Å c = 12.4157 (7) Å $\beta = 99.434$ (3)°

 $V = 1659.68 (15) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 296 K $0.15 \times 0.08 \times 0.03 \text{ mm}$

organic compounds

Data collection

Bruker SMART CCD area-detector	3166 independent reflections
diffractometer	1723 reflections with $I > 2\sigma(I)$
2193 measured reflections	$R_{\rm int} = 0.050$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$vR(F^2) = 0.121$	independent and constrained
S = 0.94	refinement
166 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
19 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N7—H7···S9 ⁱ N10—H10···O22 ⁱⁱ O17—H17···S9 ⁱⁱⁱ	0.81 (3) 0.81 (2) 0.97 (3)	2.61 (3) 2.22 (3) 2.25 (4)	3.383 (3) 2.975 (3) 3.211 (2)	160 (2) 156 (2) 173 (3)

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) -x, -y, -z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work is the result of a study performed under the "Human Resource Development Center for Economic Region Leading Industry" Project, supported by the Ministry of Education, Science & Technology(MEST) and the National Research Foundation of Korea (NRF).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5417).

References

- Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2002). *SAINT* and *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985.
- Casanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). *Bioorg. Med. Chem. Lett.* 16, 324– 330.
- Criton, M. (2006). FR Patent, 2880022, June 26.
- Daniel, J. (2006). US Patent, 2006135618, June 22.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ha, Y. M., Chung, S. W., Song, S. H., Lee, H. J., Suh, H. S. & Chung, H. Y. (2007). *Biol. Pharm. Bull.* **30**, 1711–1715.
- Iida, K., Hase, K., Shimomura, K., Sudo, S. & Kadota, S. (1995). Planta Med. 61, 425–428.
- Klabunde, T., Eicken, C. & Sacchettini, J. C. (1998). Nat. Struct. Biol. 5, 1084– 1090.
- Kojima, S., Yamaguch, K., Morita, K., Ueno, Y. & Paolo, R. (1995). Biol. Pharm. Bull. 18, 1076–1080.
- Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem. 8, 1749–1755.
- Liu, J., Cao, R., Yi, W., Ma, C., Wan, Y., Zhou, B., Ma, L. & Song, H. (2009). *Eur. J. Med. Chem.* 44, 1773–1778.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Son, S. M., Moon, K. D. & Lee, C. Y. (2000). J. Agric. Food Chem. 48, 2071– 2074.

- Thanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). *Bioorg. Med. Chem. Lett.* **20**, 2991–2993.
- Yi, W., Cao, R., Chen, Z. Y., Yu, L., Ma, L. & Song, H. C. (2009). *Chem. Pharm. Bull.* **7**, 1273–1277.

supporting information

Acta Cryst. (2010). E66, o3303–o3304 [https://doi.org/10.1107/S160053681004866X]

1-(4-Hydroxyphenyl)-3-(3,4,5-trimethoxyphenyl)thiourea

Hyeong Choi, Byung Hee Han, Yong Suk Shim, Sung Kwon Kang and Chang Keun Sung

S1. Comment

Melanin production is primary responsible for the skin color, and melanin plays a key role in protecting human skin from the harmful UV-induced skin damages. Tyrosinase is the key enzyme (Ha *et al.*, 2007; Kubo *et al.*, 2000)) that converts tyrosine to melanin and its inhibitors are the target molecules to develop and research anti-pigmentation agents for the application to skin care. Numerous potential tyrosinase inhibitors have been discovered from natural and synthetic sources, such as ascorbic acid (Kojima *et al.*, 1995), kojic acid (Cabanes *et al.*, 1994), arbutin (Casanola-Martin *et al.*, 2006) and tropolone (Son *et al.*, 2000; Iida *et al.*, 1995). Some thiourea derivatives, such as phenylthiourea (Thanigaimalai *et al.*, 2010; Klabunde *et al.*, 1998; Criton, 2006), alkylthiourea (Daniel, 2006), thiosemicarbazone (Yi *et al.*, 2009) and thiosemicarbazide (Liu *et al.*, 2009) have been also reported. During our works on developing potent whitening agents preventing the inadequacies of current whitening agents (poor skin penetration and toxicity) and minimizing the inhibitory effects of melanin creation, we have synthesized the title compound from the reaction of 3,4,5-trimethoxyphenyl isothiocyanate and 4-aminophenol under ambient condition.

The 3,4,5-trimethoxyphenyl moiety is almost planar with r.m.s. deviation of 0.050 Å from the corresponding leastsquares plane defined by the ten constituent atoms. The dihedral angle between the phenyl ring and the plane of thiourea moiety is 54.53 (8) °. In the crystal, intermolecular N—H···S, N—H···O, and O—H···S hydrogen bonds link the molecules into a three-dimensional network (Fig. 2, Table 1). The H atoms of the NH groups of thiourea are positioned *anti* to each other.

S2. Experimental

The 3,4,5-trimethoxyphenyl thiocyanate and 4-aminophenol were purchased from Sigma Chemical Co. Solvents used for organic synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and were used without further purification. The title compound, (I), was prepared from the reaction of 3,4,5-trimethoxyphenyl isothio-cyanate (0.20 g, 0.89 mmol) with 4-aminophenol (0.10 g, 1.10 mmol) in acetonitrile (6 ml). The reaction was completed within 30 min at room temperature. The reaction mixture was filtered rapidly and washed with n-hexane. Removal of the solvent gave a white solid (66% m.p. 499 K). Single crystals were obtained by slow evaporation of the ethanol at room temperature.

S3. Refinement

The H atoms of the NH and OH groups were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å, and with $U_{iso}(H) = 1.2U_{eq}$ (C) for aromatic and $1.5U_{eq}$ (C) for methyl H atoms.

Molecular structure of (l), showing the atom-numbering scheme and 50% probability ellipsoids.

Figure 2

Part of the crystal structure of (I), showing 3-D network of molecules linked by intermolecular N—H…S, N—H…O, and O—H…S hydrogen bonds (dashed lines).

1-(4-Hydroxyphenyl)-3-(3,4,5-trimethoxyphenyl)thiourea

<i>b</i> = 12.8195 (7) Å
<i>c</i> = 12.4157 (7) Å
$\beta = 99.434 \ (3)^{\circ}$
$V = 1659.68 (15) \text{ Å}^3$
Z = 4

F(000) = 704 $D_x = 1.338 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2485 reflections $\theta = 2.5-24.0^{\circ}$

Data collection

Bruker SMART CCD area-detector	$R_{\rm int} = 0.050$
diffractometer	$\theta_{\rm max} = 26^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
φ and ω scans	$h = -13 \rightarrow 8$
12193 measured reflections	$k = -15 \rightarrow 8$
3166 independent reflections	$l = -12 \rightarrow 15$
1723 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.0578P)^2]$
$wR(F^2) = 0.121$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.94	$(\Delta/\sigma)_{\rm max} < 0.001$
3166 reflections	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
219 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
0 restraints	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\mu = 0.22 \text{ mm}^{-1}$

Plate, colourless

 $0.15 \times 0.08 \times 0.03 \text{ mm}$

T = 296 K

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.2918 (2)	0.0884 (2)	0.50738 (19)	0.0393 (6)	
0.3504 (2)	0.1779 (2)	0.4769 (2)	0.0418 (6)	
0.3075	0.2214	0.4229	0.05*	
0.4737 (2)	0.2018 (2)	0.5278 (2)	0.0433 (7)	
0.5374 (2)	0.1378 (2)	0.6101 (2)	0.0460 (7)	
0.4764 (2)	0.04838 (19)	0.63858 (19)	0.0373 (6)	
0.3541 (2)	0.0237 (2)	0.5875 (2)	0.0397 (6)	
0.314	-0.0364	0.6071	0.048*	
0.1622 (2)	0.06459 (18)	0.4621 (2)	0.0459 (6)	
0.119 (2)	0.045 (2)	0.507 (2)	0.055 (9)*	
0.1061 (2)	0.06515 (19)	0.3571 (2)	0.0410 (6)	
-0.05561 (6)	0.05352 (6)	0.32614 (6)	0.0539 (3)	
0.1831 (2)	0.0730 (2)	0.28268 (18)	0.0489 (7)	
0.259 (2)	0.0614 (19)	0.302 (2)	0.051 (8)*	
0.1464 (2)	0.0882 (2)	0.1678 (2)	0.0420 (7)	
0.1835 (2)	0.0159 (2)	0.0971 (2)	0.0486 (7)	
0.2269	-0.0441	0.1241	0.058*	
0.1559 (2)	0.0330 (2)	-0.0148 (2)	0.0492 (7)	
0.1821	-0.015	-0.0629	0.059*	
	x $0.2918 (2)$ $0.3504 (2)$ 0.3075 $0.4737 (2)$ $0.5374 (2)$ $0.4764 (2)$ $0.3541 (2)$ 0.314 $0.1622 (2)$ $0.119 (2)$ $0.1061 (2)$ $-0.05561 (6)$ $0.1831 (2)$ $0.259 (2)$ $0.1464 (2)$ $0.1835 (2)$ 0.2269 $0.1559 (2)$ 0.1821	xy 0.2918 (2) 0.0884 (2) 0.3504 (2) 0.1779 (2) 0.3075 0.2214 0.4737 (2) 0.2018 (2) 0.5374 (2) 0.1378 (2) 0.4764 (2) 0.04838 (19) 0.3541 (2) 0.0237 (2) 0.314 -0.0364 0.1622 (2) 0.06459 (18) 0.119 (2) 0.045 (2) 0.1061 (2) 0.06515 (19) -0.05561 (6) 0.0730 (2) 0.259 (2) 0.0614 (19) 0.1464 (2) 0.0882 (2) 0.1835 (2) 0.0159 (2) 0.2269 -0.0441 0.1559 (2) 0.0330 (2) 0.1821 -0.015	xyz $0.2918(2)$ $0.0884(2)$ $0.50738(19)$ $0.3504(2)$ $0.1779(2)$ $0.4769(2)$ 0.3075 0.2214 0.4229 $0.4737(2)$ $0.2018(2)$ $0.5278(2)$ $0.5374(2)$ $0.1378(2)$ $0.6101(2)$ $0.4764(2)$ $0.04838(19)$ $0.63858(19)$ $0.3541(2)$ $0.0237(2)$ $0.5875(2)$ 0.314 -0.0364 0.6071 $0.1622(2)$ $0.06459(18)$ $0.4621(2)$ $0.119(2)$ $0.045(2)$ $0.507(2)$ $0.1061(2)$ $0.06515(19)$ $0.3571(2)$ $-0.05561(6)$ $0.05352(6)$ $0.32614(6)$ $0.1831(2)$ $0.0614(19)$ $0.302(2)$ $0.1464(2)$ $0.0882(2)$ $0.1678(2)$ $0.1835(2)$ $0.0159(2)$ $0.0971(2)$ 0.2269 -0.0441 0.1241 $0.1559(2)$ $0.0330(2)$ -0.0629	xyz $U_{iso}*/U_{eq}$ 0.2918 (2)0.0884 (2)0.50738 (19)0.0393 (6)0.3504 (2)0.1779 (2)0.4769 (2)0.0418 (6)0.30750.22140.42290.05*0.4737 (2)0.2018 (2)0.5278 (2)0.0433 (7)0.5374 (2)0.1378 (2)0.6101 (2)0.0460 (7)0.4764 (2)0.04838 (19)0.63858 (19)0.0373 (6)0.314-0.03640.60710.048*0.1622 (2)0.06459 (18)0.4621 (2)0.0459 (6)0.119 (2)0.04515 (19)0.3571 (2)0.0410 (6)-0.05561 (6)0.05352 (6)0.32614 (6)0.0539 (3)0.1831 (2)0.0730 (2)0.28268 (18)0.0489 (7)0.259 (2)0.0614 (19)0.302 (2)0.051 (8)*0.1464 (2)0.0882 (2)0.1678 (2)0.0420 (7)0.1835 (2)0.0159 (2)0.0971 (2)0.0486 (7)0.2269-0.04410.12410.058*0.1559 (2)0.0330 (2)-0.0148 (2)0.0492 (7)0.1821-0.015-0.06290.059*

supporting information

C14	0.0900 (3)	0.1207 (2)	-0.0543 (2)	0.0505 (7)	
C15	0.0518 (3)	0.1923 (2)	0.0164 (2)	0.0548 (8)	
H15	0.006	0.2512	-0.0107	0.066*	
C16	0.0815 (2)	0.1766 (2)	0.1278 (2)	0.0501 (7)	
H16	0.0577	0.2259	0.1757	0.06*	
O17	0.0601 (2)	0.14204 (17)	-0.16395 (17)	0.0751 (7)	
H17	0.067 (3)	0.083 (3)	-0.211 (3)	0.113*	
O18	0.53853 (18)	0.28931 (15)	0.50440 (16)	0.0652 (6)	
C19	0.4781 (3)	0.3585 (2)	0.4229 (3)	0.0756 (10)	
H19A	0.5348	0.4155	0.4151	0.113*	
H19B	0.4006	0.3849	0.4437	0.113*	
H19C	0.458	0.322	0.3547	0.113*	
O20	0.6530(2)	0.1626 (2)	0.67179 (19)	0.0943 (8)	
C21	0.7566 (3)	0.1977 (3)	0.6305 (4)	0.1032 (14)	
H21A	0.8255	0.2117	0.6892	0.155*	
H21B	0.7343	0.2606	0.5898	0.155*	
H21C	0.783	0.1457	0.5832	0.155*	
O22	0.54582 (15)	-0.01140 (14)	0.71848 (14)	0.0501 (5)	
C23	0.4836 (3)	-0.0992 (2)	0.7567 (2)	0.0669 (9)	
H23A	0.5424	-0.1348	0.8117	0.1*	
H23B	0.456	-0.1458	0.6969	0.1*	
H23C	0.4106	-0.0761	0.7871	0.1*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0324 (13)	0.0531 (16)	0.0315 (16)	-0.0018 (13)	0.0026 (12)	-0.0023 (13)
C2	0.0410 (15)	0.0485 (16)	0.0356 (16)	0.0011 (14)	0.0058 (13)	0.0035 (12)
C3	0.0436 (15)	0.0451 (16)	0.0428 (17)	-0.0060 (14)	0.0114 (14)	-0.0013 (14)
C4	0.0330 (14)	0.0615 (18)	0.0408 (17)	-0.0099 (14)	-0.0024 (13)	-0.0017 (14)
C5	0.0342 (13)	0.0489 (16)	0.0289 (15)	0.0021 (13)	0.0054 (12)	0.0002 (12)
C6	0.0350 (14)	0.0475 (15)	0.0368 (16)	-0.0040 (13)	0.0061 (12)	0.0015 (12)
N7	0.0326 (12)	0.0695 (17)	0.0347 (15)	-0.0071 (12)	0.0027 (12)	0.0069 (12)
C8	0.0348 (13)	0.0508 (16)	0.0358 (17)	-0.0001 (13)	0.0008 (13)	0.0021 (13)
S9	0.0326 (4)	0.0859 (6)	0.0421 (5)	-0.0061 (4)	0.0031 (3)	0.0022 (4)
N10	0.0282 (12)	0.0802 (18)	0.0378 (16)	0.0027 (13)	0.0036 (11)	0.0030 (12)
C11	0.0302 (13)	0.0629 (18)	0.0328 (17)	-0.0070 (13)	0.0050 (12)	0.0018 (14)
C12	0.0377 (15)	0.0613 (18)	0.0468 (19)	0.0016 (14)	0.0074 (14)	0.0023 (15)
C13	0.0494 (16)	0.0583 (18)	0.0414 (19)	-0.0069 (15)	0.0120 (14)	-0.0037 (14)
C14	0.0537 (17)	0.0601 (19)	0.0368 (18)	-0.0173 (16)	0.0043 (15)	0.0055 (15)
C15	0.0609 (18)	0.0531 (18)	0.050 (2)	-0.0024 (15)	0.0070 (16)	0.0067 (15)
C16	0.0483 (16)	0.0567 (18)	0.045 (2)	-0.0036 (15)	0.0070 (14)	-0.0031 (14)
O17	0.1081 (19)	0.0753 (15)	0.0396 (14)	-0.0098 (14)	0.0056 (13)	0.0103 (11)
O18	0.0618 (13)	0.0624 (13)	0.0684 (14)	-0.0216 (11)	0.0022 (11)	0.0138 (11)
C19	0.087 (2)	0.0554 (19)	0.086 (3)	-0.0068 (18)	0.020 (2)	0.0201 (19)
O20	0.0543 (14)	0.133 (2)	0.0873 (18)	-0.0382 (14)	-0.0146 (13)	0.0378 (15)
C21	0.049 (2)	0.092 (3)	0.163 (4)	-0.006 (2)	0.001 (2)	0.020 (3)
O22	0.0386 (10)	0.0654 (12)	0.0443 (12)	0.0019 (9)	0.0011 (9)	0.0128 (10)

					supporti	ng information
<u>C23</u>	0.0617 (19)	0.078 (2)	0.060 (2)	0.0053 (18)	0.0080 (17)	0.0287 (17)
Geome	tric parameters (A	Å, °)				
C1-C	6	1.377 (3)	C12—H12		0.93
C1—C	2	1.386 (3)	C13—C14		1.371 (4)
C1—N	7	1.426 (3)	С13—Н13		0.93
С2—С	3	1.387 (3)	C14—O17		1.374 (3)
С2—Н	2	0.93	, ,	C14—C15		1.376 (4)
C3—0	18	1.371 (3)	C15—C16		1.381 (4)
С3—С	4	1.394 (3)	С15—Н15		0.93
C4—O	20	1.370 (3))	C16—H16		0.93
C4—C	5	1.389 (3)	O17—H17		0.97 (3)
C5—0	22	1.368 (3)	O18—C19		1.416 (3)
С5—С	6	1.380 (3))	C19—H19A		0.96
С6—Н	6	0.93)	C19—H19B		0.96
N7—C	8	1.341 (3))	C19—H19C		0.96
N7—H	7	0.81 (3))	O20—C21		1.360 (4)
C8—N	10	1.331 (3))	C21—H21A		0.96
C8—S	9	1.696 (2))	C21—H21B		0.96
N10-	C11	1.429 (3))	C21—H21C		0.96
N10—	H10	0.81(2)	,	022-C23		1.423 (3)
C11—0	C16	1.375 (3))	C23—H23A		0.96
C11-0	C12	1.377 (3))	C23—H23B		0.96
C12—	C13	1.389 (3))	C23—H23C		0.96
~ ~ ~				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
С6—С	1—C2	120.9 (2)	C14—C13—H13		120.1
С6—С	1—N7	118.1 (2))	С12—С13—Н13		120.1
С2—С	1—N7	120.9 (2)	C13—C14—O17		122.6 (3)
C1—C	2—С3	119.1 (2))	C13—C14—C15		120.3 (3)
C1—C	2—Н2	120.4		O17—C14—C15		117.1 (3)
С3—С	2—Н2	120.4		C14—C15—C16		120.0 (3)
O18—	C3—C2	123.3 (2))	C14—C15—H15		120
O18—	C3—C4	116.0 (2))	C16—C15—H15		120
С2—С	3—C4	120.6 (2))	C11—C16—C15		120.0 (3)
O20—	C4—C5	117.2 (2))	C11—C16—H16		120
O20—	C4—C3	123.5 (2))	C15—C16—H16		120
С5—С	4—C3	118.9 (2))	C14—O17—H17		115 (2)
O22—	C5—C6	123.7 (2))	C3—O18—C19		118.8 (2)
022—	C5—C4	115.5 (2))	O18—C19—H19A		109.5
С6—С	5—C4	120.7 (2))	O18—C19—H19B		109.5
C1—C	6—C5	119.7 (2))	H19A—C19—H19B	3	109.5
C1—C	6—H6	120.2		O18—C19—H19C		109.5
С5—С	6—H6	120.2		H19A—C19—H190	2	109.5
C8—N	7—C1	128.7 (2))	H19B—C19—H19C	2	109.5
C8—N	7—H7	117.2 (1	9)	C21—O20—C4		124.5 (3)
C1—N	7—H7	113.9 (1	8)	O20—C21—H21A		109.5
N10-0	C8—N7	116.9 (2))	O20—C21—H21B		109.5

N10-C8-S9	123.9 (2)	H21A—C21—H21B	109.5
N7—C8—S9	119.23 (19)	O20—C21—H21C	109.5
C8—N10—C11	127.3 (2)	H21A—C21—H21C	109.5
C8—N10—H10	117.7 (18)	H21B—C21—H21C	109.5
C11—N10—H10	114.6 (18)	C5—O22—C23	117.54 (19)
C16—C11—C12	120.1 (2)	O22—C23—H23A	109.5
C16—C11—N10	120.7 (2)	O22—C23—H23B	109.5
C12-C11-N10	119.1 (2)	H23A—C23—H23B	109.5
C11—C12—C13	119.8 (3)	O22—C23—H23C	109.5
C11—C12—H12	120.1	H23A—C23—H23C	109.5
C13—C12—H12	120.1	H23B—C23—H23C	109.5
C14—C13—C12	119.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N7—H7…S9 ⁱ	0.81 (3)	2.61 (3)	3.383 (3)	160 (2)
N10—H10…O22 ⁱⁱ	0.81 (2)	2.22 (3)	2.975 (3)	156 (2)
O17—H17…S9 ⁱⁱⁱⁱ	0.97 (3)	2.25 (4)	3.211 (2)	173 (3)

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*, -*y*, -*z*.