metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[{diaqua[2-(4-hydroxyphenyl)acetato- $\kappa^2 O, O'$]cerium(III)}bis[μ -2-(4-hydroxyphenyl)acetato]- $\kappa^3 O, O': O; \kappa^3 O: O, O'$] 4,4'-bipyridine disolvate monohydrate]

Jia-Lu Liu, Jian-Feng Liu and Guo-Liang Zhao*

College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China, and, Zhejiang Normal University Xingzhi College, Jinhua 321004, People's Republic of China Correspondence e-mail: sky53@zjnu.cn

Received 26 October 2010; accepted 18 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.109; data-to-parameter ratio = 17.6.

In the polymeric title complex, $\{[Ce(C_8H_7O_3)_3(H_2O)_2] - 2C_{10}H_8N_2 \cdot H_2O\}_n$, the Ce^{III} ion is coordinated by ten O atoms from four 2-(4-hydroxyphenyl)acetate (HPAA) ligands and two water molecules. One HPAA ligand coordinates just to one Ce^{III} ion, whereas the remaining two bridge two Ce^{III} ions. The 4,4'-bipyridine molecule and one water molecule are not coordinated to Ce. In the crystal, $O-H\cdots O$ and $O-H\cdots N$ hydrogen bonds link molecules into a three-dimensional network.

Related literature

For the applications of carboxylic mental-organic complexes, see: Wang & Sevov (2008); Fang & Zhang (2006); Wang *et al.* (2010). For a related structure, see: Liu *et al.* (2010).

Experimental

Crystal data

[Ce(C₈H₇O₃)₃(H₂O)₂]-- $\beta = 76.716 \ (1)^{\circ}$ $2C_{10}H_8N_2 \cdot H_2O$ $\gamma = 73.121 (1)^{\circ}$ $M_r = 959.94$ V = 2103.82 (8) Å³ Triclinic, $P\overline{1}$ Z = 2a = 9.0793 (2) Å Mo $K\alpha$ radiation b = 12.8371 (3) Å $\mu = 1.15 \text{ mm}^{-1}$ c = 19.5796 (4) Å T = 296 K $\alpha = 78.534 (1)^{\circ}$ $0.32 \times 0.16 \times 0.06 \text{ mm}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.800, T_{\rm max} = 0.931$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.109$ S = 0.879668 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1···O4 ⁱ	0.81	1.96	2.765 (3)	172
$O1W - H7 \cdot \cdot \cdot N1^{i}$	0.83	2.02	2.774 (4)	151
O2W−H2···O5 ⁱⁱ	0.82	1.89	2.703 (3)	177
$O2W - H5 \cdots O3W^{i}$	0.82	2.16	2.924 (3)	155
$O3-H15A\cdots N3^{iii}$	0.86	1.94	2.781 (4)	168
$O6-H6A\cdots O3W^{iv}$	0.82	1.87	2.684 (3)	172
$O9-H9A\cdots N2^{v}$	0.80	1.91	2.700 (5)	168
$O3W-H10\cdots O2^{i}$	0.85	1.91	2.752 (3)	168
O3W−H11···N4 ^{vi}	0.81	2.01	2.817 (4)	175
Symmetry codes: ((i) $-x + 1, -$	-y, -z + 1; (ii) $-x + 2, -y,$	-z + 1; (iii)
-x+2, -y+1, -z;	(iv) $-x + 1$,	-y + 1, -z + 1	1; (v) $x, y - x$	1, z + 1; (vi)
-x, -v + 1, -z + 1				

32193 measured reflections

 $R_{\rm int} = 0.034$

550 parameters

 $\Delta \rho_{\text{max}} = 2.13 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.88 \text{ e } \text{\AA}^{-3}$

9668 independent reflections

8614 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5395).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fang, R.-Q. & Zhang, X.-M. (2006). Inorg. Chem. 45, 4801-4810.

Liu, J.-L., Li, H.-Q. & Zhao, G.-L. (2010). Acta Cryst. E66, m9.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, G.-H., Lei, Y.-Q. & Wang, N. (2010). Cryst. Growth Des. 10 4060–4067. Wang, X.-X. & Sevov, S. (2008). Inorg. Chem. 47, 1037–1043.

supporting information

Acta Cryst. (2010). E66, m1678 [https://doi.org/10.1107/S1600536810048166]

catena-Poly[[{diaqua[2-(4-hydroxyphenyl)acetato- $\kappa^2 O, O'$]cerium(III)}-bis-[μ -2-(4-hydroxyphenyl)acetato]- $\kappa^3 O, O': O; \kappa^3 O: O, O'$] 4,4'-bipyridine disolvate monohydrate]

Jia-Lu Liu, Jian-Feng Liu and Guo-Liang Zhao

S1. Comment

The design and synthesis of carboxylic mental-organic complexes have been an increasing interest for decades owing to their potential practical applications, such as fluorescence, magnetism (Wang, *et al.*, 2010; Fang *et al.*, 2006; Wang, *et al.*, 2008). We have worked at it before (Liu, *et al.*, 2010). In the paper, we report the crystal structure of a new cerium^{III} complex with the ligand *p*- hydroxyphenylacetic acid. The title compound consist of six *L* ligands, two bipy molecules and five water molecules. In the bicentric structure compound, every centric atom is coordinated with nine O atoms from four *L* ligands and two water molecule. The centric atom is nine coordinated. The PAA ligands are coordinated by two modes, bridging and bridging tridentate. (Fig.1). Two 4,4'-bipyridine (bipy) molecules are dissociative. The cerium^{III} atom is in a distort capped pentagonal prism environment. The Ce—O bond length range from 2.5069 (19) Å-2.860 (2) Å. The Ce—O(water) bond length range from 2.5224 (19) Å-2.540 (2) Å, is slightly shorter than other Ce—O bonds. In addition, there are plenty of hydrogen bonds in the crystal structure due to the existence of dissociative water and crystal water molecules. The occurrence of numerous O—H···O involving coordinated and non-coordinated water molecules build up an intricated three dimensionnal network.

S2. Experimental

All reagents and solvents used were of commercially available quality and without purified before using. *p*-hydroxyphenylacetic acid (HPAA) (0.456 g, 3 mmol) and sodium hydroxide (0.12 g, 3 mmol) were mixed together in water (10 ml), then Ce[(NO₃)₃] (0.327 g, 1 mmol) dissolved in water(10 ml) was added into the above solution, after stirring for an hour, an ethanol (5 ml) solution of 4,4'-bipyridine (0.156 g, 1 mmol) was slowly dripped into the above solution with stirring for three hours. After filtration, the filtrate was allowed to stand at room temperature, and single crystals were obtained after one week.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methylene) or 0.93 Å (aromatic) and O —H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

catena-Poly[[{diaqua[2-(4-hydroxyphenyl)acetato- $\kappa^2 O, O'$]cerium(III)}-bis[μ -2-(4-hydroxyphenyl)acetato]- $\kappa^3 O, O': O; \kappa^3 O: O, O'$] 4,4'-bipyridine disolvate monohydrate]

Crystal data

 $[Ce(C_8H_7O_3)_3(H_2O)_2] \cdot 2C_{10}H_8N_2 \cdot H_2O$ $M_r = 959.94$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.0793 (2) Å b = 12.8371 (3) Å c = 19.5796 (4) Å a = 78.534 (1)° $\beta = 76.716$ (1)° $\gamma = 73.121$ (1)° V = 2103.82 (8) Å³

Data collection

Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.800, T_{\max} = 0.931$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.109$ S = 0.879668 reflections Z = 2 F(000) = 978 $D_x = 1.515 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9983 reflections $\theta = 1.1-27.7^{\circ}$ $\mu = 1.15 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.32 \times 0.16 \times 0.06 \text{ mm}$

32193 measured reflections 9668 independent reflections 8614 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.7^{\circ}, \theta_{min} = 1.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -16 \rightarrow 16$ $l = -25 \rightarrow 25$

550 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.003$
	$\Delta \rho_{\rm max} = 2.13 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.88 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ce	0.763886 (13)	-0.024594 (10)	0.502284 (7)	0.02165 (7)	
01	0.5164 (2)	-0.00623 (18)	0.42935 (11)	0.0311 (4)	
O1W	0.6869 (2)	-0.20312 (17)	0.52006 (11)	0.0342 (5)	
H1	0.5949	-0.2024	0.5266	0.051*	
H7	0.7230	-0.2533	0.5500	0.051*	
O2	0.7605 (2)	-0.04863 (18)	0.37493 (11)	0.0330 (4)	
O2W	0.9859 (2)	-0.19000 (18)	0.46923 (13)	0.0405 (5)	
H2	1.0714	-0.1762	0.4589	0.061*	
H5	0.9845	-0.2218	0.4370	0.061*	
03	0.7135 (3)	0.1785 (3)	0.04269 (14)	0.0669 (8)	
H15A	0.8121	0.1711	0.0295	0.100*	
O4	0.6313 (2)	0.17990 (17)	0.46325 (12)	0.0353 (5)	
05	0.7312 (2)	0.14537 (17)	0.55952 (11)	0.0331 (4)	
O3W	0.0235 (3)	0.2327 (2)	0.67074 (13)	0.0496 (6)	
H10	0.0906	0.1720	0.6632	0.074*	
H11	-0.0512	0.2250	0.7009	0.074*	
O6	0.8176 (3)	0.6417 (2)	0.29794 (13)	0.0520 (6)	
H6A	0.8648	0.6770	0.3113	0.078*	
O7	0.8060 (2)	-0.1038 (2)	0.62835 (11)	0.0379 (5)	
08	1.0105 (2)	-0.04972 (17)	0.56681 (11)	0.0300 (4)	
09	0.8706 (4)	-0.4737 (2)	0.88856 (16)	0.0643 (8)	
H9A	0.8225	-0.4589	0.9268	0.096*	
N1	0.3011 (4)	0.3471 (3)	0.35414 (16)	0.0527 (8)	
N2	0.7018 (5)	0.5461 (3)	0.02036 (19)	0.0644 (9)	
N3	0.9775 (4)	0.8207 (3)	0.01648 (18)	0.0590 (8)	
N4	0.2342 (4)	0.8067 (3)	0.2258 (2)	0.0623 (9)	
C1	0.6107 (3)	0.0024 (3)	0.24341 (15)	0.0351 (6)	
C2	0.7638 (4)	0.0005 (4)	0.21124 (18)	0.0534 (10)	
H2A	0.8446	-0.0417	0.2346	0.064*	
C3	0.8000 (4)	0.0595 (4)	0.14557 (18)	0.0558 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H3A	0.9041	0.0574	0.1258	0.067*
C4	0.6838 (4)	0.1215 (3)	0.10881 (17)	0.0471 (8)
C5	0.5313 (4)	0.1251 (4)	0.1398 (2)	0.0576 (10)
H5A	0.4509	0.1669	0.1161	0.069*
C6	0.4958 (4)	0.0662 (3)	0.20698 (19)	0.0493 (9)
H6C	0.3915	0.0705	0.2275	0.059*
C7	0.5671 (4)	-0.0639(3)	0.31479 (16)	0.0380(7)
H7A	0.4544	-0.0530	0.3253	0.046*
H7C	0.6139	-0.1413	0.3111	0.046*
C8	0.6167 (3)	-0.0365 (2)	0.37653 (14)	0.0266 (5)
С9	0.6708 (3)	0.4103 (2)	0.46172 (18)	0.0374 (7)
C10	0.6231 (4)	0.4333 (3)	0.3971 (2)	0.0457 (8)
H10A	0.5557	0.3960	0.3895	0.055*
C11	0.6725 (4)	0.5099 (3)	0.3433 (2)	0.0451 (8)
H11A	0.6381	0.5238	0.3004	0.054*
C12	0.7733(4)	0.5663 (3)	0.35321 (18)	0.0388(7)
C12A	0.9018 (4)	-0.3842(3)	0.84258(19)	0.0434 (8)
C13	0.8237(4)	0.5439(3)	0.61290(19) 0.41697(19)	0.0431(7)
H13A	0.8920	0.5808	0.4242	0.052*
C14	0.7731(4)	0.4667(3)	0.1212 0.4704 (2)	0.002 0.0445 (7)
H14A	0.8084	0.4523	0.5132	0.053*
C15	0.6064 (4)	0.3334(3)	0.5132 0.5228 (2)	0.022
H15B	0.6356	0.3420	0.5656	0.059*
H15C	0.4930	0.3556	0.5295	0.059*
C16	0.6609(3)	0.2132(2)	0.51396 (16)	0.0296 (6)
C10 C17	0.0007(3)	-0.2083(3)	0.51390(10) 0.74364(16)	0.0290(0) 0.0393(7)
C18	0.9711(4) 0.9054(4)	-0.1947(3)	0.74304(10) 0.81334(18)	0.0373(7)
U18 H18B	0.9034 (4)	-0.1259	0.8273	0.0437 (8)
C10	0.8712(4)	-0.2823(3)	0.8275 0.86307 (17)	0.032
H10A	0.8779	-0.2720	0.00007 (17)	0.052*
C21	0.0275	-0.3007(3)	0.7736(2)	0.052
	0.9093 (3)	-0.4699	0.7730 (2)	0.0504 (9)
П21А С22	0.9923	-0.4088	0.7398 0.73482 (10)	0.001°
1122 4	1.0034 (4)	-0.3110 (3)	0.72465 (19)	0.0482 (9)
П22А С23	1.0490	-0.3223	0.0703	0.038°
U23	1.0119(3)	-0.1149 (4)	0.08955 (18)	0.0339 (11)
п23А 1122D	0.9810	-0.0495	0.7125	0.067*
П23D С24	1.1247	-0.1321	0.0/44	0.007°
C24 C25	0.9378(3)	-0.0893(2)	0.024/3(14) 0.215((2))	0.0281(6)
C25	0.4182(0)	0.2834 (3)	0.3130 (2)	0.0047 (11)
H25A	0.4475	0.2090	0.5552	0.078^{+}
	0.5000 (6)	0.3192 (4)	0.2510(2)	0.0621 (12)
H26A	0.5841	0.2704	0.2274	0.075*
C27	0.4303 (4)	0.4281(3)	0.22159 (19)	0.0436(8)
U28	0.3303 (4)	0.4953 (3)	0.2606 (2)	0.0531 (9)
H28A	0.2951	0.3693	0.2433	0.064*
C29	0.2579(5)	0.4515 (4)	0.3255 (2)	0.0559 (10)
H29A	0.1/35	0.4979	0.3507	0.067*
C30	0.7752(6)	0.4681 (5)	0.0663 (2)	0.0732 (14)

H30A	0.8823	0.4385	0.0532	0.088*
C31	0.7007 (5)	0.4287 (4)	0.1324 (2)	0.0635 (12)
H31A	0.7574	0.3749	0.1627	0.076*
C32	0.5425 (5)	0.4699 (3)	0.15248 (19)	0.0460 (8)
C33	0.4652 (5)	0.5511 (3)	0.1053 (2)	0.0529 (9)
H33A	0.3581	0.5817	0.1172	0.063*
C34	0.5484 (6)	0.5862 (4)	0.0404 (2)	0.0607 (10)
H34A	0.4945	0.6404	0.0093	0.073*
C35	0.9607 (5)	0.7396 (4)	0.0695 (2)	0.0619 (11)
H35A	1.0503	0.6864	0.0796	0.074*
C36	0.8189 (4)	0.7299 (3)	0.1101 (2)	0.0562 (10)
H36A	0.8143	0.6717	0.1467	0.067*
C37	0.6828 (4)	0.8073 (3)	0.09630 (18)	0.0427 (7)
C38	0.7003 (5)	0.8910 (3)	0.0407 (2)	0.0563 (10)
H38A	0.6129	0.9446	0.0285	0.068*
C39	0.8473 (5)	0.8943 (4)	0.0038 (2)	0.0643 (11)
H39A	0.8559	0.9522	-0.0327	0.077*
C40	0.3649 (5)	0.7732 (4)	0.2527 (2)	0.0581 (10)
H40A	0.3567	0.7512	0.3014	0.070*
C41	0.5119 (4)	0.7694 (3)	0.21208 (19)	0.0488 (8)
H41A	0.6000	0.7429	0.2332	0.059*
C42	0.5278 (4)	0.8048 (3)	0.14048 (18)	0.0410 (7)
C43	0.3907 (4)	0.8400 (3)	0.1118 (2)	0.0536 (9)
H43A	0.3950	0.8637	0.0634	0.064*
C44	0.2499 (5)	0.8389 (4)	0.1563 (2)	0.0627 (11)
H44A	0.1599	0.8622	0.1365	0.075*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ce	0.01870 (9)	0.02339 (9)	0.02159 (10)	-0.00760 (6)	-0.00219 (6)	0.00130 (6)
01	0.0275 (10)	0.0399 (11)	0.0244 (10)	-0.0115 (8)	0.0014 (8)	-0.0041 (9)
O1W	0.0256 (9)	0.0320 (10)	0.0437 (12)	-0.0111 (8)	-0.0075 (8)	0.0049 (9)
O2	0.0260 (10)	0.0457 (12)	0.0287 (11)	-0.0128 (8)	-0.0021 (8)	-0.0066 (9)
O2W	0.0254 (10)	0.0377 (11)	0.0598 (15)	-0.0059 (8)	-0.0101 (9)	-0.0110 (10)
O3	0.0549 (16)	0.095 (2)	0.0399 (15)	-0.0192 (15)	-0.0099 (12)	0.0170 (15)
04	0.0280 (10)	0.0320 (10)	0.0452 (13)	-0.0091 (8)	-0.0090 (9)	0.0011 (9)
O5	0.0275 (10)	0.0313 (10)	0.0397 (12)	-0.0059 (8)	-0.0066 (8)	-0.0052 (9)
O3W	0.0434 (13)	0.0503 (14)	0.0555 (16)	-0.0184 (11)	0.0023 (11)	-0.0118 (12)
O6	0.0633 (16)	0.0468 (14)	0.0495 (15)	-0.0268 (12)	-0.0112 (12)	0.0051 (12)
O7	0.0308 (11)	0.0530 (13)	0.0316 (11)	-0.0219 (10)	-0.0087 (8)	0.0102 (10)
08	0.0277 (10)	0.0363 (11)	0.0238 (10)	-0.0131 (8)	-0.0024 (8)	0.0050 (8)
09	0.079 (2)	0.0490 (15)	0.0510 (17)	-0.0221 (14)	0.0018 (14)	0.0174 (13)
N1	0.0580 (19)	0.0592 (19)	0.0413 (17)	-0.0253 (16)	-0.0049 (14)	0.0023 (15)
N2	0.074 (2)	0.078 (2)	0.0431 (18)	-0.039 (2)	-0.0085 (16)	0.0124 (17)
N3	0.0514 (18)	0.063 (2)	0.051 (2)	-0.0127 (16)	0.0030 (14)	-0.0007 (16)
N4	0.053 (2)	0.068 (2)	0.064 (2)	-0.0255 (17)	0.0012 (16)	-0.0064 (18)
C1	0.0346 (15)	0.0517 (18)	0.0245 (15)	-0.0169 (13)	-0.0033 (11)	-0.0116 (13)

supporting information

C2	0.0315 (16)	0.095 (3)	0.0296 (17)	-0.0184 (18)	-0.0070 (13)	0.0055 (18)
C3	0.0309 (16)	0.098 (3)	0.0324 (18)	-0.0164 (18)	-0.0039 (13)	0.0019 (19)
C4	0.0459 (19)	0.065 (2)	0.0280 (17)	-0.0172 (16)	-0.0064 (13)	0.0021 (16)
C5	0.0355 (18)	0.079 (3)	0.047 (2)	-0.0073 (17)	-0.0085 (15)	0.007 (2)
C6	0.0293 (16)	0.071 (2)	0.042 (2)	-0.0117 (15)	-0.0023 (13)	-0.0030 (17)
C7	0.0358 (16)	0.0577 (19)	0.0272 (15)	-0.0239 (14)	-0.0020 (12)	-0.0079 (14)
C8	0.0269 (13)	0.0311 (13)	0.0226 (13)	-0.0129 (10)	-0.0026 (10)	0.0002 (11)
C9	0.0349 (15)	0.0252 (13)	0.0465 (19)	-0.0042 (11)	-0.0014 (13)	-0.0044 (13)
C10	0.0454 (18)	0.0369 (16)	0.059 (2)	-0.0154 (14)	-0.0110 (16)	-0.0078 (16)
C11	0.051 (2)	0.0435 (18)	0.047 (2)	-0.0169 (15)	-0.0166 (16)	-0.0032 (15)
C12	0.0371 (16)	0.0329 (15)	0.0445 (18)	-0.0104 (12)	-0.0033 (13)	-0.0035 (13)
C12A	0.0363 (17)	0.0494 (19)	0.0364 (18)	-0.0122 (14)	-0.0058 (13)	0.0134 (15)
C13	0.0400 (17)	0.0414 (17)	0.053 (2)	-0.0170 (14)	-0.0103 (14)	-0.0056 (15)
C14	0.0490 (19)	0.0403 (17)	0.044 (2)	-0.0108 (14)	-0.0108 (15)	-0.0045 (14)
C15	0.056 (2)	0.0272 (14)	0.052 (2)	-0.0065 (14)	0.0071 (16)	-0.0065 (14)
C16	0.0182 (12)	0.0291 (13)	0.0388 (16)	-0.0082 (10)	0.0019 (11)	-0.0037 (12)
C17	0.0375 (16)	0.0552 (19)	0.0288 (16)	-0.0237 (14)	-0.0156 (12)	0.0146 (14)
C18	0.0474 (18)	0.0488 (18)	0.0356 (18)	-0.0180 (15)	-0.0133 (14)	0.0073 (15)
C19	0.0453 (18)	0.0497 (19)	0.0266 (16)	-0.0105 (15)	-0.0030 (13)	0.0057 (14)
C21	0.058 (2)	0.0448 (19)	0.040 (2)	-0.0069 (17)	-0.0055 (16)	0.0014 (16)
C22	0.046 (2)	0.063 (2)	0.0276 (17)	-0.0145 (17)	-0.0009 (14)	0.0043 (16)
C23	0.067 (2)	0.082 (3)	0.0358 (19)	-0.055 (2)	-0.0277 (17)	0.0274 (18)
C24	0.0292 (13)	0.0298 (13)	0.0255 (14)	-0.0114 (11)	-0.0071 (10)	0.0038 (11)
C25	0.092 (3)	0.044 (2)	0.047 (2)	-0.019 (2)	0.003 (2)	0.0051 (18)
C26	0.088 (3)	0.042 (2)	0.045 (2)	-0.016 (2)	0.006 (2)	-0.0031 (17)
C27	0.053 (2)	0.0472 (19)	0.0366 (18)	-0.0232 (16)	-0.0125 (15)	0.0018 (15)
C28	0.057 (2)	0.047 (2)	0.053 (2)	-0.0160 (17)	-0.0134 (17)	0.0054 (17)
C29	0.046 (2)	0.066 (2)	0.049 (2)	-0.0094 (18)	-0.0044 (17)	-0.0048 (19)
C30	0.060 (3)	0.105 (4)	0.048 (2)	-0.029 (3)	-0.0100 (19)	0.016 (2)
C31	0.054 (2)	0.084 (3)	0.045 (2)	-0.021 (2)	-0.0115 (18)	0.016 (2)
C32	0.058 (2)	0.0497 (19)	0.0349 (18)	-0.0256 (17)	-0.0093 (15)	0.0030 (15)
C33	0.061 (2)	0.051 (2)	0.046 (2)	-0.0181 (17)	-0.0127 (17)	0.0042 (17)
C34	0.085 (3)	0.055 (2)	0.045 (2)	-0.026 (2)	-0.020 (2)	0.0098 (18)
C35	0.050 (2)	0.060 (2)	0.064 (3)	-0.0048 (18)	-0.0095 (19)	0.004 (2)
C36	0.052 (2)	0.053 (2)	0.055 (2)	-0.0130 (17)	-0.0110 (17)	0.0115 (18)
C37	0.0490 (19)	0.0445 (18)	0.0346 (17)	-0.0112 (14)	-0.0092 (14)	-0.0052 (14)
C38	0.050 (2)	0.056 (2)	0.049 (2)	-0.0050 (17)	-0.0049 (16)	0.0071 (18)
C39	0.059 (2)	0.067 (3)	0.050 (2)	-0.012 (2)	0.0002 (18)	0.013 (2)
C40	0.062 (2)	0.074 (3)	0.043 (2)	-0.032 (2)	-0.0031 (17)	-0.0033 (19)
C41	0.054 (2)	0.059 (2)	0.0400 (19)	-0.0263 (17)	-0.0119 (15)	-0.0023 (17)
C42	0.0478 (18)	0.0409 (17)	0.0368 (18)	-0.0143 (14)	-0.0087 (14)	-0.0053 (14)
C43	0.051 (2)	0.062 (2)	0.045 (2)	-0.0121 (18)	-0.0144 (17)	0.0013 (18)
C44	0.046 (2)	0.068 (3)	0.072 (3)	-0.0138 (19)	-0.0143 (19)	-0.002 (2)

Geometric parameters (Å, °)

Ce–O8 ⁱ	2.5069 (19)	C11—C12	1.385 (4)
Ce—O1W	2.5224 (19)	C11—H11A	0.9300

Ce—O2W	2.540 (2)	C12—C13	1.377 (5)
Ce—O7	2.546 (2)	C12A—C19	1.377 (5)
Ce—O1 ⁱⁱ	2.546 (2)	C12A—C21	1.377 (5)
Ce—O5	2.559 (2)	C13—C14	1.386 (5)
Ce—O2	2.581 (2)	C13—H13A	0.9300
Ce—O4	2.591 (2)	C14—H14A	0.9300
Ce-08	2.726 (2)	C15—C16	1.510 (4)
Ce-O1	2,860 (2)	C15—H15B	0 9700
Ce-C16	2.000 (2)	C_{15} -H15C	0.9700
01-08	1.254(3)	C17 - C22	1 378 (6)
01 - co	2.546(2)	C17 - C18	1.370(0) 1.381(5)
01 - cc	2.340 (2)	C17 - C13	1.381(3)
	0.8129	C17 - C23	1.300(4)
O1 w - H/	0.8239	C_{10} U_{10}	1.391 (4)
	1.205 (5)		0.9300
02W—H2	0.8167	CI9—HI9A	0.9300
02w—H5	0.8211		1.387 (5)
03	1.364 (4)	C21—H21A	0.9300
O3—H15A	0.8554	C22—H22A	0.9300
O4—C16	1.265 (4)	C23—C24	1.506 (4)
O5—C16	1.261 (3)	C23—H23A	0.9700
O3W—H10	0.8542	C23—H23B	0.9700
O3W—H11	0.8061	C25—C26	1.377 (6)
O6—C12	1.371 (4)	C25—H25A	0.9300
O6—H6A	0.8173	C26—C27	1.381 (5)
O7—C24	1.248 (3)	C26—H26A	0.9300
O8—C24	1.266 (3)	C27—C28	1.386 (5)
O8—Ce ⁱ	2.5069 (19)	C27—C32	1.483 (5)
O9—C12A	1.368 (4)	C28—C29	1.384 (5)
O9—H9A	0.8033	C28—H28A	0.9300
N1—C25	1.320 (5)	C29—H29A	0.9300
N1—C29	1.325 (6)	C30—C31	1.388 (6)
N2—C34	1.331 (6)	C30—H30A	0.9300
N2-C30	1.336 (6)	C31—C32	1.371 (6)
N3-C39	1 320 (5)	C31—H31A	0.9300
N3-C35	1.320(5)	C_{32} - C_{33}	1.386(5)
N4—C44	1 328 (6)	C_{33} C_{34}	1.385(5)
N4 C40	1.320(0) 1.331(5)	C33_H33A	0.9300
C_1 C_6	1.371(5)	C_{34} H34A	0.9300
C1 = C0	1.372(3) 1.384(4)	C_{34}	1 374 (6)
C1 - C2	1.304(4)	$C_{25} = U_{25}$	1.374(0)
C1 = C/	1.317 (4)	C35—R35A	0.9300
$C_2 = C_3$	1.378 (5)	C_{36}	1.386 (5)
C2—H2A	0.9300	C36—H36A	0.9300
C3—C4	1.578 (5)	$C_3/-C_3$	1.385 (5)
СЗ—НЗА	0.9300	C37/—C42	1.479 (5)
C4—C5	1.370 (5)	C38—C39	1.373 (6)
C5—C6	1.399 (5)	C38—H38A	0.9300
C5—H5A	0.9300	С39—Н39А	0.9300
С6—Н6С	0.9300	C40—C41	1.381 (5)

supporting information

C7—C8	1.517 (4)	C40—H40A	0.9300
C7—H7A	0.9700	C41—C42	1.373 (5)
C7—H7C	0.9700	C41—H41A	0.9300
C9—C10	1.381 (5)	C42—C43	1.401 (5)
C9—C14	1.388 (4)	C43—C44	1.374 (6)
C9—C15	1 514 (4)	C43—H43A	0.9300
C10—C11	1 380 (5)	C44—H44A	0.9300
C10—H10A	0.9300		0.9500
	0.7500		
$O8^{i}$ $Ce O1W$	136 43 (7)	C10-C11-C12	120 1 (3)
O_{i}^{i} Ce O_{i}^{W}	73 65 (7)	C10 $C11$ $H11A$	120.1 (5)
01W - Ce - 02W	64.74(7)	C12 $C11$ $H11A$	120.0
O_{i}^{i} Ce O7	110 55 (6)	06 C12 C13	120.0 123.6(3)
$O_{1} W C_{2} O_{7}$	78 10 (7)	06 - C12 - C11	125.0(3) 117.4(3)
$O_{1}^{2}W_{1} = O_{1}^{2}$	70.19(7)	$C_{12} = C_{12} = C_{11}$	117.4(3)
$O_2^{\text{vi}} = C_2^{\text{vi}} = O_1^{\text{vi}}$	03.33 (0) 150.34 (6)	00 C12A C10	119.0(3) 122.8(3)
08 - c = 01	130.34(0)	09 - C12A - C19	122.0(3) 117.2(4)
$O_1 W = C_2 = O_1^{ij}$	12.55(7)	09-012A-021	117.2(4)
02w - ce - 01	130.01(7)	C19 - C12A - C21	120.0(3)
	78.25 (7)	C12 - C13 - C14	120.2 (3)
08	11.23 (7)	C12—C13—H13A	119.9
01w-Ce-05	143.84 (7)	C14—C13—H13A	119.9
02w-Ce-05	136.14 (6)	C13 - C14 - C9	121.6 (3)
0/Ce05	76.35 (7)	C13—C14—H14A	119.2
$O1^n$ —Ce—O5	77.63 (7)	С9—С14—Н14А	119.2
$O8^{i}$ —Ce—O2	78.68 (6)	C16—C15—C9	115.2 (3)
01W—Ce—02	77.07 (7)	С16—С15—Н15В	108.5
O2W—Ce—O2	72.36 (7)	C9—C15—H15B	108.5
07—Ce—O2	151.26 (8)	C16—C15—H15C	108.5
$O1^{n}$ —Ce—O2	107.60 (6)	C9—C15—H15C	108.5
O5—Ce—O2	132.24 (7)	H15B—C15—H15C	107.5
$O8^{i}$ —Ce—O4	76.99 (6)	O5—C16—O4	120.1 (3)
O1W—Ce—O4	134.93 (6)	O5—C16—C15	119.1 (3)
O2W—Ce—O4	145.40 (7)	O4—C16—C15	120.7 (3)
O7—Ce—O4	123.87 (8)	O5—C16—Ce	59.33 (14)
$O1^{ii}$ —Ce—O4	74.92 (7)	O4—C16—Ce	60.83 (14)
O5—Ce—O4	50.30 (6)	C15—C16—Ce	177.9 (2)
O2—Ce—O4	84.35 (7)	C22—C17—C18	118.0 (3)
$O8^{i}$ —Ce—O8	61.86 (7)	C22—C17—C23	120.2 (3)
O1W—Ce—O8	110.71 (6)	C18—C17—C23	121.8 (4)
O2W—Ce—O8	68.19 (7)	C17—C18—C19	121.2 (3)
O7—Ce—O8	48.80 (6)	C17—C18—H18B	119.4
O1 ⁱⁱ —Ce—O8	121.96 (7)	C19—C18—H18B	119.4
O5—Ce—O8	69.35 (6)	C12A—C19—C18	119.7 (3)
O2—Ce—O8	130.05 (6)	C12A—C19—H19A	120.2
O4—Ce—O8	112.67 (6)	C18—C19—H19A	120.2
O8 ⁱ —Ce—O1	116.84 (6)	C12A—C21—C22	119.5 (4)
O1W—Ce—O1	68.04 (6)	C12A—C21—H21A	120.2
O2W—Ce—O1	108.78 (6)	C22—C21—H21A	120.2

07—Ce—O1	132.61 (6)	C17—C22—C21	121.6 (4)
O1 ⁱⁱ —Ce—O1	60.72 (7)	C17—C22—H22A	119.2
O5—Ce—O1	113.44 (6)	C21—C22—H22A	119.2
O2—Ce—O1	47.09 (6)	C24—C23—C17	115.4 (3)
O4—Ce—O1	69.22 (6)	C24—C23—H23A	108.4
O8—Ce—O1	176.85 (5)	C17—C23—H23A	108.4
O8 ⁱ —Ce—C16	75.45 (7)	C24—C23—H23B	108.4
O1W—Ce—C16	147.01 (7)	С17—С23—Н23В	108.4
O2W—Ce—C16	148.25 (7)	H23A—C23—H23B	107.5
O7—Ce—C16	100.25 (8)	O7—C24—O8	120.7 (2)
O1 ⁱⁱ —Ce—C16	75.09 (7)	O7—C24—C23	120.9 (3)
O5—Ce—C16	25.09 (7)	O8—C24—C23	118.4 (2)
O2—Ce—C16	108.46 (8)	N1—C25—C26	124.6 (4)
O4—Ce—C16	25.22 (7)	N1—C25—H25A	117.7
O8—Ce—C16	90.84 (7)	С26—С25—Н25А	117.7
O1—Ce—C16	91.55 (7)	C25—C26—C27	119.6 (4)
C8—O1—Ce ⁱⁱ	150.02 (17)	C25—C26—H26A	120.2
C8-01-Ce	89.20 (15)	C27—C26—H26A	120.2
Ce ⁱⁱ —O1—Ce	119.28 (7)	$C_{26} - C_{27} - C_{28}$	116.4(3)
Ce-O1W-H1	119.7	$C_{26} - C_{27} - C_{32}$	1211(4)
Ce-O1W-H7	118.2	C_{28} C_{27} C_{32}	122.5(3)
H1 - O1W - H7	104.3	C_{29} C_{28} C_{27}	119 4 (4)
C8-02-Ce	102.36 (17)	C29—C28—H28A	120.3
Ce=O2W=H2	112.6	C27—C28—H28A	120.3
Ce	120.1	N1-C29-C28	1242(4)
$H_2 = O_2 W = H_5$	104.2	N1—C29—H29A	117.9
C4	109.7	C28—C29—H29A	117.9
C16—O4—Ce	93 95 (16)	N_{2} C_{30} C_{31}	123.7(5)
C16-05-Ce	95.58 (17)	N2-C30-H30A	118 1
H10-03W-H11	113.1	C_{31} C_{30} H_{30A}	118.1
C12-O6-H6A	109.4	C_{32} C_{31} C_{30}	119.2 (4)
$C_{24} = 0.07 = C_{e}$	99.76 (16)	C_{32} C_{31} H_{31} H_{31}	120.4
$C_{24} = 08 = Ce^{i}$	150 65 (18)	C_{30} C_{31} H_{31A}	120.1
$C_{24} = 08 = C_{24}$	90.69 (15)	$C_{31} - C_{32} - C_{33}$	117.6(4)
Ce^{i} $O8$ Ce	118 14 (7)	$C_{31} - C_{32} - C_{27}$	1214(3)
C12A—O9—H9A	113.2	C_{33} C_{32} C_{27}	121.1(3) 121.1(4)
$C_{25} = N_{1} = C_{29}$	115.8 (3)	C_{34} C_{33} C_{32} C_{32}	121.1(1) 1196(4)
$C_{23} = N_1 = C_{23}$	116.7 (4)	C34—C33—H33A	120.2
$C_{39} N_{2} C_{35}$	116.1(3)	C32—C33—H33A	120.2
C44 - N4 - C40	116.7(3)	N_{2} C34 C33	120.2 123 2 (4)
C6-C1-C2	116.9(3)	N2-C34-H34A	118.4
C6-C1-C7	1200(3)	C_{33} — C_{34} — H_{34A}	118.4
C_{2} C_{1} C_{7}	120.0(3) 123.1(3)	N3-C35-C36	123 8 (4)
C_{3} C_{2} C_{1} C_{2}	123.1 (3)	N3—C35—H35A	118 1
$C_3 - C_2 - H_2 A$	119.1	C36—C35—H35A	118.1
C1 - C2 - H2A	119.1	C35—C36—C37	119 7 (4)
$C_2 - C_3 - C_4$	120.8 (3)	C35—C36—H36A	120.1
$C_2 = C_3 = H_3 A$	119.6	C37—C36—H36A	120.1
02 05 H5H	117.0	037 030 1130A	120.1

С4—С3—Н3А	119.6	C38—C37—C36	116.3 (3)
O3—C4—C5	118.4 (3)	C38—C37—C42	121.3 (3)
O3—C4—C3	123.1 (3)	C36—C37—C42	122.3 (3)
C5—C4—C3	118.5 (3)	C39—C38—C37	119.6 (4)
C4—C5—C6	120.2 (3)	С39—С38—Н38А	120.2
C4—C5—H5A	119.9	С37—С38—Н38А	120.2
С6—С5—Н5А	119.9	N3—C39—C38	124.4 (4)
C1—C6—C5	121.8 (3)	N3—C39—H39A	117.8
С1—С6—Н6С	119.1	С38—С39—Н39А	117.8
С5—С6—Н6С	119.1	N4—C40—C41	123.3 (4)
C8—C7—C1	115.4 (2)	N4—C40—H40A	118.3
С8—С7—Н7А	108.4	C41—C40—H40A	118.3
С1—С7—Н7А	108.4	C42—C41—C40	119.9 (3)
C8—C7—H7C	108.4	C42—C41—H41A	120.1
C1—C7—H7C	108.4	C40—C41—H41A	120.1
H7A—C7—H7C	107.5	C41 - C42 - C43	117.1 (3)
01 - C8 - 02	120.9 (2)	C41 - C42 - C37	121.1(3)
01 - C8 - C7	120.3(2) 120.1(2)	C43 - C42 - C37	121.9(3)
02-C8-C7	119.0 (2)	C44-C43-C42	118.8 (4)
C10-C9-C14	117.1 (3)	C44—C43—H43A	120.6
C10—C9—C15	122.0 (3)	C42—C43—H43A	120.6
C14-C9-C15	120.7(3)	N4-C44-C43	124.2 (4)
C11—C10—C9	122.0 (3)	N4—C44—H44A	117.9
C11—C10—H10A	119.0	C43—C44—H44A	117.9
C9—C10—H10A	119.0		
O8 ⁱ —Ce—O1—C8	43.46 (19)	C15—C9—C10—C11	174.8 (3)
O1W—Ce—O1—C8	-88.73 (17)	C9-C10-C11-C12	0.2 (6)
O2W—Ce—O1—C8	-37.27 (17)	C10—C11—C12—O6	-179.7 (3)
O7—Ce—O1—C8	-136.62 (16)	C10-C11-C12-C13	0.5 (5)
O1 ⁱⁱ —Ce—O1—C8	-170.2 (2)	O6-C12-C13-C14	179.8 (3)
O5—Ce—O1—C8	130.56 (16)	C11—C12—C13—C14	-0.5 (5)
O2—Ce—O1—C8	3.87 (15)	C12—C13—C14—C9	-0.2 (5)
O4—Ce—O1—C8	105.94 (17)	C10-C9-C14-C13	0.8 (5)
C16—Ce—O1—C8	117.91 (17)	C15—C9—C14—C13	-174.9 (3)
O8 ⁱ —Ce—O1—Ce ⁱⁱ	-146.38 (7)	C10—C9—C15—C16	71.5 (4)
O1W—Ce—O1—Ce ⁱⁱ	81.43 (9)	C14—C9—C15—C16	-113.1 (4)
O2W—Ce—O1—Ce ⁱⁱ	132.89 (9)	Ce-05-C16-04	1.2 (3)
O7—Ce—O1—Ce ⁱⁱ	33.54 (14)	Ce-O5-C16-C15	178.4 (2)
O1 ⁱⁱ —Ce—O1—Ce ⁱⁱ	0.0	Ce-04-C16-05	-1.2 (3)
O5—Ce—O1—Ce ⁱⁱ	-59.29 (10)	Ce-O4-C16-C15	-178.3(2)
O2—Ce—O1—Ce ⁱⁱ	174.03 (14)	C9—C15—C16—O5	121.8 (3)
O4—Ce—O1—Ce ⁱⁱ	-83.90 (10)	C9—C15—C16—O4	-61.0(4)
C16—Ce—O1—Ce ⁱⁱ	-71.93 (10)	O8 ⁱ —Ce—C16—O5	-90.91 (16)
O8 ⁱ —Ce—O2—C8	-148.50 (18)	O1W—Ce—C16—O5	101.92 (18)
O1W—Ce—O2—C8	67.98 (17)	O2W—Ce—C16—O5	-77.3 (2)
O2W—Ce—O2—C8	135.25 (18)	07—Ce—C16—O5	17.85 (16)
07—Ce—O2—C8	99.2 (2)	O1 ⁱⁱ —Ce—C16—O5	92.63 (16)

O1 ⁱⁱ —Ce—O2—C8	1.52 (19)	O2—Ce—C16—O5	-163.42 (15)
O5—Ce—O2—C8	-87.59 (18)	O4—Ce—C16—O5	178.8 (3)
O4—Ce—O2—C8	-70.68 (17)	O8—Ce—C16—O5	-30.32 (16)
O8—Ce—O2—C8	174.30 (16)	O1-Ce-C16-O5	151.73 (15)
O1—Ce—O2—C8	-3.94 (15)	O8 ⁱ —Ce—C16—O4	90.29 (16)
C16—Ce—O2—C8	-78.19 (18)	O1W—Ce—C16—O4	-76.9 (2)
O8 ⁱ —Ce—O4—C16	-83.43 (16)	O2W—Ce—C16—O4	103.89 (19)
O1W-Ce-O4-C16	131.50 (15)	O7—Ce—C16—O4	-160.95 (15)
O2W-Ce-O4-C16	-115.90 (17)	O1 ⁱⁱ —Ce—C16—O4	-86.18 (16)
O7—Ce—O4—C16	22.76 (18)	O5-Ce-C16-O4	-178.8 (3)
O1 ⁱⁱ —Ce—O4—C16	86.95 (16)	O2—Ce—C16—O4	17.77 (17)
O5—Ce—O4—C16	0.66 (14)	O8—Ce—C16—O4	150.87 (16)
O2-Ce-O4-C16	-163.09 (16)	O1-Ce-C16-O4	-27.07 (16)
O8—Ce—O4—C16	-31.83 (17)	C22-C17-C18-C19	-0.6 (5)
O1-Ce-O4-C16	150.88 (17)	C23—C17—C18—C19	-178.7 (3)
O8 ⁱ —Ce—O5—C16	82.91 (16)	O9-C12A-C19-C18	-179.7 (3)
O1W—Ce—O5—C16	-115.47 (17)	C21—C12A—C19—C18	1.6 (5)
O2W—Ce—O5—C16	132.19 (16)	C17—C18—C19—C12A	-0.6 (5)
O7—Ce—O5—C16	-161.91 (17)	O9—C12A—C21—C22	179.9 (3)
O1 ⁱⁱ —Ce—O5—C16	-81.21 (16)	C19—C12A—C21—C22	-1.3 (6)
O2—Ce—O5—C16	21.44 (19)	C18—C17—C22—C21	0.9 (5)
O4—Ce—O5—C16	-0.66 (14)	C23—C17—C22—C21	179.0 (3)
O8—Ce—O5—C16	147.35 (17)	C12A—C21—C22—C17	0.1 (6)
O1—Ce—O5—C16	-31.07 (17)	C22—C17—C23—C24	58.3 (5)
O8 ⁱ —Ce—O7—C24	-2.2 (2)	C18—C17—C23—C24	-123.7 (4)
O1W-Ce-O7-C24	133.2 (2)	Ce	-3.1 (3)
O2W—Ce—O7—C24	67.79 (19)	Ce-07-C24-C23	174.8 (3)
O1 ⁱⁱ —Ce—O7—C24	-152.7 (2)	Ce ⁱ 08C2407	172.5 (3)
O5—Ce—O7—C24	-72.71 (19)	Ce	2.9 (3)
O2—Ce—O7—C24	102.1 (2)	Ce ⁱ	-5.4 (6)
O4—Ce—O7—C24	-90.04 (19)	Ce-O8-C24-C23	-175.1 (3)
O8—Ce—O7—C24	1.64 (17)	C17—C23—C24—O7	31.7 (5)
O1—Ce—O7—C24	177.85 (17)	C17—C23—C24—O8	-150.3 (3)
C16—Ce—O7—C24	-80.40 (19)	C29—N1—C25—C26	3.2 (7)
O8 ⁱ —Ce—O8—C24	174.3 (2)	N1-C25-C26-C27	-2.5 (8)
O1W—Ce—O8—C24	-53.15 (18)	C25—C26—C27—C28	0.4 (7)
O2W—Ce—O8—C24	-103.16 (18)	C25—C26—C27—C32	179.5 (4)
O7—Ce—O8—C24	-1.60 (16)	C26—C27—C28—C29	0.6 (6)
O1 ⁱⁱ —Ce—O8—C24	28.4 (2)	C32—C27—C28—C29	-178.4 (3)
O5—Ce—O8—C24	88.10 (17)	C25—N1—C29—C28	-2.0 (6)
O2—Ce—O8—C24	-143.46 (17)	C27—C28—C29—N1	0.2 (6)
O4—Ce—O8—C24	114.31 (17)	C34—N2—C30—C31	-0.5 (8)
C16—Ce—O8—C24	101.32 (17)	N2-C30-C31-C32	0.9 (8)
O8 ⁱ —Ce—O8—Ce ⁱ	0.0	C30—C31—C32—C33	-0.9 (7)
O1W—Ce—O8—Ce ⁱ	132.55 (9)	C30—C31—C32—C27	178.0 (4)
O2W—Ce—O8—Ce ⁱ	82.54 (10)	C26—C27—C32—C31	-33.7 (6)
O7—Ce—O8—Ce ⁱ	-175.89 (14)	C28—C27—C32—C31	145.2 (4)
O1 ⁱⁱ —Ce—O8—Ce ⁱ	-145.87 (7)	C26—C27—C32—C33	145.2 (4)

$O5$ — Ce — $O8$ — Ce^i	-86.20 (10)	C28—C27—C32—C33	-35.8 (5)
O2—Ce—O8—Ce ⁱ	42.25 (13)	C31—C32—C33—C34	0.7 (6)
O4—Ce—O8—Ce ⁱ	-59.98 (11)	C27—C32—C33—C34	-178.3 (4)
C16—Ce—O8—Ce ⁱ	-72.97 (10)	C30—N2—C34—C33	0.3 (7)
C6—C1—C2—C3	-0.3 (6)	C32—C33—C34—N2	-0.4 (7)
C7—C1—C2—C3	178.4 (4)	C39—N3—C35—C36	-0.2 (7)
C1—C2—C3—C4	-1.1 (7)	N3—C35—C36—C37	0.4 (7)
C2—C3—C4—O3	-177.8 (4)	C35—C36—C37—C38	0.3 (6)
C2—C3—C4—C5	1.5 (7)	C35—C36—C37—C42	-176.6 (4)
O3—C4—C5—C6	178.8 (4)	C36—C37—C38—C39	-1.0 (6)
C3—C4—C5—C6	-0.5 (7)	C42—C37—C38—C39	175.9 (4)
C2-C1-C6-C5	1.3 (6)	C35—N3—C39—C38	-0.6 (7)
C7—C1—C6—C5	-177.4 (4)	C37—C38—C39—N3	1.3 (8)
C4—C5—C6—C1	-0.9 (7)	C44—N4—C40—C41	-0.9 (7)
C6—C1—C7—C8	-119.9 (3)	N4-C40-C41-C42	2.3 (7)
C2-C1-C7-C8	61.5 (5)	C40—C41—C42—C43	-2.2 (6)
Ce ⁱⁱ —O1—C8—O2	-169.4 (2)	C40—C41—C42—C37	176.7 (4)
Ce-O1-C8-O2	-6.8 (3)	C38—C37—C42—C41	-142.8 (4)
Ce^{ii} —O1—C8—C7	7.8 (5)	C36—C37—C42—C41	34.0 (5)
Ce-O1-C8-C7	170.5 (2)	C38—C37—C42—C43	36.1 (5)
Ce-O2-C8-O1	7.7 (3)	C36—C37—C42—C43	-147.2 (4)
Ce	-169.6 (2)	C41—C42—C43—C44	1.0 (6)
C1C7C8O1	122.2 (3)	C37—C42—C43—C44	-177.9 (4)
C1—C7—C8—O2	-60.5 (4)	C40—N4—C44—C43	-0.3 (7)
C14—C9—C10—C11	-0.8 (5)	C42—C43—C44—N4	0.3 (7)

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
01 <i>W</i> —H1···O4 ⁱⁱ	0.81	1.96	2.765 (3)	172
O1 <i>W</i> —H7····N1 ⁱⁱ	0.83	2.02	2.774 (4)	151
O2 <i>W</i> —H2···O5 ⁱ	0.82	1.89	2.703 (3)	177
$O2W$ —H5···O3 W^{ii}	0.82	2.16	2.924 (3)	155
O3—H15 <i>A</i> ···N3 ⁱⁱⁱ	0.86	1.94	2.781 (4)	168
$O6-H6A\cdots O3W^{iv}$	0.82	1.87	2.684 (3)	172
$O9$ — $H9A$ ··· $N2^{v}$	0.80	1.91	2.700 (5)	168
O3 <i>W</i> —H10····O2 ⁱⁱ	0.85	1.91	2.752 (3)	168
O3W—H11···N4 ^{vi}	0.81	2.01	2.817 (4)	175

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+2, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) x, y-1, z+1; (vi) -x, -y+1, -z+1.