

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[*N*,*N*-Bis(2,6-diisopropylphenyl)pent-2ene-2,4-diiminato(1–)]bis(1,2,4-diazaphosphol-1-yl)aluminium(III)

Dongming Yang,^a Chengfu Pi,^b Yuqiang Ding^a* and Wenjun Zheng^c

^aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China, ^bCollege of Qianjiang, Hangzhou Normal University, Wenyi Road 222, Hangzhou Zhejiang Province 310012, People's Republic of China, and ^cInstitute of Organic Chemistry, Shanxi Normal University, 1 Gongyuan Street, Linfen, Shanxi Province 041004, People's Republic of China

Correspondence e-mail: yding@jiangnan.edu.cn

Received 27 October 2010; accepted 23 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.075; wR factor = 0.224; data-to-parameter ratio = 15.6.

In the title compound, $[Al(C_{29}H_{41}N_2)(C_2H_2N_2P)_2]$, the Al^{III} atom is coordinated by four N atoms from β -diketiminate and 1,2,4-diazaphospholide ligands in a slightly distorted tetrahedral fashion.

Related literature

For similar related 1,2,4-diazaphospholide complexes, see: Schmidpeter & Willhalm (1984); Cui *et al.* (2000); Ding *et al.* (2001); Kumar *et al.* (2004, 2005); Zheng *et al.* (2006); Wan *et al.* (2008); Pi *et al.* (2008, 2009).

Experimental

Crystal data

 $\begin{bmatrix} Al(C_{29}H_{41}N_2)(C_2H_2N_2P)_2 \end{bmatrix}$ $M_r = 614.67$ Triclinic, $P\overline{1}$ a = 10.578 (4) Å b = 12.578 (5) Å c = 13.498 (5) Å $\alpha = 92.059$ (5)° $\beta = 98.766$ (5)°

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{min} = 0.940, T_{max} = 0.965$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.075$ $wR(F^2) = 0.224$ S = 1.026082 reflections $\begin{aligned} \gamma &= 96.516 \ (5)^{\circ} \\ V &= 1760.8 \ (11) \ \text{\AA}^3 \\ Z &= 2 \\ \text{Mo } & \kappa \alpha \text{ radiation} \\ \mu &= 0.18 \ \text{mm}^{-1} \\ T &= 293 \ \text{K} \\ 0.35 &\times 0.20 \ \times 0.20 \ \text{mm} \end{aligned}$

7337 measured reflections 6082 independent reflections 4238 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$

 $\begin{array}{l} 389 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This work was supported by the National Natural Science Foundation of China (Nos. 20971058 and 20977042).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2246).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.

- Cui, C. M., Roesky, H. W., Hao, H. J., Schmidt, H. G. & Noletmeyer, M. (2000). Angew. Chem. Int. Ed. 39, 1815–1817.
- Ding, Y. Q., Roesky, H. W., Noletmeyer, M. & Schmidt, H. G. (2001). Organometallics, 20, 1190–1194.
- Kumar, S. S., Singh, S., Hongjun, F., Roesky, H. W. & Magull, J. (2005). *Inorg. Chem.* 44, 1199–1201.
- Kumar, S. S., Singh, S., Hongjun, F., Roesky, H. W., Vidovic, D. & Magull, J. (2004). Organometallics, 23, 6327–6329.
- Pi, C. F., Wan, L., Gu, Y. Y., Zheng, W. J., Wu, H. Y., Weng, L. H., Chen, Z. X. & Wu, L. M. (2008). *Inorg. Chem.* 47, 9739–9741.

 Pi, C. F., Wan, L., Liu, W. P., Pan, Z. F., Wu, H. Y., Wang, Y. H., Zheng, W. J., Weng, L. H., Chen, Z. X. & Wu, L. M. (2009). *Inorg. Chem.* 48, 2967–2975.
 Schmidpeter, A. & Willhalm, A. (1984). *Angew. Chem. Int. Ed.* 23, 903–904.
 Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wan, L., Pi, C. F., Zhang, L., Zheng, W. J., Weng, L. H., Chen, Z. X. & Zhang, Y. (2008). Chem. Commun. pp. 2266–2268.
- Zheng, W. J., Zhang, G. Z. & Fan, K. N. (2006). Organometallics, 25, 1548–1550.

Acta Cryst. (2010). E66, m1681 [https://doi.org/10.1107/S1600536810049007]

[*N*,*N*-Bis(2,6-diisopropylphenyl)pent-2-ene-2,4-diiminato(1–)]bis(1,2,4-diaza-phosphol-1-yl)aluminium(III)

Dongming Yang, Chengfu Pi, Yuqiang Ding and Wenjun Zheng

S1. Comment

Recently, the investigation of 1,2,4-diazaphospholide complexes has attracted considerable interest (Zheng *et al.*, 2006-2009). On the other hand, aluminum hydride complexes with bulky beta-diketiminato ligand [HC(CMeNAr)2] AlH2 have been evidenced to be a reactive species (Roesky *et al.*, 2000-2005). Herein, we report a centrosymmetric complex which was synthesized by the reaction of [HC(CMeNAr)2] AlH2 with 1*H*-1,2,4-diazaphosphole in hexane at room temperature. As illustrated in Fig. 1, the Al^{III} ion was coordinated by four nitrogen atoms of 2,6iPr2C6H3NC(Me)C(H)C(Me)N and 1,2,4-diazaphospholide ligands. The two nitrogen atoms from the 2,6iPr2C6H3NC(Me)C(H)C(Me)NH ligand form a six-member ring with the aluminum center, and the other two nitrogen atoms from the 1,2,4-diazaphospholide ligands coordinate to aluminum atom in a eta(1) mode. The four nitrogen atoms are arranged in a slightly distorted tetrahedral fashion. The plane of the six-membered ring C3—N2—Al is nearly perpendicular to the 1,2,4-diazaphospholide heterocycle rings.

S2. Experimental

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Hexane was dried over sodium and freshly distilled prior to use. 0.481 g [2,6-iPr2C6H3NC(Me)C(H)C(Me)N]AlH2 (1 eq.) and 0.172 g (2 eq.) 1,2,4-Dia-zaphosphole were dissolved in 20 ml toulent. The mixture was stirred for 24 h at room temperature and the solvent was then removed and dried *in vacuo*. The residua was extracted with 15 ml hexane and the solution was concentrated to about 5 ml to afford colorless crystals at -30°C for several days (yield: 0.32 g. 50%).

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.96 Å, and $U_{iso}(H) = 1.2-1.5$ times of those of their parent atoms.

Figure 1

The structure of the title complex with the atom numbering scheme. The thermal displacements are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

[N,N-Bis(2,6-diisopropylphenyl)pent-2-ene- 2,4-diiminato(1-)]bis(1,2,4-diazaphosphol-1-yl)aluminium(III)

Crystal data

$[Al(C_{29}H_{41}N_2)(C_2H_2N_2P)_2]$	Z=2
$M_r = 614.6$ /	F(000) = 656
Triclinic, P1	$D_{\rm x} = 1.159 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.578 (4) Å	Cell parameters from 872 reflections
b = 12.578 (5) Å	$\theta = 3.4 - 25.6^{\circ}$
c = 13.498 (5) Å	$\mu = 0.18 \text{ mm}^{-1}$
$\alpha = 92.059 \ (5)^{\circ}$	T = 293 K
$\beta = 98.766 \ (5)^{\circ}$	Sheet, yellow
$\gamma = 96.516 \ (5)^{\circ}$	$0.35 \times 0.20 \times 0.20 \text{ mm}$
$V = 1760.8 (11) \text{ Å}^3$	
Data collection	
Bruker SMART APEXII CCD area-detector	7337 measured reflections
diffractometer	6082 independent reflections
Radiation source: fine-focus sealed tube	4238 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.037$
phi and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 10$
(SADABS; Bruker, 2001)	$k = -11 \rightarrow 14$
$T_{\min} = 0.940, \ T_{\max} = 0.965$	$l = -16 \rightarrow 12$

Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.075$	$w = 1/[\sigma^2(F_o^2) + (0.1531P)^2 +]$
$wR(F^2) = 0.224$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
6082 reflections	$\Delta ho_{ m max} = 0.47$ e Å ⁻³
389 parameters	$\Delta \rho_{\min} = -0.56 \text{ e} \text{ Å}^{-3}$
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or equ	uivalent isotropic a	isplacement	parameters ($(Å^2)$)
-----------------------------------	------------------	----------------------	-------------	--------------	---------	---

			_	II */II
	λ	<i>y</i>	2	U _{iso} / U _{eq}
All	0.22665 (7)	0.79946 (6)	0.78731 (6)	0.0419 (3)
P1	-0.16571 (10)	0.71060 (10)	0.62146 (10)	0.0880 (4)
P2	0.18913 (13)	1.08771 (11)	0.97295 (11)	0.1047 (5)
N1	0.0608 (2)	0.7524 (2)	0.7248 (2)	0.0574 (6)
N2	-0.0133 (3)	0.7202 (4)	0.7910 (3)	0.1033 (13)
N3	0.2190 (2)	0.9204 (2)	0.86843 (18)	0.0537 (6)
N4	0.3412 (2)	0.9627 (2)	0.9076 (2)	0.0652 (7)
N5	0.3149 (2)	0.70050 (18)	0.86114 (16)	0.0479 (6)
N6	0.3367 (2)	0.83042 (17)	0.69477 (16)	0.0435 (5)
C1	-0.1375 (5)	0.6917 (5)	0.7425 (4)	0.125 (2)
H1	-0.2025	0.6632	0.7766	0.149*
C2	-0.0057 (4)	0.7533 (3)	0.6309 (3)	0.0762 (10)
H2	0.0327	0.7753	0.5763	0.091*
C3	0.1292 (3)	0.9771 (3)	0.8954 (3)	0.0717 (9)
Н3	0.0415	0.9581	0.8738	0.086*
C4	0.3387 (4)	1.0485 (3)	0.9637 (3)	0.0806 (11)
H4	0.4141	1.0871	0.9975	0.097*
C5	0.5225 (3)	0.6473 (3)	0.9408 (3)	0.0738 (10)
H5A	0.5084	0.6655	1.0076	0.111*
H5B	0.6123	0.6638	0.9364	0.111*
H5C	0.4967	0.5722	0.9253	0.111*
C6	0.4445 (3)	0.7107 (2)	0.8674 (2)	0.0504 (7)
C7	0.5112 (3)	0.7783 (2)	0.8092 (2)	0.0525 (7)
H7	0.6000	0.7900	0.8291	0.063*
C8	0.4642 (3)	0.8307 (2)	0.7260 (2)	0.0493 (7)
C9	0.5580 (3)	0.8893 (3)	0.6683 (3)	0.0737 (10)
H9A	0.5349	0.8682	0.5983	0.111*
H9B	0.6432	0.8721	0.6920	0.111*

H9C	0.5562	0.9651	0.6778	0.111*
C10	0.2540 (3)	0.6173 (3)	0.9171 (2)	0.0582 (8)
C11	0.2390 (3)	0.6407 (3)	1.0157 (3)	0.0725 (10)
C12	0.1862 (4)	0.5554 (5)	1.0671 (4)	0.0997 (16)
H12	0.1770	0.5676	1.1339	0.120*
C13	0.1485 (5)	0.4568 (5)	1.0230 (5)	0.1080 (17)
H13	0.1132	0.4027	1.0593	0.130*
C14	0.1618 (4)	0.4355 (4)	0.9258 (4)	0.0977 (14)
H14	0.1370	0.3667	0.8966	0.117*
C15	0.2122(3)	0.5161 (3)	0.8695 (3)	0.0715 (10)
C16	0.2732(4)	0.7513 (4)	1.0672 (3)	0.0849 (12)
H16	0.3084	0.7988	1.0194	0.102*
C17	0 3773 (6)	0 7541 (6)	1 1615 (3)	0.132(2)
H17A	0.3416	0.7163	1 2133	0.207*
H17R	0.4057	0.8272	1 1849	0.207*
H17C	0.4491	0.7207	1 1450	0.207*
C18	0.1544(5)	0.7959 (5)	1.0947 (4)	0.1133 (16)
H18A	0.1544 (5)	0.7905	1.0366	0.170*
H18B	0.0000	0.8697	1.0500	0.170*
HISC	0.1731	0.7555	1.1178	0.170*
C19	0.1231 0.2203 (4)	0.4905 (3)	0.7606 (3)	0.170 0.0836 (11)
H10	0.2203 (4)	0.5587	0.7000 (3)	0.0050 (11)
C20	0.2547	0.3387	0.7289	0.100 0.142(2)
H20A	0.0958 (0)	0.4501 (5)	0.7050 (5)	0.142(2) 0.213*
1120A	0.0700	0.3048	0.7371	0.213*
H20D	0.1030	0.4137	0.0308	0.213*
H20C	0.0271 0.2210 (6)	0.4737 0.4201 (5)	0.7039	0.213
	0.3319 (0)	0.4291 (3)	0.7466 (3)	0.149(2) 0.224*
	0.4112	0.4722	0.7701	0.224*
	0.3313	0.4110	0.07830	0.224°
П21С С22	0.3242 0.2028 (2)	0.3042	0.7039	0.224
C22	0.2938(3)	0.0575(2)	0.3910(2)	0.0470(0)
C23	0.2010(3)	0.9594(2)	0.5707(2)	0.0548(7)
C24	0.2151 (4)	0.9782 (3)	0.4/1/(5)	0.0702 (9)
H24	0.1928	1.0458	0.4561	0.084*
C25	0.2012 (4)	0.8998 (4)	0.3964 (3)	0.0782 (10)
H25	0.1699	0.9140	0.3306	0.094*
C26	0.2336 (4)	0.8011 (3)	0.4187 (3)	0.0776(10)
H26	0.2243	0.7484	0.3672	0.093*
C27	0.2802(3)	0.7/61(3)	0.5160(2)	0.0613 (8)
C28	0.2762 (4)	1.0491 (3)	0.6497 (3)	0.0691 (9)
H28	0.3124	1.0225	0.7140	0.083*
C29	0.3/10 (4)	1.1436 (3)	0.6248 (3)	0.0898 (12)
H29A	0.4510	1.1183	0.6161	0.135*
H29B	0.3860	1.1975	0.6789	0.135*
H29C	0.3348	1.1757	0.5641	0.135*
C30	0.1480 (5)	1.0861 (4)	0.6605 (3)	0.0971 (14)
H30A	0.1175	1.1232	0.6023	0.146*
H30B	0.1579	1.1336	0.7193	0.146*

H30C	0.0869	1.0252	0.6669	0.146*	
C31	0.3132 (4)	0.6642 (3)	0.5355 (3)	0.0788 (10)	
H31	0.3299	0.6582	0.6084	0.095*	
C32	0.2037 (7)	0.5800 (4)	0.4934 (5)	0.143 (2)	
H32A	0.1274	0.5943	0.5193	0.214*	
H32B	0.2253	0.5107	0.5125	0.214*	
H32C	0.1885	0.5813	0.4215	0.214*	
C33	0.4358 (7)	0.6444 (5)	0.4945 (6)	0.163 (3)	
H33A	0.4168	0.6331	0.4228	0.244*	
H33B	0.4681	0.5822	0.5232	0.244*	
H33C	0.4996	0.7056	0.5117	0.244*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
All	0.0409 (4)	0.0430 (5)	0.0436 (4)	0.0117 (3)	0.0059 (3)	0.0077 (3)
P1	0.0608 (6)	0.0820 (7)	0.1125 (9)	0.0055 (5)	-0.0134 (5)	0.0134 (6)
P2	0.0950 (8)	0.0948 (9)	0.1276 (10)	0.0281 (7)	0.0282 (7)	-0.0450 (8)
N1	0.0461 (13)	0.0545 (15)	0.0702 (16)	0.0116 (11)	0.0003 (11)	0.0041 (12)
N2	0.069 (2)	0.160 (4)	0.084 (2)	0.013 (2)	0.0102 (17)	0.052 (2)
N3	0.0525 (13)	0.0565 (15)	0.0545 (13)	0.0158 (12)	0.0100 (11)	-0.0011 (11)
N4	0.0556 (15)	0.0683 (18)	0.0710 (17)	0.0125 (13)	0.0084 (12)	-0.0148 (14)
N5	0.0490 (13)	0.0486 (13)	0.0482 (12)	0.0112 (11)	0.0077 (10)	0.0143 (10)
N6	0.0479 (12)	0.0416 (12)	0.0439 (12)	0.0139 (10)	0.0088 (9)	0.0069 (9)
C1	0.087 (3)	0.152 (5)	0.157 (5)	0.031 (3)	0.061 (3)	0.084 (4)
C2	0.071 (2)	0.086 (3)	0.069 (2)	0.005 (2)	0.0050 (17)	0.0152 (19)
C3	0.0625 (19)	0.077 (2)	0.082 (2)	0.0228 (18)	0.0210 (16)	-0.0035 (18)
C4	0.073 (2)	0.079 (3)	0.085 (2)	0.0090 (19)	0.0056 (18)	-0.029 (2)
C5	0.062 (2)	0.081 (2)	0.083 (2)	0.0280 (18)	0.0020 (17)	0.0361 (19)
C6	0.0485 (15)	0.0505 (16)	0.0531 (15)	0.0147 (13)	0.0034 (12)	0.0080 (13)
C7	0.0419 (14)	0.0551 (17)	0.0626 (17)	0.0149 (13)	0.0074 (12)	0.0071 (14)
C8	0.0491 (15)	0.0446 (15)	0.0570 (16)	0.0123 (13)	0.0119 (12)	0.0037 (12)
C9	0.0579 (19)	0.086 (3)	0.084 (2)	0.0121 (18)	0.0261 (17)	0.026 (2)
C10	0.0487 (16)	0.066 (2)	0.0618 (18)	0.0156 (15)	0.0032 (13)	0.0298 (15)
C11	0.0610 (19)	0.100 (3)	0.0609 (19)	0.0191 (19)	0.0094 (15)	0.0404 (19)
C12	0.080 (3)	0.142 (5)	0.087 (3)	0.028 (3)	0.023 (2)	0.069 (3)
C13	0.086 (3)	0.109 (4)	0.132 (4)	0.008 (3)	0.016 (3)	0.073 (4)
C14	0.081 (3)	0.078 (3)	0.136 (4)	0.012 (2)	0.009 (3)	0.057 (3)
C15	0.0608 (19)	0.060 (2)	0.094 (3)	0.0116 (17)	0.0055 (18)	0.0335 (19)
C16	0.083 (2)	0.124 (4)	0.0481 (18)	0.015 (2)	0.0081 (17)	0.019 (2)
C17	0.114 (4)	0.229 (7)	0.066 (3)	0.032 (4)	-0.004 (3)	0.000 (4)
C18	0.112 (4)	0.148 (5)	0.089 (3)	0.034 (3)	0.029 (3)	0.012 (3)
C19	0.098 (3)	0.0468 (19)	0.105 (3)	0.0131 (19)	0.010 (2)	0.0077 (19)
C20	0.137 (5)	0.130 (5)	0.139 (5)	-0.030 (4)	-0.008 (4)	0.003 (4)
C21	0.143 (5)	0.138 (5)	0.175 (6)	0.058 (4)	0.028 (4)	-0.031 (4)
C22	0.0482 (14)	0.0521 (16)	0.0449 (14)	0.0108 (13)	0.0095 (11)	0.0087 (12)
C23	0.0603 (17)	0.0542 (17)	0.0519 (16)	0.0130 (14)	0.0088 (13)	0.0122 (13)
C24	0.078 (2)	0.072 (2)	0.064 (2)	0.0208 (19)	0.0079 (16)	0.0246 (17)

C25	0.086 (2)	0.099 (3)	0.0493 (18)	0.018 (2)	0.0036 (16)	0.0194 (19)
C26	0.092 (3)	0.091 (3)	0.0501 (18)	0.016 (2)	0.0098 (17)	-0.0016 (18)
C27	0.072 (2)	0.0618 (19)	0.0533 (17)	0.0107 (16)	0.0168 (14)	0.0032 (14)
C28	0.094 (2)	0.0515 (18)	0.0631 (19)	0.0244 (18)	0.0038 (17)	0.0110 (15)
C29	0.108 (3)	0.060 (2)	0.095 (3)	0.006 (2)	-0.002 (2)	0.013 (2)
C30	0.122 (4)	0.087 (3)	0.097 (3)	0.052 (3)	0.033 (3)	0.012 (2)
C31	0.111 (3)	0.059 (2)	0.069 (2)	0.017 (2)	0.017 (2)	-0.0058 (16)
C32	0.202 (6)	0.065 (3)	0.139 (5)	-0.008(4)	-0.023 (4)	-0.014 (3)
C33	0.169 (6)	0.097 (4)	0.255 (8)	0.072 (4)	0.089 (6)	0.026 (5)

Geometric parameters (Å, °)

All—N1	1.848 (3)	C16—H16	0.9800
Al1—N6	1.855 (2)	C17—H17A	0.9600
Al1—N3	1.858 (3)	C17—H17B	0.9600
Al1—N5	1.867 (2)	C17—H17C	0.9600
P1-C1	1.646 (6)	C18—H18A	0.9600
P1-C2	1.700 (4)	C18—H18B	0.9600
Р2—С3	1.711 (4)	C18—H18C	0.9600
P2—C4	1.731 (4)	C19—C21	1.506 (7)
N1—N2	1.320 (4)	C19—C20	1.518 (7)
N1-C2	1.354 (4)	C19—H19	0.9800
N2-C1	1.378 (6)	C20—H20A	0.9600
N3—C3	1.336 (4)	C20—H20B	0.9600
N3—N4	1.360 (4)	C20—H20C	0.9600
N4—C4	1.301 (4)	C21—H21A	0.9600
N5—C6	1.352 (4)	C21—H21B	0.9600
N5-C10	1.460 (4)	C21—H21C	0.9600
N6—C8	1.350 (4)	C22—C23	1.393 (4)
N6-C22	1.461 (3)	C22—C27	1.397 (4)
C1—H1	0.9300	C23—C24	1.390 (4)
С2—Н2	0.9300	C23—C28	1.503 (4)
С3—Н3	0.9300	C24—C25	1.370 (5)
C4—H4	0.9300	C24—H24	0.9300
C5—C6	1.502 (4)	C25—C26	1.356 (5)
C5—H5A	0.9600	C25—H25	0.9300
C5—H5B	0.9600	C26—C27	1.391 (5)
C5—H5C	0.9600	C26—H26	0.9300
С6—С7	1.384 (4)	C27—C31	1.511 (5)
С7—С8	1.379 (4)	C28—C30	1.509 (6)
С7—Н7	0.9300	C28—C29	1.546 (6)
С8—С9	1.498 (4)	C28—H28	0.9800
С9—Н9А	0.9600	C29—H29A	0.9600
С9—Н9В	0.9600	C29—H29B	0.9600
С9—Н9С	0.9600	C29—H29C	0.9600
C10-C11	1.389 (5)	C30—H30A	0.9600
C10—C15	1.398 (5)	C30—H30B	0.9600
C11—C12	1.407 (6)	С30—Н30С	0.9600

G11 G17	1 512 (6)	G21 G22	1 50 4 (7)
011-016	1.513 (6)	C31—C32	1.504 (7)
C12—C13	1.347 (7)	C31—C33	1.527 (7)
C12—H12	0.9300	C31—H31	0.9800
C13—C14	1.361 (7)	С32—Н32А	0.9600
C13—H13	0.9300	С32—Н32В	0.9600
C14—C15	1.395 (5)	С32—Н32С	0.9600
C14—H14	0.9300	С33—Н33А	0.9600
C_{15}	1 511 (6)	C33_H33B	0.9600
$C_{15} = C_{15}$	1.511 (0)	C33 H33C	0.9000
C10 - C18	1.525(0)	035-11550	0.9000
C10C17	1.548 (0)		
N1—A11—N6	111.60 (12)	C16—C17—H17C	109.5
N1—A11—N3	107 50 (11)	H17A—C17—H17C	109 5
N6—A11—N3	110 79 (11)	H17B-C17-H17C	109.5
N1 A11 N5	116.84(12)	$C_{16} C_{18} U_{18A}$	109.5
NI All N5	110.04(12)	C16 C18 U18D	109.5
NO-AII-NS	99.77 (10)		109.5
N3—AII—N5	110.22 (11)	HI8A—CI8—HI8B	109.5
C1—P1—C2	86.8 (2)	C16—C18—H18C	109.5
C3—P2—C4	85.27 (17)	H18A—C18—H18C	109.5
N2—N1—C2	112.7 (3)	H18B—C18—H18C	109.5
N2—N1—Al1	110.9 (2)	C21—C19—C15	112.2 (4)
C2—N1—Al1	135.9 (3)	C21—C19—C20	110.1 (4)
N1—N2—C1	109.3 (3)	C15—C19—C20	112.1 (4)
C3—N3—N4	113.3 (3)	C21—C19—H19	107.4
C3—N3—A11	138.0 (2)	C15—C19—H19	107.4
N4—N3—A11	108.65(18)	C_{20} C_{19} H_{19}	107.4
C4 N4 N3	100.02(10)	C_{19} C_{20} H_{20A}	109.5
C6 N5 $C10$	109.9(3) 118.2(2)	C_{19} C_{20} H_{20R}	109.5
C_{0} N5 All	110.2(2)		109.5
	117.43 (19)	$H_{20}A - C_{20} - H_{20}B$	109.5
CIO—N5—AII	124.27 (18)	C19—C20—H20C	109.5
C8—N6—C22	118.4 (2)	H20A—C20—H20C	109.5
C8—N6—Al1	117.63 (18)	H20B—C20—H20C	109.5
C22—N6—Al1	123.90 (17)	C19—C21—H21A	109.5
N2—C1—P1	116.9 (3)	C19—C21—H21B	109.5
N2—C1—H1	121.6	H21A—C21—H21B	109.5
P1—C1—H1	121.6	С19—С21—Н21С	109.5
N1—C2—P1	114.1 (3)	H21A—C21—H21C	109.5
N1—C2—H2	122.9	H21B—C21—H21C	109.5
P1—C2—H2	122.9	C23—C22—C27	121.4 (3)
N3—C3—P2	114.3 (3)	C23—C22—N6	120.7 (2)
N3—C3—H3	122.8	C27—C22—N6	117.8 (3)
Р2—С3—Н3	122.8	C24—C23—C22	117.8 (3)
N4—C4—P2	1172(3)	C_{24} C_{23} C_{28}	119.2 (3)
N4 - C4 - H4	121.4	C_{22} C_{23} C_{28}	117.2(3) 123.0(3)
P2HA	121.1	C_{25} C_{25} C_{26} C_{27} C_{27}	123.0(3) 121.7(2)
12 - 04 - 114	100.5	$C_{25} = C_{24} = C_{25}$	121.7(3)
C = C = C = C = C = C = C = C = C = C =	109.5	$C_{23} = C_{24} = H_{24}$	117.2
	109.3	C_{23} — C_{24} — H_{24}	119.2
нэа—Сэ—нэв	109.5	$C_{20} - C_{23} - C_{24}$	119.4 (3)

С6—С5—Н5С	109.5	С26—С25—Н25	120.3
H5A—C5—H5C	109.5	С24—С25—Н25	120.3
H5B—C5—H5C	109.5	C25—C26—C27	122.3 (3)
N5—C6—C7	123.2 (3)	С25—С26—Н26	118.9
N5—C6—C5	119.6 (3)	С27—С26—Н26	118.9
C7—C6—C5	117.2 (3)	C26—C27—C22	117.5 (3)
C8—C7—C6	129.0 (3)	C26—C27—C31	119.4 (3)
С8—С7—Н7	115.5	C22—C27—C31	123.2 (3)
С6—С7—Н7	115.5	C23—C28—C30	111.5 (3)
N6—C8—C7	122.1 (3)	C23—C28—C29	110.2 (3)
N6—C8—C9	119.2 (3)	C30—C28—C29	110.5 (3)
C7—C8—C9	118.8 (3)	С23—С28—Н28	108.2
С8—С9—Н9А	109.5	С30—С28—Н28	108.2
С8—С9—Н9В	109.5	С29—С28—Н28	108.2
H9A—C9—H9B	109.5	С28—С29—Н29А	109.5
С8—С9—Н9С	109.5	С28—С29—Н29В	109.5
Н9А—С9—Н9С	109.5	H29A—C29—H29B	109.5
H9B—C9—H9C	109.5	С28—С29—Н29С	109.5
C11—C10—C15	121.9 (3)	H29A—C29—H29C	109.5
C11—C10—N5	119.3 (3)	H29B—C29—H29C	109.5
C15—C10—N5	118.8 (3)	С28—С30—Н30А	109.5
C10—C11—C12	116.5 (4)	C28—C30—H30B	109.5
C10-C11-C16	123.5 (3)	H30A—C30—H30B	109.5
C12—C11—C16	120.1 (4)	C28—C30—H30C	109.5
C13—C12—C11	122.2 (5)	H30A—C30—H30C	109.5
С13—С12—Н12	118.9	H30B-C30-H30C	109.5
C11—C12—H12	118.9	C32—C31—C27	112.0 (4)
C12—C13—C14	120.7 (4)	C32—C31—C33	110.7 (5)
С12—С13—Н13	119.7	C27—C31—C33	111.0 (4)
C14—C13—H13	119.7	С32—С31—Н31	107.6
C13—C14—C15	120.5 (5)	С27—С31—Н31	107.6
C13—C14—H14	119.8	С33—С31—Н31	107.6
C15—C14—H14	119.8	С31—С32—Н32А	109.5
C14—C15—C10	118.2 (4)	С31—С32—Н32В	109.5
C14—C15—C19	118.9 (4)	H32A—C32—H32B	109.5
C10—C15—C19	122.9 (3)	С31—С32—Н32С	109.5
C11—C16—C18	111.3 (4)	H32A—C32—H32C	109.5
C11—C16—C17	112.8 (4)	H32B—C32—H32C	109.5
C18—C16—C17	109.8 (4)	С31—С33—Н33А	109.5
С11—С16—Н16	107.6	C31—C33—H33B	109.5
C18—C16—H16	107.6	H33A—C33—H33B	109.5
C17—C16—H16	107.6	C31—C33—H33C	109.5
С16—С17—Н17А	109.5	H33A—C33—H33C	109.5
C16—C17—H17B	109.5	H33B—C33—H33C	109.5
H17A—C17—H17B	109.5		