# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1,4-Dibenzylpiperazine

#### Meng Zhang, Yong-hong Zhou,\* Li-hong Hu and Xiao-hui Yang

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China, and Jiangsu Qiang Lin Bio-Energy Co. Ltd, Liyang 213364, People's Republic of China Correspondence e-mail: zm205@sohu.com

Received 3 November 2010; accepted 24 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.141; data-to-parameter ratio = 15.3.

In the title compound,  $C_{18}H_{22}N_2$ , which possesses noncrystallographic inversion symmetry, the central piperazine ring adopts a chair conformation. The phenyl rings are not exactly parallel and make a dihedral angle of 1.3 (1)°. No significant intermolecular contacts are observed in the crystal.

#### **Related literature**

For the properties and applications of piperazine derivatives, see: Zhao *et al.* (2002); Sonurlikar *et al.* (1977); Bigoli *et al.* (2001). For the synthesis of related compounds, see: Zheng *et al.* (2005); Sarangarajan *et al.* (2005). For related structures, see: Yogavel *et al.* (2003); Gunasekaran *et al.* (1996); Thirumurugan *et al.* (1998).



#### **Experimental**

#### Crystal data

 $\begin{array}{l} C_{18}H_{22}N_2 \\ M_r = 266.38 \\ \text{Orthorhombic, } Pbca \\ a = 7.5130 \ (15) \ \text{\AA} \\ b = 19.127 \ (4) \ \text{\AA} \\ c = 21.366 \ (4) \ \text{\AA} \end{array}$ 

 $V = 3070.3 (11) Å^{3}$  Z = 8Mo K\alpha radiation  $\mu = 0.07 \text{ mm}^{-1}$  T = 293 K $0.30 \times 0.20 \times 0.10 \text{ mm}$ 

#### Data collection

Enraf–Nonius CAD-4 diffractometer Absorption correction:  $\psi$  scan (North *et al.*, 1968)  $T_{\min} = 0.980, T_{\max} = 0.993$ 5468 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$  $wR(F^2) = 0.141$ S = 1.012781 reflections 2781 independent reflections 1650 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.045$ 3 standard reflections every 200 reflections intensity decay: 1%

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1989); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the 948 program of the State Forestry Administration (2009–4–55).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2322).

#### References

- Bigoli, F., Chen, C. T., Wu, W. C., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Pilia, L., Pintus, G., Serpe, A. & Trogu, E. F. (2001). *Chem. Commun.* 21, 2246–2247.
- Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Gunasekaran, K., Govindasamy, L., Shanmuga Sundara Raj, S., Velmurugan, D., Karunakaran, S. & Kandaswamy, M. (1996). Acta Cryst. C52, 1027–1028.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sarangarajan, T. R., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o118–0121.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sonurlikar, U. A., Shanker, B., Kirke, P. A. & Bhide, M. B. (1977). Bull. Haffkine, 5, 94–96.
- Thirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Marappan, M. & Kandaswamy, M. (1998). Acta Cryst. C54, 644–645.
- Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, 083– 085.
- Zhao, H., He, X., Thurkauf, A., Hoffman, D., Kieltyka, A., Brodbeck, R., Primus, R. & Wasley, J. W. F. (2002). *Bioorg. Med. Chem. Lett.* **12**, 3111– 3115.
- Zheng, P.-W., Wang, W. & Duan, X.-M. (2005). Acta Cryst. E61, o2513-o2514.

# supporting information

## Acta Cryst. (2010). E66, o3336 [https://doi.org/10.1107/S1600536810049111]

## 1,4-Dibenzylpiperazine

## Meng Zhang, Yong-hong Zhou, Li-hong Hu and Xiao-hui Yang

## S1. Comment

The structural study of piperazine derivatives is of interest, because some piperazine-containing derivatives constitute a novel class of mixed D2/D4 receptor antagonists (Zhao *et al.*, 2002), and disubstituted piperazine derivatives are antifilarial, antiamoebic and spermicidal agents (Sonurlikar *et al.*, 1977). In addition, piperazine derivatives are useful precursors of mixed-ligand dithiolenes of interest for non-linear optics (Bigoli *et al.*, 2001). Recently, many piperazine derivatives with various substituents have been synthesized (Zheng *et al.*, 2005; Sarangarajan *et al.*, 2005). Herein, we report the crystal structure of the title compound, (I).

The geometry and labeling scheme of the title compound are depicted in Fig. 1, and the packing structure is given in Fig. 2. The piperazine ring exhibits a chair conformation with the usual bond lengths and angles (Yogavel *et al.*, 2003), comparable with those of related reported structures (Gunasekaran *et al.*, 1996; Thirumurugan *et al.*, 1998).

## **S2. Experimental**

To a solution of anhydrous piperazine (5 mmol, 0.43 g) in  $CH_2Cl_2$  (20 ml) was added 2.2 equivalents of triethylamine (1.5 ml), followed by benzyl bromide (10 mmol, 2.66 g) in  $CH_2Cl_2$  (20 ml). After the mixture had been stirred for 10 min., the solvent was removed using a rotary evaporator. The solid residue was washed with water and recrystallized from ethanol-cyclohexane to give a colourless solid (76% yield). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

## **S3. Refinement**

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and  $U_{iso}(H) = 1.2 U_{eq}$  of the carrier atom.



## Figure 1

A view of the molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.



#### Figure 2

The packing of the title compound, viewed along the a axis.

## 1,4-Dibenzylpiperazine

### Crystal data

 $C_{18}H_{22}N_2$   $M_r = 266.38$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 7.5130 (15) Å b = 19.127 (4) Å c = 21.366 (4) Å V = 3070.3 (11) Å<sup>3</sup> Z = 8F(000) = 1152  $D_x = 1.153 \text{ Mg m}^{-3}$ Melting point: 372 K Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections  $\theta = 9-13^{\circ}$  $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KStrip, colorless  $0.30 \times 0.20 \times 0.10 \text{ mm}$  Data collection

| Enraf-Nonius CAD-4                       | 2781 independent reflections                                    |
|------------------------------------------|-----------------------------------------------------------------|
| diffractometer                           | 1650 reflections with $I > 2\sigma(I)$                          |
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.045$                                           |
| Graphite monochromator                   | $\theta_{\rm max} = 25.3^\circ, \ \theta_{\rm min} = 1.9^\circ$ |
| $\omega/2\theta$ scans                   | $h = 0 \rightarrow 9$                                           |
| Absorption correction: $\psi$ scan       | $k = 0 \rightarrow 22$                                          |
| (North <i>et al.</i> , 1968)             | $l = -25 \rightarrow 25$                                        |
| $T_{\min} = 0.980, \ T_{\max} = 0.993$   | 3 standard reflections every 200 reflections                    |
| 5468 measured reflections                | intensity decay: 1%                                             |
| Refinement                               |                                                                 |
| Refinement on $F^2$                      | Secondary atom site location: difference Fourier                |
| The set of the second state of the       | -                                                               |

Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.052$   $wR(F^2) = 0.141$  S = 1.012781 reflections 182 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.065P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0097 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x           | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|--------------|--------------|-----------------------------|
| N1  | 0.1744 (2)  | 0.09152 (8)  | 0.62991 (8)  | 0.0427 (5)                  |
| C1  | 0.6103 (3)  | 0.28645 (12) | 0.57631 (12) | 0.0604 (7)                  |
| H1A | 0.6752      | 0.3217       | 0.5569       | 0.073*                      |
| N2  | -0.1771 (2) | 0.03706 (8)  | 0.61285 (8)  | 0.0432 (5)                  |
| C2  | 0.5050 (3)  | 0.24229 (12) | 0.54133 (10) | 0.0533 (6)                  |
| H2A | 0.4989      | 0.2477       | 0.4981       | 0.064*                      |
| C3  | 0.4087 (3)  | 0.19002 (11) | 0.57034 (10) | 0.0449 (6)                  |
| H3A | 0.3382      | 0.1604       | 0.5463       | 0.054*                      |
| C4  | 0.4150 (3)  | 0.18090 (10) | 0.63433 (10) | 0.0413 (5)                  |
| C5  | 0.5204 (3)  | 0.22622 (11) | 0.66895 (11) | 0.0542 (6)                  |
| H5A | 0.5252      | 0.2218       | 0.7123       | 0.065*                      |
| C6  | 0.6185 (3)  | 0.27799 (12) | 0.63953 (13) | 0.0634 (7)                  |
| H6A | 0.6908      | 0.3073       | 0.6632       | 0.076*                      |
| C7  | 0.3183 (3)  | 0.12199 (11) | 0.66679 (10) | 0.0504 (6)                  |
| H7A | 0.4034      | 0.0855       | 0.6769       | 0.061*                      |
| H7B | 0.2696      | 0.1393       | 0.7059       | 0.061*                      |
| C8  | 0.0184 (3)  | 0.13693 (10) | 0.62714 (10) | 0.0474 (6)                  |
| H8A | 0.0520      | 0.1819       | 0.6098       | 0.057*                      |
| H8B | -0.0268     | 0.1446       | 0.6691       | 0.057*                      |
| C9  | -0.1255 (3) | 0.10464 (10) | 0.58725 (10) | 0.0480 (6)                  |
| H9A | -0.2282     | 0.1354       | 0.5860       | 0.058*                      |
| H9B | -0.0824     | 0.0987       | 0.5448       | 0.058*                      |

| C10  | -0.0218 (3) | -0.00859 (10) | 0.61446 (10) | 0.0483 (6) |  |
|------|-------------|---------------|--------------|------------|--|
| H10A | 0.0230      | -0.0154       | 0.5723       | 0.058*     |  |
| H10B | -0.0551     | -0.0539       | 0.6313       | 0.058*     |  |
| C11  | 0.1210 (3)  | 0.02366 (10)  | 0.65474 (10) | 0.0478 (6) |  |
| H11A | 0.0768      | 0.0293        | 0.6971       | 0.057*     |  |
| H11B | 0.2235      | -0.0072       | 0.6562       | 0.057*     |  |
| C12  | -0.3259 (3) | 0.00581 (11)  | 0.57907 (10) | 0.0497 (6) |  |
| H12A | -0.2825     | -0.0132       | 0.5399       | 0.060*     |  |
| H12B | -0.4116     | 0.0421        | 0.5692       | 0.060*     |  |
| C13  | -0.4189 (3) | -0.05156 (10) | 0.61511 (9)  | 0.0396 (5) |  |
| C14  | -0.5306 (3) | -0.09799 (11) | 0.58415 (10) | 0.0494 (6) |  |
| H14A | -0.5413     | -0.0954       | 0.5408       | 0.059*     |  |
| C15  | -0.6260(3)  | -0.14791 (12) | 0.61664 (12) | 0.0569 (6) |  |
| H15A | -0.7012     | -0.1782       | 0.5952       | 0.068*     |  |
| C16  | -0.6102 (3) | -0.15299 (11) | 0.68032 (12) | 0.0555 (6) |  |
| H16A | -0.6745     | -0.1866       | 0.7022       | 0.067*     |  |
| C17  | -0.4989 (3) | -0.10828 (11) | 0.71169 (10) | 0.0505 (6) |  |
| H17A | -0.4870     | -0.1119       | 0.7549       | 0.061*     |  |
| C18  | -0.4041 (3) | -0.05765 (11) | 0.67923 (10) | 0.0440 (6) |  |
| H18A | -0.3295     | -0.0274       | 0.7010       | 0.053*     |  |
|      |             |               |              |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| N1  | 0.0338 (10) | 0.0385 (10) | 0.0558 (11) | -0.0001 (8)  | -0.0015 (8)  | 0.0068 (8)   |
| C1  | 0.0516 (15) | 0.0518 (15) | 0.0779 (18) | -0.0086 (12) | 0.0179 (14)  | -0.0005 (14) |
| N2  | 0.0328 (9)  | 0.0414 (10) | 0.0553 (11) | 0.0003 (9)   | -0.0012 (9)  | 0.0073 (9)   |
| C2  | 0.0508 (14) | 0.0543 (14) | 0.0547 (14) | -0.0011 (13) | 0.0103 (12)  | 0.0035 (11)  |
| C3  | 0.0366 (12) | 0.0465 (13) | 0.0516 (14) | -0.0022 (10) | -0.0013 (10) | -0.0029 (11) |
| C4  | 0.0316 (11) | 0.0426 (12) | 0.0496 (13) | 0.0028 (10)  | -0.0007 (10) | -0.0019 (10) |
| C5  | 0.0519 (15) | 0.0588 (15) | 0.0520 (14) | -0.0035 (13) | -0.0045 (12) | -0.0074 (11) |
| C6  | 0.0495 (15) | 0.0580 (16) | 0.0826 (19) | -0.0142 (13) | -0.0008 (13) | -0.0161 (14) |
| C7  | 0.0457 (13) | 0.0516 (13) | 0.0541 (13) | -0.0050 (11) | -0.0061 (12) | 0.0070 (11)  |
| C8  | 0.0430 (13) | 0.0377 (11) | 0.0614 (14) | 0.0003 (11)  | 0.0046 (11)  | 0.0055 (11)  |
| C9  | 0.0363 (13) | 0.0431 (13) | 0.0645 (14) | 0.0021 (10)  | -0.0021 (11) | 0.0114 (11)  |
| C10 | 0.0402 (13) | 0.0389 (12) | 0.0658 (15) | 0.0006 (10)  | 0.0027 (11)  | 0.0046 (11)  |
| C11 | 0.0382 (12) | 0.0422 (13) | 0.0629 (14) | 0.0030 (10)  | -0.0014 (11) | 0.0118 (11)  |
| C12 | 0.0423 (13) | 0.0561 (14) | 0.0508 (13) | -0.0035 (11) | -0.0036 (11) | 0.0066 (11)  |
| C13 | 0.0308 (11) | 0.0449 (12) | 0.0432 (12) | 0.0024 (10)  | -0.0008 (10) | -0.0015 (10) |
| C14 | 0.0494 (14) | 0.0521 (14) | 0.0468 (12) | -0.0022 (12) | -0.0062 (11) | -0.0047 (11) |
| C15 | 0.0457 (14) | 0.0484 (14) | 0.0768 (17) | -0.0097 (12) | -0.0082 (12) | -0.0078 (13) |
| C16 | 0.0444 (14) | 0.0506 (14) | 0.0715 (17) | -0.0052 (12) | 0.0107 (12)  | 0.0068 (12)  |
| C17 | 0.0425 (14) | 0.0584 (14) | 0.0505 (13) | 0.0004 (12)  | 0.0039 (11)  | 0.0055 (11)  |
| C18 | 0.0345 (12) | 0.0480 (13) | 0.0495 (13) | -0.0042 (10) | 0.0009 (10)  | -0.0045 (10) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| N1—C11     | 1.458 (2)   | C8—H8B        | 0.9700      |
|------------|-------------|---------------|-------------|
| N1—C7      | 1.459 (3)   | С9—Н9А        | 0.9700      |
| N1—C8      | 1.460 (3)   | С9—Н9В        | 0.9700      |
| C1—C6      | 1.362 (3)   | C10-C11       | 1.508 (3)   |
| C1—C2      | 1.377 (3)   | C10—H10A      | 0.9700      |
| C1—H1A     | 0.9300      | C10—H10B      | 0.9700      |
| N2—C9      | 1.456 (2)   | C11—H11A      | 0.9700      |
| N2—C10     | 1.457 (3)   | C11—H11B      | 0.9700      |
| N2—C12     | 1.459 (3)   | C12—C13       | 1.512 (3)   |
| C2—C3      | 1.381 (3)   | C12—H12A      | 0.9700      |
| C2—H2A     | 0.9300      | C12—H12B      | 0.9700      |
| C3—C4      | 1.379 (3)   | C13—C18       | 1.379 (3)   |
| С3—НЗА     | 0.9300      | C13—C14       | 1.389 (3)   |
| C4—C5      | 1.388 (3)   | C14—C15       | 1.381 (3)   |
| C4—C7      | 1.509 (3)   | C14—H14A      | 0.9300      |
| C5—C6      | 1.385 (3)   | C15—C16       | 1.369 (3)   |
| C5—H5A     | 0.9300      | C15—H15A      | 0.9300      |
| С6—Н6А     | 0.9300      | C16—C17       | 1.371 (3)   |
| C7—H7A     | 0.9700      | C16—H16A      | 0.9300      |
| С7—Н7В     | 0.9700      | C17—C18       | 1.388 (3)   |
| C8—C9      | 1.509 (3)   | C17—H17A      | 0.9300      |
| C8—H8A     | 0.9700      | C18—H18A      | 0.9300      |
|            |             |               |             |
| C11—N1—C7  | 111.26 (16) | N2—C9—H9B     | 109.7       |
| C11—N1—C8  | 108.88 (16) | С8—С9—Н9В     | 109.7       |
| C7—N1—C8   | 112.29 (16) | H9A—C9—H9B    | 108.2       |
| C6—C1—C2   | 119.4 (2)   | N2-C10-C11    | 109.76 (17) |
| C6—C1—H1A  | 120.3       | N2-C10-H10A   | 109.7       |
| C2—C1—H1A  | 120.3       | C11-C10-H10A  | 109.7       |
| C9—N2—C10  | 109.14 (16) | N2-C10-H10B   | 109.7       |
| C9—N2—C12  | 112.43 (16) | C11-C10-H10B  | 109.7       |
| C10—N2—C12 | 112.31 (16) | H10A-C10-H10B | 108.2       |
| C1—C2—C3   | 120.1 (2)   | N1-C11-C10    | 110.62 (17) |
| C1—C2—H2A  | 120.0       | N1-C11-H11A   | 109.5       |
| C3—C2—H2A  | 120.0       | C10-C11-H11A  | 109.5       |
| C4—C3—C2   | 121.2 (2)   | N1-C11-H11B   | 109.5       |
| С4—С3—НЗА  | 119.4       | C10-C11-H11B  | 109.5       |
| С2—С3—НЗА  | 119.4       | H11A-C11-H11B | 108.1       |
| C3—C4—C5   | 118.0 (2)   | N2-C12-C13    | 113.54 (17) |
| C3—C4—C7   | 122.24 (19) | N2—C12—H12A   | 108.9       |
| C5—C4—C7   | 119.7 (2)   | C13—C12—H12A  | 108.9       |
| C6—C5—C4   | 120.6 (2)   | N2—C12—H12B   | 108.9       |
| С6—С5—Н5А  | 119.7       | C13—C12—H12B  | 108.9       |
| C4—C5—H5A  | 119.7       | H12A—C12—H12B | 107.7       |
| C1—C6—C5   | 120.7 (2)   | C18—C13—C14   | 117.88 (19) |
| C1—C6—H6A  | 119.6       | C18—C13—C12   | 122.00 (18) |

| С5—С6—Н6А    | 119.6       | C14—C13—C12     | 120.04 (19)  |
|--------------|-------------|-----------------|--------------|
| N1—C7—C4     | 113.99 (17) | C15—C14—C13     | 121.1 (2)    |
| N1—C7—H7A    | 108.8       | C15—C14—H14A    | 119.5        |
| С4—С7—Н7А    | 108.8       | C13—C14—H14A    | 119.5        |
| N1—C7—H7B    | 108.8       | C16—C15—C14     | 120.2 (2)    |
| С4—С7—Н7В    | 108.8       | C16—C15—H15A    | 119.9        |
| H7A—C7—H7B   | 107.6       | C14—C15—H15A    | 119.9        |
| N1—C8—C9     | 110.77 (16) | C15—C16—C17     | 119.6 (2)    |
| N1—C8—H8A    | 109.5       | C15—C16—H16A    | 120.2        |
| С9—С8—Н8А    | 109.5       | C17—C16—H16A    | 120.2        |
| N1—C8—H8B    | 109.5       | C16—C17—C18     | 120.3 (2)    |
| С9—С8—Н8В    | 109.5       | С16—С17—Н17А    | 119.9        |
| H8A—C8—H8B   | 108.1       | C18—C17—H17A    | 119.9        |
| N2—C9—C8     | 109.98 (17) | C13—C18—C17     | 120.9 (2)    |
| N2—C9—H9A    | 109.7       | C13—C18—H18A    | 119.5        |
| С8—С9—Н9А    | 109.7       | C17—C18—H18A    | 119.5        |
|              |             |                 |              |
| C6-C1-C2-C3  | 0.1 (3)     | C9—N2—C10—C11   | 59.7 (2)     |
| C1—C2—C3—C4  | 0.1 (3)     | C12—N2—C10—C11  | -174.95 (16) |
| C2—C3—C4—C5  | 0.4 (3)     | C7—N1—C11—C10   | -177.43 (17) |
| C2—C3—C4—C7  | -176.9 (2)  | C8—N1—C11—C10   | 58.3 (2)     |
| C3—C4—C5—C6  | -1.2 (3)    | N2-C10-C11-N1   | -60.0 (2)    |
| C7—C4—C5—C6  | 176.1 (2)   | C9—N2—C12—C13   | -162.08 (17) |
| C2-C1-C6-C5  | -0.9 (4)    | C10—N2—C12—C13  | 74.4 (2)     |
| C4—C5—C6—C1  | 1.5 (4)     | N2-C12-C13-C18  | 20.0 (3)     |
| C11—N1—C7—C4 | 163.51 (17) | N2-C12-C13-C14  | -163.34 (18) |
| C8—N1—C7—C4  | -74.2 (2)   | C18—C13—C14—C15 | 1.0 (3)      |
| C3—C4—C7—N1  | -19.8 (3)   | C12—C13—C14—C15 | -175.73 (19) |
| C5-C4-C7-N1  | 162.96 (18) | C13—C14—C15—C16 | -0.8 (3)     |
| C11—N1—C8—C9 | -57.9 (2)   | C14—C15—C16—C17 | -0.1 (3)     |
| C7—N1—C8—C9  | 178.46 (16) | C15—C16—C17—C18 | 0.6 (3)      |
| C10—N2—C9—C8 | -59.3 (2)   | C14—C13—C18—C17 | -0.5 (3)     |
| C12—N2—C9—C8 | 175.41 (17) | C12—C13—C18—C17 | 176.23 (19)  |
| N1           | 59.1 (2)    | C16—C17—C18—C13 | -0.4 (3)     |
|              |             |                 |              |