

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl 2-amino-5-[(E)-(1-methyl-1Hpvrrol-2-vl)methylideneamino1thiophene-3,4-dicarboxylate

Stéphane Dufresne and W. G. Skene*

Department of Chemistry, University of Montreal, CP 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada Correspondence e-mail: w.skene@umontreal.ca

Received 21 October 2010; accepted 11 November 2010

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.042; wR factor = 0.116; data-to-parameter ratio = 12.6.

The structure of the title compound, $C_{16}H_{19}N_3O_4S$, shows the planes described by the thiophene and the pyrroles are twisted by $17.06 (4)^{\circ}$. Additionally, the structure shows the azomethine bond adopts the E configuration, while the pyrrole is disordered as a heterocycle flip [occupancy ratio 0.729 (5):0.271 (5)]. The three-dimensional network is well packed and involves N-H···O hydrogen bonding and π - π stacking [centroid–centroid distance = 4.294 (8) Å].

Related literature

For our on-going research on conjugated azomethines, see: Dufresne & Skene (2008). For bond lengths in comparable azomethines, see: Skene et al. (2006); Dufresne & Skene (2010).

Experimental

Crystal data $C_{16}H_{19}N_3O_4S$ $M_r = 349.40$ Monoclinic, $P2_1/c$

a = 8.8212 (18) Å b = 9.0799 (18) Å c = 21.793 (4) Å

 $\beta = 97.50 \ (3)^{\circ}$ V = 1730.6 (6) Å³ Z = 4Cu Ka radiation

Data collection

Bruker SMART 6000 diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.710, T_{\max} = 0.762$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.116$ S = 1.073367 reflections 267 parameters

 $\mu = 1.89 \text{ mm}^{-1}$ T = 123 K $0.17 \times 0.16 \times 0.15~\mathrm{mm}$

20876 measured reflections 3367 independent reflections 3046 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.034$

32 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdots O3^{i}$	0.88	2.09	2.925 (3)	157
Symmetry code: (i) -	$r + 1 v + \frac{1}{2} - 7$	+ 1		

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: UdMX (Marris, 2004).

NSERC Canada is thanked for DG and RTI grants allowing this work to be performed in addition to CFI for additional equipment funding. SD also thanks NSERC for a graduate scholarship. WGS acknowledges both the Alexander von Humboldt Foundation and the RSC for a JWT Jones Travelling fellowships, allowing the completion of this manuscript.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2321).

References

Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Dufresne, S. & Skene, W. G. (2008). J. Org. Chem. 73, 3859-3866. Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, 03027. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Marris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Skene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, 02382-02384.

supporting information

Acta Cryst. (2010). E66, o3221 [https://doi.org/10.1107/S1600536810046775]

Diethyl 2-amino-5-[(*E*)-(1-methyl-1*H*-pyrrol-2-yl)methylideneamino]thio-phene-3,4-dicarboxylate

Stéphane Dufresne and W. G. Skene

S1. Comment

During our on-going research relating to conjugated azomethines (Dufresne & Skene, 2008), we prepared the title compound. The structure is given in figure 1. The pyrrole is disordered. The occupation factor was found to be 73% for the *anti*periplanar heterocycle. The salient feature of the resolved structure is assigning the absolute isomer of the azomethine, which is not readily possible by other means. The *E* isomer was found and the crystal symmetry was $P2_1/c$. Neither solvent nor counter-ions were found in the structure.

A major point of interest is the azomethine bond. The bond lengths for N2—C4, N2—C5 and C5—C6 are 1.372 (2), 1.292 (2) and 1.424 (2) Å, respectively. These are similar to comparable azomethines (Skene *et al.*, 2006 and Dufresne & Skene, 2010) whose homologue lengths are 1.381 (3), 1.283 (3) and 1.426 (3) Å.

We found that the heterocycles of the title compound are not coplanar, according to angle between the mean planes described by them. The angle between these planes was found to be $17.06 (4)^{\circ}$. This is in contrast to an analogous thiophene-azomethine compound (Skene *et al.*, 2006) whose mean plane angle is $7.25 (11)^{\circ}$.

Figure 2 shows the H-bonding occurring within the lattice. Only one H-bonding was found between N1—H1B···O3ⁱⁱ with an angle of 157.1° and a distance of 2.925 (3) Å between the nitrogen and the oxygen. Hydrogen bonding and π -stacking are the driving forces for the overall assembly. π -stacking was found to take place between the pyrroles as seen in Figure 3.

S2. Experimental

1-Methyl-2-pyrrole-carboxaldehyde and 2,5-diamino-thiophene-3,4-dicarboxylic acid diethyl ester were mixed in anhydrous 2-propanol with a catalytic amount of TFA and refluxed for 12 h. The reaction was then purified by flash chromatography to afford the title compound as a yellow solid. Single crystals were obtained by slow evaporation of an acetone solution.

S3. Refinement

C-bonded H atoms were placed in calculated positions (C—H = 0.93-0.98 Å) and included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$. The protons on the amino group were placed in calculated positions (N—H = 0.88 Å) and included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2 U_{eq}(N)$. During the refinement, evidence came that the structure was disordered as an inversion of terminal heterocycles. We first tried to fix each part to half of the weight and then let it vary to the optimized proportion of 73:27. We were forced to add constraints to the minor counterpart so it looks like the major one. We used fixed similar temperature factors, as well as distances and angles restraints with every disordered atom.

Figure 1

ORTEP representation of the title molecule with the numbering scheme adopted (Farrugia, 1997). The disorder on the pyrrole unit is represented by prime symbols. Ellipsoids drawn at 30% probability level.

Figure 2

Supramolecular structure showing the intermolecular H-bonding giving the structural arrangement. Disorder has been omitted for clarity. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) 1 - x, -1/2 + y, 1/2 - z; (ii) 1 - x, 1/2 + y, 1/2 - z; (iii) x, 1 + y, z.]

Figure 3

The three-dimensional network demonstrating the π -stacking in the lattice. Disorder has been omitted for clarity.

Diethyl 2-amino-5-[(E)-(1-methyl-1H-pyrrol- 2-yl)methylideneamino]thiophene-3,4-dicarboxylate

Crystal data

C₁₆H₁₉N₃O₄S $M_r = 349.40$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.8212 (18) Å b = 9.0799 (18) Å c = 21.793 (4) Å $\beta = 97.50$ (3)° V = 1730.6 (6) Å³ Z = 4

Data collection

```
Bruker SMART 6000
diffractometer
Radiation source: Rotating Anode
Montel 200 optics monochromator
Detector resolution: 5.5 pixels mm<sup>-1</sup>
\omega scans
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
T_{\min} = 0.710, T_{\max} = 0.762
```

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.116$ S = 1.073367 reflections 267 parameters 32 restraints 0 constraints Primary atom site location: structure-invariant direct methods F(000) = 736 $D_x = 1.341 \text{ Mg m}^{-3}$ Melting point: 404(2) K Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 10603 reflections $\theta = 4.1-71.3^{\circ}$ $\mu = 1.89 \text{ mm}^{-1}$ T = 123 KBlock, yellow $0.17 \times 0.16 \times 0.15 \text{ mm}$

20876 measured reflections 3367 independent reflections 3046 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 72.0^{\circ}, \theta_{min} = 4.1^{\circ}$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -26 \rightarrow 25$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0845P)^2 + 0.153P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.54$ e Å⁻³

	x	v	7.	Uico*/Uca	Occ. (<1)
<u>S1</u>	0 45470 (4)	0 43388 (4)	0 275627 (17)	0.02979 (14)	
01	0.43470(4) 0.80431(13)	0.43388(4) 0.22781(12)	0.275027(17) 0.16548(5)	0.02375(14)	
02	0.89746 (11)	0.22701(12) 0.11974(11)	0.25566 (5)	0.0330(3) 0.0280(2)	
03	0.00740(11) 0.73230(12)	0.04262(11)	0.23300(5) 0.38224(5)	0.0200(2) 0.0347(3)	
04	0.89935 (11)	0.04202(11) 0.22984(11)	0.38638(5)	0.0347(3) 0.0288(2)	
N1	0.56568 (15)	0.22904(11) 0.42094(15)	0.16734 (6)	0.0200(2) 0.0352(3)	
HIA	0.6308	0.3913	0.1426	0.0332 (3)	
H1B	0.4906	0.4809	0.1534	0.042*	
N2	0.50239(13)	0.31869 (14)	0.39473 (6)	0.0304(3)	
C1	0.58092(15)	0.37474 (15)	0.22635 (6)	0.0255(3)	
C2	0.69216(14)	0.28057(14)	0.25579 (6)	0.0233(3) 0.0217(3)	
C3	0.67137(15)	0.25520(14)	0.31923 (6)	0.0227(3)	
C4	0.54893 (15)	0.32748 (16)	0.33720(7)	0.0268(3)	
C5	0.39981 (16)	0.40771 (17)	0.41036 (8)	0.0328 (3)	
H5	0.3630	0.4830	0.3820	0.039*	
C6	0.33869 (17)	0.39978 (19)	0.46758 (8)	0.0377 (4)	
C11	0.80092 (15)	0.20966 (14)	0.22090 (6)	0.0231 (3)	
C12	1.01267 (19)	0.04672 (18)	0.22452 (8)	0.0370 (4)	
H12A	0.9660	0.0140	0.1830	0.044*	
H12B	1.0502	-0.0417	0.2484	0.044*	
C13	1.14477 (19)	0.1469 (2)	0.21800 (9)	0.0468 (5)	
H13A	1.1091	0.2309	0.1918	0.070*	
H13B	1.2228	0.0928	0.1990	0.070*	
H13C	1.1887	0.1824	0.2589	0.070*	
C14	0.76941 (15)	0.16206 (14)	0.36484 (6)	0.0229 (3)	
C15	1.00158 (18)	0.15225 (19)	0.43389 (7)	0.0357 (4)	
H15A	0.9401	0.0962	0.4608	0.043*	
H15B	1.0642	0.2248	0.4600	0.043*	
C16	1.1047 (2)	0.0488 (2)	0.40530 (9)	0.0498 (5)	
H16A	1.0429	-0.0259	0.3811	0.075*	
H16B	1.1741	0.0005	0.4380	0.075*	
H16C	1.1644	0.1040	0.3782	0.075*	
N3	0.3667 (7)	0.3033 (4)	0.5110 (3)	0.0300 (10)	0.729 (5)
C7	0.2273 (5)	0.5042 (6)	0.4841 (2)	0.0307 (9)	0.729 (5)
H7	0.1852	0.5864	0.4609	0.037*	0.729 (5)
C8	0.1955 (9)	0.4567 (9)	0.5423 (3)	0.0351 (13)	0.729 (5)
H8	0.1274	0.5019	0.5670	0.042*	0.729 (5)
C9	0.2812 (8)	0.3328 (7)	0.5569 (3)	0.0339 (12)	0.729 (5)
Н9	0.2807	0.2761	0.5935	0.041*	0.729 (5)
C10	0.4701 (3)	0.1768 (3)	0.51050 (11)	0.0425 (7)	0.729 (5)
H10A	0.4547	0.1301	0.4696	0.064*	0.729 (5)
H10B	0.4484	0.1055	0.5420	0.064*	0.729 (5)
H10C	0.5763	0.2104	0.5196	0.064*	0.729 (5)
N83	0.2589 (11)	0.4768 (12)	0.5004 (4)	0.0224 (17)	0.271 (5)
C87	0.369 (2)	0.2593 (12)	0.5158 (9)	0.027 (2)	0.271 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H87	0.4264	0.1731	0.5101	0.033*	0.271 (5)
C88	0.290 (2)	0.2937 (17)	0.5684 (7)	0.026 (2)	0.271 (5)
H88	0.2875	0.2365	0.6048	0.031*	0.271 (5)
C89	0.221 (2)	0.426 (2)	0.5544 (8)	0.028 (3)	0.271 (5)
H89	0.1559	0.4746	0.5792	0.033*	0.271 (5)
C90	0.2156 (6)	0.6219 (7)	0.4747 (2)	0.0302 (15)	0.271 (5)
H90A	0.3063	0.6850	0.4773	0.045*	0.271 (5)
H90B	0.1400	0.6666	0.4982	0.045*	0.271 (5)
H90C	0.1713	0.6113	0.4312	0.045*	0.271 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0183 (2)	0.0303 (2)	0.0411 (2)	0.00671 (12)	0.00480 (14)	0.00178 (13)
O1	0.0328 (6)	0.0391 (6)	0.0299 (5)	0.0073 (4)	0.0059 (4)	-0.0022 (4)
O2	0.0241 (5)	0.0257 (5)	0.0357 (5)	0.0080 (4)	0.0101 (4)	0.0037 (4)
O3	0.0277 (5)	0.0292 (5)	0.0458 (6)	-0.0060 (4)	-0.0010 (5)	0.0100 (5)
O4	0.0195 (5)	0.0273 (5)	0.0379 (6)	-0.0020 (4)	-0.0026 (4)	-0.0003 (4)
N1	0.0293 (7)	0.0422 (8)	0.0333 (7)	0.0123 (5)	0.0008 (5)	0.0051 (5)
N2	0.0206 (6)	0.0346 (7)	0.0376 (7)	-0.0001 (5)	0.0096 (5)	-0.0028 (5)
C1	0.0188 (6)	0.0236 (7)	0.0334 (7)	-0.0004 (5)	0.0009 (5)	-0.0015 (5)
C2	0.0170 (6)	0.0183 (6)	0.0296 (7)	-0.0003 (5)	0.0028 (5)	-0.0015 (5)
C3	0.0172 (6)	0.0200 (6)	0.0310 (7)	-0.0017 (5)	0.0037 (5)	-0.0005 (5)
C4	0.0181 (6)	0.0264 (7)	0.0363 (7)	0.0000 (5)	0.0053 (5)	-0.0001 (5)
C5	0.0225 (7)	0.0314 (7)	0.0461 (9)	-0.0030 (5)	0.0107 (6)	-0.0042 (6)
C6	0.0253 (8)	0.0436 (9)	0.0470 (10)	-0.0086 (7)	0.0152 (7)	-0.0144 (8)
C11	0.0198 (6)	0.0196 (6)	0.0298 (7)	-0.0015 (5)	0.0033 (5)	-0.0019 (5)
C12	0.0344 (8)	0.0303 (8)	0.0499 (9)	0.0153 (6)	0.0185 (7)	0.0049 (6)
C13	0.0295 (8)	0.0536 (11)	0.0611 (11)	0.0137 (7)	0.0200 (8)	0.0188 (9)
C14	0.0176 (6)	0.0231 (6)	0.0283 (6)	-0.0012 (5)	0.0045 (5)	-0.0016 (5)
C15	0.0284 (7)	0.0422 (8)	0.0336 (8)	0.0025 (6)	-0.0072 (6)	0.0008 (6)
C16	0.0381 (10)	0.0591 (11)	0.0499 (10)	0.0204 (8)	-0.0031 (8)	0.0037 (8)
N3	0.0230 (11)	0.032 (2)	0.0357 (16)	0.001 (2)	0.0083 (9)	-0.005 (2)
C7	0.0216 (19)	0.030 (3)	0.041 (3)	0.0043 (13)	0.0066 (15)	-0.0019 (16)
C8	0.028 (2)	0.040 (3)	0.041 (3)	-0.0014 (19)	0.015 (2)	-0.012 (2)
С9	0.0328 (18)	0.044 (4)	0.026 (2)	0.000 (3)	0.0054 (17)	0.003 (2)
C10	0.0417 (14)	0.0451 (14)	0.0425 (13)	0.0156 (11)	0.0120 (10)	0.0147 (10)
N83	0.018 (4)	0.019 (4)	0.029 (4)	0.007 (3)	-0.003 (3)	0.007 (3)
C87	0.035 (4)	0.012 (5)	0.036 (4)	-0.003 (4)	0.007 (3)	0.000 (4)
C88	0.032 (4)	0.026 (6)	0.021 (5)	0.008 (4)	0.010 (4)	0.010 (3)
C89	0.031 (7)	0.031 (8)	0.023 (4)	0.000 (5)	0.009 (4)	0.008 (4)
C90	0.030 (3)	0.033 (4)	0.029 (3)	0.008 (2)	0.006 (2)	0.008 (2)

Geometric parameters (Å, °)

S1—C1	1.7301 (15)	С13—Н13Ь	0.98
S1—C4	1.7703 (15)	C13—H13c	0.98
O1—C11	1.2232 (17)	C15—C16	1.499 (2)

02—C11	1 3407 (16)	C15—H15a	0.99
02-C12	1 4537 (17)	C15—H15b	0.99
03	12080(17)	C16—H16a	0.98
04-C14	1.2000(17) 1.3313(16)	C16—H16b	0.98
04-C15	1 4622 (17)	C16—H16c	0.98
N1-C1	1.4022(17) 1.3428(19)	N3_C9	1.354(7)
N1 H12	0.88	N3 C10	1.354(7) 1.468(4)
N1 H1b	0.88	C7 C8	1.403(4) 1.402(7)
N2 C5	1 2018 (10)	C7 H7	0.95
N2 C4	1.2910(19) 1.3715(10)	C^{8}	1 360 (5)
12-04	1.3713(19) 1.2022(19)	C° H°	1.509 (5)
$C_1 = C_2$	1.3933(18) 1.4368(18)	$C_0 = H_0$	0.95
$C_2 = C_3$	1.4503(18)	C10 H10c	0.95
C_2 — C_1	1.4303(18) 1.2642(10)		0.98
C_{3} C_{14}	1.3043 (19)	C10—H100	0.98
C5C14	1.4923 (18)	C10—H10C	0.98
C5C6	1.424 (2)	N83—C89	1.346 (15)
C5—H5	0.95	N83—C90	1.463 (8)
C6—N83	1.276 (12)	C87—C88	1.450 (18)
C6—N3	1.290 (5)	C8/—H8/	0.95
C6—C7	1.445 (5)	C88—C89	1.361 (11)
C6—C87	1.652 (14)	С88—Н88	0.95
C12—C13	1.499 (2)	С89—Н89	0.95
C12—H12a	0.99	С90—Н90а	0.98
C12—H12b	0.99	C90—H90b	0.98
С13—Н13а	0.98	С90—Н90с	0.98
C1 $S1$ $C4$	$01 \ 41 \ (7)$	03 C14 04	124 00 (12)
C1 = 51 = C4	91.41(7)	03 - 014 - 04	124.09(13)
C11 - 02 - C12	110.43(11)	03 - C14 - C3	124.09(12)
C1 = 04 = C15	110./4 (11)	04 - 015 - 016	111.73 (11)
CI-NI-HIA	120	04 - 015 - 016	111.07 (13)
CI-NI-HIB	120	04—CI5—HISA	109.4
HIA—NI—HIB	120	CI6—CI5—HI5A	109.4
C5—N2—C4	120.54 (14)	04—C15—H15B	109.4
NI-CI-C2	127.53 (13)	CI6—CI5—HI5B	109.4
	120.36 (11)	HI5A—CI5—HI5B	108
C2—C1—S1	112.11 (11)	C15—C16—H16A	109.5
C1—C2—C3	111.76 (12)	C15—C16—H16B	109.5
C1C2C11	120.36 (12)	H16A—C16—H16B	109.5
C3—C2—C11	127.55 (12)	C15—C16—H16C	109.5
C4—C3—C2	113.85 (12)	H16A—C16—H16C	109.5
C4—C3—C14	119.55 (13)	H16B—C16—H16C	109.5
C2—C3—C14	126.60 (12)	C6—N3—C9	109.6 (4)
C3—C4—N2	125.24 (13)	C6—N3—C10	125.8 (4)
C3—C4—S1	110.85 (11)	C9—N3—C10	124.5 (4)
N2—C4—S1	123.90 (11)	C8—C7—C6	104.3 (4)
N2—C5—C6	123.90 (16)	С8—С7—Н7	127.9
N2—C5—H5	118.1	С6—С7—Н7	127.9
C6 C5 H5	110 1	C0 $C8$ $C7$	1070(5)

N83—C6—N3	91.6 (4)	С9—С8—Н8	126.5
N83—C6—C5	139.8 (4)	С7—С8—Н8	126.5
N3—C6—C5	128.3 (2)	N3—C9—C8	109.6 (5)
N3—C6—C7	109.5 (3)	N3—C9—H9	125.2
C5—C6—C7	122.2 (2)	С8—С9—Н9	125.2
N83—C6—C87	97.0(7)	C6—N83—C89	121.2 (1)
C5—C6—C87	123.2 (6)	C6—N83—C90	114.4 (7)
C7—C6—C87	114.0 (6)	C89—N83—C90	124.4 (1)
01-01-02	122.99 (12)	C88—C87—C6	106.4 (9)
01	124.12 (13)	С88—С87—Н87	126.8
02-C11-C2	112.89 (11)	C6—C87—H87	126.8
02-C12-C13	111.53 (14)	C89—C88—C87	104.90 (11)
02—C12—H12A	109.3	C89—C88—H88	127.5
C13—C12—H12A	109.3	C87—C88—H88	127.5
02-C12-H12B	109.3	N83—C89—C88	110.30(13)
C13—C12—H12B	109.3	N83—C89—H89	124.9
H12A—C12—H12B	108	C88—C89—H89	124.9
C12—C13—H13A	109 5	N83—C90—H90A	109 5
C12—C13—H13B	109.5	N83—C90—H90B	109.5
H13A—C13—H13B	109.5	H90A—C90—H90B	109.5
C12—C13—H13C	109.5	N83—C90—H90C	109.5
H13A—C13—H13C	109.5	H90A—C90—H90C	109.5
H13B—C13—H13C	109.5	H90B—C90—H90C	109.5
	10,10		10,10
C4—S1—C1—N1	179.29 (13)	C2—C3—C14—O4	77.00 (16)
C4—S1—C1—C2	-1.27 (11)	C14—O4—C15—C16	86.08 (17)
N1—C1—C2—C3	-179.63 (13)	N83—C6—N3—C9	8.3 (7)
S1—C1—C2—C3	0.98 (14)	C5—C6—N3—C9	-178.0 (4)
N1—C1—C2—C11	-5.7 (2)	C7—C6—N3—C9	0.4 (6)
S1—C1—C2—C11	174.91 (9)	C87—C6—N3—C9	-126 (7)
C1—C2—C3—C4	-0.01 (16)	N83—C6—N3—C10	-174.1 (7)
C11—C2—C3—C4	-173.40 (12)	C5-C6-N3-C10	-0.4 (7)
C1—C2—C3—C14	-179.28 (12)	C7—C6—N3—C10	178.1 (5)
C11—C2—C3—C14	7.3 (2)	C87—C6—N3—C10	52 (6)
C2—C3—C4—N2	178.30 (12)	N83—C6—C7—C8	-23.70 (19)
C14—C3—C4—N2	-2.4 (2)	N3—C6—C7—C8	0.3 (5)
C2—C3—C4—S1	-0.93 (15)	C5—C6—C7—C8	178.9 (4)
C14—C3—C4—S1	178.40 (9)	C87—C6—C7—C8	7.2 (1)
C5—N2—C4—C3	169.49 (14)	C6—C7—C8—C9	-1.0 (7)
C5—N2—C4—S1	-11.4 (2)	C6—N3—C9—C8	-1.1 (8)
C1—S1—C4—C3	1.25 (11)	C10—N3—C9—C8	-178.7 (6)
C1—S1—C4—N2	-177.99 (13)	C7—C8—C9—N3	1.3 (9)
C4—N2—C5—C6	175.94 (14)	N3—C6—N83—C89	-9.00 (14)
N2—C5—C6—N83	166.7 (8)	C5—C6—N83—C89	178.70 (11)
N2—C5—C6—N3	-3.6 (4)	C7—C6—N83—C89	148 (3)
N2—C5—C6—C7	178.1 (3)	C87—C6—N83—C89	-3.40 (15)
N2 C5 C6 C87			× /
N2-C3-C0-C87	-10.9(9)	N3-C6-N83-C90	170.4 (7)
C12-02-C11-01	-10.9 (9) 2.11 (19)	N3—C6—N83—C90 C5—C6—N83—C90	170.4 (7) -2.00 (13)

C12—O2—C11—C2	-178.63 (12)	C7—C6—N83—C90	-32.20 (15)
C1—C2—C11—O1	0.9 (2)	C87—C6—N83—C90	176.0 (1)
C3—C2—C11—O1	173.81 (13)	N83—C6—C87—C88	0.70 (15)
C1—C2—C11—O2	-178.33 (11)	N3—C6—C87—C88	47 (6)
C3—C2—C11—O2	-5.44 (19)	C5—C6—C87—C88	179.20 (11)
C11—O2—C12—C13	80.18 (17)	C7—C6—C87—C88	-9.20 (17)
C15—O4—C14—O3	0.2 (2)	C6—C87—C88—C89	2 (2)
C15—O4—C14—C3	176.97 (11)	C6—N83—C89—C88	5 (2)
C4—C3—C14—O3	74.56 (18)	C90—N83—C89—C88	-174.20 (14)
C2—C3—C14—O3	-106.21 (17)	C87—C88—C89—N83	-4 (2)
C4—C3—C14—O4	-102.23 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1 <i>B</i> ···O3 ⁱ	0.88	2.09	2.925 (3)	157

Symmetry code: (i) -x+1, y+1/2, -z+1/2.