Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,7-Dichloroguinoline-8-carboxylic acid

Xin-Hong Guo

Huaiyin Teachers College, 111 West Changjiang Road, Huaian 223300, Jiangsu, People's Republic of China Correspondence e-mail: xinhong_guo@hotmail.com

Received 11 August 2008: accepted 14 August 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; R factor = 0.064; wR factor = 0.141; data-to-parameter ratio = 13.2.

The title compound (trade name: quinclorac), C₁₀H₅Cl₂NO₂, was crystallized from a dimethyl sulfoxide solution. Quinclorac molecules are packed mainly via π - π stacking interactions between neighbouring heterocycles (interplanar distance: 3.31 Å) and via O-H···N hydrogen bonding.

Related literature

For the use of 3,7-dichloroquinoline-8-carboxylic acid as a herbicide, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002). For related complexes, see: Li et al. (2008); Turel et al. (2004); Zhang et al. (2007).

Experimental

Crystal data

C ₁₀ H ₅ Cl ₂ NO ₂
$M_r = 242.05$
Triclinic, P1
a = 7.5002 (12) Å
b = 8.4016 (14) Å
c = 8.732 (3) Å
$\alpha = 102.529~(6)^{\circ}$
$\beta = 93.439 \ (6)^{\circ}$

 $\gamma = 116.479 \ (4)^{\circ}$ $V = 472.98 (17) \text{ Å}^3$ Z = 2Mo Ka radiation $\mu = 0.66 \text{ mm}^{-1}$ T = 173 (2) K $0.26 \times 0.22 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEXII

```
diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 1999)
  T_{\min} = 0.84, \ T_{\max} = 0.88
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	H atoms treated by a mixture of
$vR(F^2) = 0.140$	independent and constrained
S = 1.01	refinement
834 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
39 parameters	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

5948 measured reflections

 $R_{\rm int} = 0.067$

1834 independent reflections

1102 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots N1^{i}$	0.84 (5)	1.91 (5)	2.753 (4)	173 (4)

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2136).

References

Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,

- USA. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Li, Z., Wu, F., Gong, Y., Zhang, Y. & Bai, C. (2008). Acta Cryst. E64, m227.
- Nuria, L. M., George, M. & Rafael, D. P. (1997). Pestic. Sci. 51, 171-175.
- Pornprom, T., Mahatamuchoke, P. & Usui, K. (2006). Pest Manag. Sci. 62, 1109–1115.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sunohara, Y. & Matsumoto, H. (2004). Plant Sci. 167, 597-606.
- Tresch, S. & Grossmann, K. (2002). Pestic. Biochem. Physiol. 75, 73-78.
- Turel, I., Milena, P., Amalija, G., Enzo, A., Barbara, S., Alberta, B. & Gianni, S. (2004). Inorg. Chim. Acta, 98, 239-401.
- Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63. m1557.

supporting information

Acta Cryst. (2008). E64, o1786 [doi:10.1107/S1600536808026238]

3,7-Dichloroquinoline-8-carboxylic acid

Xin-Hong Guo

S1. Comment

Quinclorac (3,7-dichloroquinoline-8-carboxylic acid) is one of the most effective herbicides (Nuria *et al.*, 1997; Pornprom *et al.*, 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002), and is widely used in agriculture. In addition, as a quinolinecarboxylate derivate, quinclorac could chelate metal ions, forming corresponding complexes (Li *et al.*, 2008; Turel *et al.*, 2004; Zhang *et al.*, 2007). As an extension of these studies, we report herein on the structure of quinclorac.

A quinclorac molecule, which is the asymmetric unit of the structure, is shown in Fig. 1. All the bond distances and bond angles of quinclorac are normal and call for no further comment. Two types of intermolecular interations are easily found in the structure of quinclorac (Fig. 2). There exists a π - π interaction between adjacent quinin cycles with an inversion center located halfway between the aromatic rings, thus forming stacks along the *a* direction. Quinclorac molecules of adjacent chains are joined through H-bonding of O1—H1···N1ⁱ (symmetry code: (i) 1 - *x*, 2 - *y*, 1 - *z*) (Table 1) into a triclinic supramolecular architecture (Fig. 2).

S2. Experimental

Quinclorac was obtained from a commercial source and used directly without further purification. Quinclorac (0.5 mmol, 0.121 g) was dissolved in 10 mL DMSO. After ether vapor slowly diffused into the solution at room temperature for several days, colorless prismlike crystals suitable for crystallographic research were obtained.

S3. Refinement

All the non-hydrogen atoms were located from the Fourier maps, and were refined anisotropically. The hydroxyl hydrogen, H1A, was found from the Fourier difference maps and refined isotropically with a fixed O—H bond length. All other H atoms were positioned geometrically. All isotropic vibration parameters of hydrogen atoms were related to the atoms which they are bonded to with $U_{iso}(H) = 1.2 U_{eq}(C,O)$.

Figure 1

The asymmetric unit of quinclorac with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

Packing diagram of quinclorac showing the π - π stacks along the *a* direction. Intermolecular H-bonding is indicated via dashed lines.

Z = 2

F(000) = 244

 $\theta = 2.1 - 25.5^{\circ}$

 $\mu = 0.66 \text{ mm}^{-1}$

Prismlike, colorless

 $0.26 \times 0.22 \times 0.20 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.700 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 958 reflections

3,7-Dichloroquinoline-8-carboxylic acid

Crystal data

C₁₀H₅Cl₂NO₂ $M_r = 242.05$ Triclinic, *P*I Hall symbol: -P 1 a = 7.5002 (12) Å b = 8.4016 (14) Å c = 8.732 (3) Å $\alpha = 102.529$ (6)° $\beta = 93.439$ (6)° $\gamma = 116.479$ (4)° V = 472.98 (17) Å³

Data collection

Bruker SMART APEXII	5948 measured reflections
diffractometer	1834 independent reflections
Radiation source: fine-focus sealed tube	1102 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.067$
ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 1999)	$k = -8 \rightarrow 10$
$T_{\min} = 0.84, \ T_{\max} = 0.88$	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.063$	Hydrogen site location: inferred from
$wR(F^2) = 0.140$	neighbouring sites
S = 1.01	H atoms treated by a mixture of independent
1834 reflections	and constrained refinement
139 parameters	$w = 1/[\sigma^2(F_o^2) + (0.062P)^2]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.30 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	х	У	<i>Z</i>	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3476 (6)	0.5471 (6)	0.2465 (5)	0.0354 (10)
H1	0.3861	0.5957	0.1583	0.043*
C2	0.2932 (6)	0.3616 (6)	0.2276 (5)	0.0324 (9)
C3	0.2343 (6)	0.2876 (6)	0.3515 (5)	0.0337 (10)
Н3	0.1963	0.1613	0.3413	0.040*
C4	0.1686 (6)	0.3342 (6)	0.6269 (5)	0.0369 (10)
H4	0.1286	0.2086	0.6220	0.044*
C5	0.1655 (7)	0.4475 (6)	0.7605 (5)	0.0363 (10)
Н5	0.1215	0.4011	0.8489	0.044*
C6	0.2272 (6)	0.6342 (6)	0.7699 (5)	0.0308 (9)
C7	0.2918 (6)	0.7078 (5)	0.6455 (5)	0.0253 (8)
C8	0.2910 (5)	0.5882 (5)	0.5036 (5)	0.0261 (8)
C9	0.2304 (6)	0.4002 (5)	0.4943 (5)	0.0261 (8)
C10	0.3645 (6)	0.9105 (5)	0.6610 (4)	0.0293 (9)
Cl1	0.29545 (15)	0.22889 (15)	0.04666 (12)	0.0385 (3)
Cl2	0.23077 (17)	0.77619 (16)	0.94953 (12)	0.0422 (3)
N1	0.3496 (5)	0.6591 (4)	0.3774 (4)	0.0283 (7)
01	0.5586 (4)	0.9997 (4)	0.6659 (3)	0.0302 (6)
H1A	0.597 (7)	1.106 (7)	0.652 (5)	0.036*
02	0.2510 (5)	0.9766 (4)	0.6634 (5)	0.0519 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.038 (2)	0.041 (3)	0.032 (2)	0.021 (2)	0.0079 (18)	0.012 (2)

supporting information

C2	0.027 (2)	0.032 (2)	0.039 (2)	0.0174 (19)	0.0036 (17)	0.0030 (19)
C3	0.033 (2)	0.021 (2)	0.049 (2)	0.016 (2)	0.0051 (19)	0.008 (2)
C4	0.037 (2)	0.025 (2)	0.053 (3)	0.014 (2)	0.006 (2)	0.022 (2)
C5	0.043 (2)	0.035 (3)	0.036 (2)	0.019 (2)	0.0106 (19)	0.017 (2)
C6	0.0262 (19)	0.035 (2)	0.033 (2)	0.0165 (18)	0.0041 (16)	0.0098 (19)
C7	0.028 (2)	0.020(2)	0.032 (2)	0.0138 (17)	0.0062 (16)	0.0073 (17)
C8	0.0180 (18)	0.024 (2)	0.034 (2)	0.0095 (16)	0.0014 (15)	0.0050 (17)
C9	0.0258 (18)	0.020 (2)	0.036 (2)	0.0126 (16)	0.0030 (16)	0.0091 (17)
C10	0.034 (2)	0.025 (2)	0.0246 (19)	0.0119 (18)	0.0010 (15)	0.0038 (18)
Cl1	0.0372 (6)	0.0432 (7)	0.0423 (6)	0.0303 (5)	0.0101 (5)	-0.0006 (5)
Cl2	0.0548 (7)	0.0433 (7)	0.0343 (6)	0.0280 (6)	0.0144 (5)	0.0089 (5)
N1	0.0318 (18)	0.0235 (18)	0.0295 (17)	0.0130 (15)	0.0066 (13)	0.0069 (15)
01	0.0319 (16)	0.0189 (15)	0.0364 (16)	0.0071 (13)	0.0056 (12)	0.0120 (13)
O2	0.048 (2)	0.0257 (17)	0.092 (3)	0.0240 (16)	0.0204 (18)	0.0171 (18)

Geometric parameters (Å, °)

C1—N1	1.308 (5)	С5—Н5	0.9500
C1—C2	1.391 (6)	C6—C7	1.373 (6)
C1—H1	0.9500	C6—Cl2	1.743 (4)
C2—C3	1.362 (6)	C7—C8	1.414 (5)
C2—Cl1	1.731 (4)	C7—C10	1.510 (5)
С3—С9	1.403 (6)	C8—N1	1.369 (5)
С3—Н3	0.9500	C8—C9	1.417 (5)
C4—C5	1.345 (6)	C10—O2	1.206 (5)
C4—C9	1.405 (5)	C10—O1	1.299 (5)
C4—H4	0.9500	O1—H1A	0.84 (5)
C5—C6	1.405 (6)		
N1—C1—C2	124.6 (4)	C7—C6—C12	119.9 (3)
N1-C1-H1	117.7	C5—C6—Cl2	118.0 (3)
C2-C1-H1	117.7	C6—C7—C8	117.8 (4)
C3—C2—C1	118.9 (4)	C6—C7—C10	121.0 (3)
C3—C2—Cl1	121.5 (3)	C8—C7—C10	121.2 (3)
C1—C2—Cl1	119.6 (3)	N1—C8—C7	118.2 (4)
С2—С3—С9	119.2 (4)	N1	121.6 (3)
С2—С3—Н3	120.4	C7—C8—C9	120.2 (4)
С9—С3—Н3	120.4	C3—C9—C4	122.9 (4)
C5—C4—C9	120.5 (4)	C3—C9—C8	118.0 (4)
С5—С4—Н4	119.7	C4—C9—C8	119.1 (3)
С9—С4—Н4	119.7	O2-C10-O1	125.4 (4)
C4—C5—C6	120.2 (4)	O2—C10—C7	122.5 (3)
C4—C5—H5	119.9	O1—C10—C7	112.1 (3)
С6—С5—Н5	119.9	C1—N1—C8	117.7 (3)
C7—C6—C5	122.1 (4)	C10—O1—H1A	113 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1A····N1 ⁱ	0.84 (5)	1.91 (5)	2.753 (4)	173 (4)

Symmetry code: (i) -x+1, -y+2, -z+1.