

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(Hydroxymethyl)ibogaine

Raoudha Mezghani Jarraya,^a Amira Bouaziz,^a Besma Hamdi,^b Abdelhamid Ben Salah^b and Mohamed Damak^a*

^aLaboratoire de Chimie des Substances Naturelles, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia, and ^bLaboratoire des Sciences de Materiaux et d'Environnement, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia Correspondence e-mail: mohamed.damak@fss.rnu.tn

Received 29 July 2008; accepted 6 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.049; wR factor = 0.123; data-to-parameter ratio = 9.3.

The title compound (systematic name: 16-hydroxymethyl-12methoxyibogamine), C21H28N2O2, was prepared by reaction of ibogaine with a formaldehyde-acetic acid solution (pH = 4). The crystal structure of this new product, belonging to the iboga indole family, is stabilized by an intermolecular O-H...N hydrogen bond. The identity of the compound was confirmed by one- and two-dimensional NMR spectroscopic techniques.

Related literature

For related literature on ibogaine and its derivatives, see: Alper et al. (2008); Levant & Pazdernik (2004); Maisonneuve et al. (1991); Soriano-García (1992).

Experimental

Crystal data C21H28N2O2 $M_r = 340.45$

Orthorhombic, $P2_12_12_1$ a = 8.4990 (10) Å

b = 10.2537 (11) Åc = 20.676 (3) Å V = 1801.8 (4) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (Coppens et al., 1965) $T_{\min} = 0.962, T_{\max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 228 parameters $wR(F^2) = 0.123$ H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ 2131 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots N4^i$	0.82	2.10	2.825 (3)	148

Symmetry code: (i) x + 1, y, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2132).

References

- Alper, K. R., Lotsof, H. S. & Kaplan, C. D. (2008). J. Ethnopharmacol. 115, 9-24
- Bruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Levant, B. & Pazdernik, T. L. (2004). Brain Res. 1003, 159-167.
- Maisonneuve, I. M., Keller, R. W. Jr & Glick, S. D. (1991). Eur. J. Pharmacol. 199 35-42
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soriano-García, M. (1992). Acta Cryst. C48, 2055-2057.

Mo $K\alpha$ radiation

 $0.47 \times 0.33 \times 0.26$ mm

9906 measured reflections

2131 independent reflections

1225 reflections with $I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.079$

supporting information

Acta Cryst. (2008). E64, o1739 [doi:10.1107/S1600536808025324]

N-(Hydroxymethyl)ibogaine

Raoudha Mezghani Jarraya, Amira Bouaziz, Besma Hamdi, Abdelhamid Ben Salah and Mohamed Damak

S1. Comment

Ibogaine is the main alkaloid found in the root bark of Tabernanthe iboga (Apocynaceae family), a shrub native to equatorial Africa. Its crystal structure was previously established by *M*. Soriano-García (1992). It is used, at low doses, to produce increased energy, arousal, and appetite and at high doses, for its hallucinogenic properties (Maisonneuve *et al.*, 1991) and it has been claimed to be effective in abolishing drug craving in heroin and cocaine addicts (Levant & Pazdernik, 2004).

Ibogaine is a psychostimulant of interest as an ethnopharmacological prototype for experimental investigation and possible rational pharmaceutical development (Alper *et al.*, 2008). In this context and in order to prepare other substitutes, we realised the reaction of ibogaine with a formaldehyde-acetic acid solution (pH=4). This reaction led to 47% of the title compound (Fig. 1).

The current study describes the preparation and the structure elucidation of N-hydroxymethylene ibogaine. Its structure was established principally by two-dimensional NMR spectroscopy and its solid state structure was determined through X-ray diffraction analysis (Fig. 2, Fig. 4).

The conformation of this compound is stabilized by an intermolecular hydrogen bond between the hydroxyl O_2 — H_2 group and atom N_4 (Fig. 3).

S2. Experimental

The title compound (2) was prepared by reaction of ibogaine (1) (100 mg, 0.3 mmol) with formaldehyde-acetic acid solution (pH=4) (10 ml). The mixture was stirred at room temperature for 2 h. Then, the mixture was diluted with H₂O, made alkaline with an NH₄OH solution (pH=9) and immediately extracted with CH₂Cl₂. The organic phase was dried over sodium sulfate, filtered and concentrated under reduced pressure. The concentrate was then purified by chromatography on silica gel column with dichloromethane as eluent to yield 47% of the title compound.

N-hydroxymethylene ibogaïne (2), white crystals (CH₂Cl₂), $C_{21}H_{28}N_2O_2$: 340, m.p. 436 K, UV: λ_{max} (EtOH) nm = 209, 287, 230. IR: (KBr) ν_{max} (cm⁻¹): 3448, 3101,2935,1617, 1586, 1482, 1456. Spectroscopic analysis, ¹H NMR (300 MHz; CDCl₃-d₆, p.p.m.): 0.91 (t, J = 7.2 Hz, 3H, Me₁₈); 1.26 (m, 2H, H₁₅); 1.61 (m, 1H, H₁₉); 1.62 (m, 1H, H₁₇); 1.75 (m, 1H, H₁₉); 1.83 (m, 1H, H₂₀); 1.95 (m, 1H, H₁₄); 2.13 (m, 1H, H₁₇); 2.56 (m, 1H, H₆); 2.89 (m, 1H, H₂₁); 2.90 (m, 1H, H₁₆); 2.95 (m, 1H, H₃); 3.12 (m, 1H, H₅); 3.26 (m, 1H, H₃); 3.30 (m, 1H, H₆); 3.31 (m, 1H, H₅); 3.85 (s, 3H, CH₃—O); 5.50 (dd, J= 11.7, 2H, N₁—CH₂OH); 6.83 (dd, J = 8.7, 2.4, 1H, aromatic H, H₁₁); 6.90 (d, J = 2.4, 1H, aromatic H, H₉); 7.25 (d, J = 8.7, 1H, aromatic H, H₁₂). ¹³C NMR (75 MHz; CDCl₃-d₆, p.p.m.): 11.9, C₁₈; 20.2, C₆; 25.7, C₁₄; 27.6, C₁₉; 29.7, C₁₅; 33.4, C₁₇; 41.7, C₁₆; 41.7, C₂₀; 50.3, C₃; 54.6, C₅; 56.1, O—CH₃; 58.2, C₂₁; 66.2, N₁—CH₂OH; 100.9, C₉; 109.7, C₇; 110.2, C₁₂; 111.2, C₁₁; 128.9, C₈; 142.3, C₂; 154.5, C₁₀. Repeated recrystallizations from dichloromethane afforded white crystals suitable for single crystal X-ray diffraction.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (Cmethine), 0.97 Å (Cmethylene), 0.96 Å (Cmethyl), 0.93 Å (CH₂) and O—H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(Cmethylene, methine, CH₂)$ or $U_{iso}(H) = 1.5U_{eq}(Cmethyl, O)$.

In the absence of anomalous scattering Friedel pairs were merged and any references to the Flack parameter were removed.

Figure 1

Chemical pathway of the formation of the N-hydroxymethylene ibogaine (2).

Figure 2

ORTEP drawing of the title compound with the atom-labelling scheme. Ellispsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Figure 3

Partial packing view showing the formation of intermolecular O-H···N hydrogen bonds.

Figure 4

The crystal paking of the N-hydroxymethylene ibogaine structure along [001].

16-Hydroxymethyl-12-methoxyibogamine

a = 8.499 (1) Å
b = 10.2537(11) Å
c = 20.676 (3) Å
V = 1801.8 (4) Å ³

Z = 4F(000) = 736 $D_{\rm x} = 1.255 {\rm Mg} {\rm m}^{-3}$ Melting point: 436 K Mo *K* α radiation, $\lambda = 0.71070$ Å Cell parameters from 2130 reflections

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (Coppens et al., 1965) $T_{\rm min} = 0.962, \ T_{\rm max} = 0.981$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.123$ S = 1.002131 reflections 228 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

 $\theta = 3.2 - 24.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.47 \times 0.33 \times 0.26 \text{ mm}$

9906 measured reflections 2131 independent reflections 1225 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.079$ $\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$ $h = -10 \rightarrow 10$ $k = -12 \rightarrow 11$ $l = -25 \rightarrow 25$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.06P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.013(2)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All esds are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 . conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

= $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ (Fractional at	tomic co	ordinates	and	isotropic d	or equivale	ent isotropic	displacement	parameters	$(Å^2$	²)
---	---------------	----------	-----------	-----	-------------	-------------	---------------	--------------	------------	--------	----------------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.3015 (3)	0.7399 (3)	0.67173 (13)	0.0699 (10)	
O2	0.4685 (2)	0.3819 (3)	0.37616 (16)	0.0749 (10)	
N1	0.2906 (3)	0.5196 (3)	0.42942 (14)	0.0473 (10)	
N4	-0.2039 (3)	0.3716 (3)	0.39872 (13)	0.0444 (10)	
C2	0.1436 (4)	0.4598 (4)	0.42969 (16)	0.0438 (10)	
C3	-0.1969 (4)	0.2289 (4)	0.4092 (2)	0.0647 (16)	
C5	-0.2164 (3)	0.4504 (4)	0.45746 (15)	0.0466 (12)	
C6	-0.0883 (3)	0.4396 (4)	0.50880 (17)	0.0578 (13)	
C7	0.0731 (4)	0.4847 (4)	0.48818 (15)	0.0465 (12)	
C8	0.1799 (4)	0.5612 (4)	0.52547 (15)	0.0451 (11)	

С9	0.1706 (4)	0.6143 (4)	0.58812 (16)	0.0478 (10)
C10	0.2951 (4)	0.6835 (4)	0.61088 (18)	0.0529 (13)
C11	0.4272 (4)	0.7052 (4)	0.5718 (2)	0.0566 (15)
C12	0.4392 (4)	0.6560 (4)	0.51093 (19)	0.0558 (15)
C13	0.3148 (3)	0.5818 (3)	0.48816 (16)	0.0449 (13)
C14	-0.0654 (4)	0.1689 (4)	0.36909 (19)	0.0612 (15)
C15	-0.0987 (5)	0.1998 (5)	0.2990 (2)	0.0750 (18)
C16	0.0864 (3)	0.3789 (4)	0.37486 (16)	0.0454 (12)
C17	0.0882 (4)	0.2308 (4)	0.38900 (18)	0.0586 (13)
C18	-0.2517 (6)	0.3734 (8)	0.1820 (3)	0.140 (4)
C19	-0.2565 (4)	0.3954 (7)	0.2521 (2)	0.100 (3)
C20	-0.1088 (4)	0.3479 (5)	0.28785 (18)	0.0602 (16)
C21	-0.0813 (3)	0.4137 (4)	0.35298 (14)	0.0431 (12)
C22	0.4069 (4)	0.5073 (4)	0.37864 (17)	0.0572 (13)
C23	0.1784 (5)	0.7078 (5)	0.71452 (18)	0.0777 (16)
H2	0.56220	0.38540	0.36695	0.1121*
H3A	-0.29665	0.18987	0.39714	0.0776*
H3B	-0.17874	0.21105	0.45467	0.0776*
H5A	-0.31577	0.42901	0.47796	0.0558*
H5B	-0.22240	0.54107	0.44437	0.0558*
H6A	-0.12032	0.49033	0.54616	0.0692*
H6B	-0.08102	0.34926	0.52234	0.0692*
Н9	0.08122	0.60219	0.61337	0.0573*
H11	0.50966	0.75501	0.58804	0.0679*
H12	0.52756	0.67152	0.48556	0.0670*
H14	-0.06143	0.07430	0.37574	0.0738*
H15A	-0.19714	0.15943	0.28629	0.0903*
H15B	-0.01575	0.16369	0.27219	0.0903*
H16	0.15678	0.39445	0.33813	0.0547*
H17A	0.17411	0.19026	0.36553	0.0701*
H17B	0.10551	0.21657	0.43483	0.0701*
H18A	-0.34656	0.40616	0.16267	0.2104*
H18B	-0.24268	0.28170	0.17345	0.2104*
H18C	-0.16270	0.41811	0.16388	0.2104*
H19A	-0.34761	0.35095	0.26980	0.1201*
H19B	-0.26962	0.48797	0.26016	0.1201*
H20	-0.01894	0.37112	0.26050	0.0723*
H21	-0.08848	0.50836	0.34730	0.0517*
H22A	0.35897	0.52830	0.33737	0.0686*
H22B	0.49145	0.56900	0.38624	0.0686*
H23A	0.19868	0.74605	0.75608	0.1165*
H23B	0.17177	0.61479	0.71882	0.1165*
H23C	0.08078	0.74087	0.69783	0.1165*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0692 (14)	0.082 (2)	0.0586 (15)	-0.0123 (17)	-0.0034 (16)	-0.0077 (18)

O2	0.0368 (11)	0.078 (2)	0.110 (2)	-0.0021 (13)	0.0146 (16)	-0.023 (2)
N1	0.0333 (14)	0.051 (2)	0.0577 (17)	-0.0022 (14)	0.0062 (15)	-0.0010 (17)
N4	0.0345 (12)	0.046 (2)	0.0527 (17)	-0.0025 (13)	0.0077 (14)	0.0075 (17)
C2	0.0309 (14)	0.048 (2)	0.0525 (18)	-0.0080 (15)	0.0009 (16)	0.008 (2)
C3	0.061 (2)	0.055 (3)	0.078 (3)	-0.003 (2)	0.012 (2)	0.011 (2)
C5	0.0295 (14)	0.062 (3)	0.0484 (17)	-0.0091 (15)	0.0095 (16)	0.000(2)
C6	0.0319 (15)	0.087 (3)	0.0545 (19)	-0.0096 (18)	0.0043 (18)	0.008 (2)
C7	0.0367 (15)	0.058 (3)	0.0449 (16)	0.0021 (17)	0.0018 (17)	0.007 (2)
C8	0.0375 (16)	0.047 (2)	0.0508 (19)	0.0016 (16)	-0.0019 (16)	0.007 (2)
C9	0.0363 (14)	0.052 (2)	0.0551 (19)	0.0004 (16)	-0.0013 (17)	0.004 (2)
C10	0.0477 (17)	0.053 (3)	0.058 (2)	0.0073 (19)	-0.007 (2)	0.001 (2)
C11	0.0418 (15)	0.051 (3)	0.077 (3)	-0.0054 (19)	-0.003 (2)	-0.008 (2)
C12	0.0453 (18)	0.054 (3)	0.068 (3)	-0.0033 (18)	0.005 (2)	-0.002 (2)
C13	0.0349 (16)	0.047 (3)	0.0529 (19)	-0.0033 (16)	0.0003 (18)	0.004 (2)
C14	0.0517 (19)	0.054 (3)	0.078 (3)	0.002 (2)	0.008 (2)	0.001 (2)
C15	0.058 (2)	0.090 (4)	0.077 (3)	-0.009 (2)	-0.008 (2)	-0.022 (3)
C16	0.0328 (14)	0.058 (3)	0.0455 (17)	0.0030 (17)	0.0000 (17)	0.005 (2)
C17	0.0548 (18)	0.055 (3)	0.066 (2)	0.0097 (19)	-0.005 (2)	-0.002 (2)
C18	0.089 (4)	0.248 (9)	0.084 (4)	-0.016 (5)	-0.013 (3)	0.027 (5)
C19	0.041 (2)	0.198 (7)	0.061 (3)	-0.001 (3)	-0.0052 (19)	-0.016 (4)
C20	0.0376 (16)	0.089 (4)	0.054 (2)	0.0018 (19)	0.0005 (18)	0.002 (3)
C21	0.0339 (15)	0.052 (3)	0.0433 (16)	-0.0035 (16)	0.0012 (16)	0.009 (2)
C22	0.0332 (16)	0.081 (3)	0.0575 (19)	-0.0033 (18)	0.0057 (18)	-0.001 (3)
C23	0.077 (2)	0.105 (4)	0.051 (2)	-0.002 (3)	0.002 (2)	-0.007 (3)

Geometric parameters (Å, °)

01—C10	1.386 (5)	C20—C21	1.524 (5)
O1—C23	1.409 (5)	С3—НЗА	0.9701
O2—C22	1.389 (5)	С3—Н3В	0.9701
O2—H2	0.8196	С5—Н5А	0.9701
N1—C2	1.392 (4)	С5—Н5В	0.9696
N1—C22	1.447 (4)	С6—Н6А	0.9702
N1—C13	1.387 (4)	C6—H6B	0.9697
N4—C3	1.480 (5)	С9—Н9	0.9301
N4—C21	1.472 (4)	C11—H11	0.9299
N4—C5	1.463 (4)	C12—H12	0.9297
C2—C7	1.374 (5)	C14—H14	0.9803
C2—C16	1.486 (5)	C15—H15A	0.9697
C3—C14	1.522 (5)	C15—H15B	0.9702
C5—C6	1.525 (4)	C16—H16	0.9798
C6—C7	1.509 (4)	C17—H17A	0.9703
C7—C8	1.426 (5)	C17—H17B	0.9700
C8—C13	1.398 (4)	C18—H18A	0.9605
C8—C9	1.407 (5)	C18—H18B	0.9598
C9—C10	1.358 (5)	C18—H18C	0.9606
C10-C11	1.401 (5)	С19—Н19А	0.9702
C11—C12	1.360 (6)	C19—H19B	0.9701

C12—C13	1.385 (5)	C20—H20	0.9797
C14—C15	1.510 (6)	C21—H21	0.9796
C14—C17	1.509 (5)	C22—H22A	0.9698
C15—C20	1.538 (7)	C22—H22B	0.9702
C16—C17	1.547 (6)	C23—H23A	0.9602
C16—C21	1.537(4)	C23—H23B	0.9595
C18 - C19	1 467 (8)	C23—H23C	0.9604
C19-C20	1.536 (6)		0.9001
01) 020	1.550 (0)		
O2…C3 ⁱ	3.319 (4)	H5A…O2 ^{iv}	2.8329
O2···C5 ⁱ	3.239 (4)	H5A…H2 ^{iv}	2.5581
O2…N4 ⁱ	2.825(3)	H5A···H3B	2.5657
02···C16	3 248 (3)	H5A····H17B ^v	2,4346
01H20 ⁱⁱ	2.8425	H5B···H21	2.3315
01···H21 ⁱⁱⁱ	2 7735	H5B···C10 ^{vii}	3 0501
02···H3A ⁱ	2.8371	H5B···C11 ^{vii}	2 9150
02 ···H5A ⁱ	2.8379	H6A····C9	2.9130
02 H3A 02…H16	2.0525	H6AH9	2.9124
02H19A ⁱ	2.7005	H6B···C3	2.4001
N4…O2 ^{iv}	2.7105 2.825 (3)	H6B···H3B	2.0225
N4H2 ^{iv}	2.025 (5)	HOD HOD HO…C6	3 0870
N4 H2 N4…H19Δ	2.0307	H9C23	2 4957
$C3\cdots O2^{iv}$	3 319 (4)	H9H6A	2.4957
C3···C8 ^v	3 431 (6)	H9H23B	2.4001
$C5 \cdots C2^{iv}$	3,739(4)	H9H23C	2.5157
C8…C3 ^{vi}	3 431 (6)	H9H18A ^{ix}	2.2320
C16…O2	3,131(0) 3,248(3)	H12C22	2.2111
C3H2 ^{iv}	5.248(5) 2 7441	H12H22B	2.9021
C3…H6B	2.7441	H12····C8 ⁱⁱⁱ	3 0396
C5H2 ^{iv}	2.0225	H12····C9 ⁱⁱⁱ	2 9363
Сб…Н9	3.0870	$H12^{\circ}C9^{\circ}$	3 0798
C6H3B	2 7084	$H14\cdots C10^{v}$	2 9242
C7…H17B	2 9751	$H14\cdots C11^{v}$	3 0658
C8····H3A ^{vi}	3.0377	Н15А…НЗА	2 4629
C8····H12 ^{vii}	3 0396	H15AH19A	2.1622
C8····H3B ^{vi}	3.0667	H15B···H17A	2,5302
C9H23B	2 7024	H16…O2	2,5505
С9…Н23С	2.7021	H16···C15	3 0582
С9…Н6А	2.7220	H16C22	2 5611
C9···H14 ^{vi}	3 0798	H16···H20	2.2011
C9····H12 ^{vii}	2 9363	H16H22A	2 1993
C10H5B ⁱⁱⁱ	3.0501	$H16C23^{x}$	3 0973
C10···H14 ^{vi}	2 9747	H16···H23A×	2 5422
C11···H5B ⁱⁱⁱ	2.9242	H17AH15R	2.5422
$C11 \cdots H14^{vi}$	3.0658	H17AH23A×	2.5505
C11H18C ⁱⁱ	3,0000	H17BC7	2.3910
C12····H22B	2 7640	H17B…H3R	2.9751
C15H16	2.70+0	H17BH5Avi	2.7311
U1J 1110	5.0502		2.4340

C15…H18B	2.9902	H18A…H9 ^{viii}	2.2414
C16…H22A	2.8834	H18B…C15	2.9902
C18····H23C ^{viii}	3.0500	H18C…H20	2.3908
C19…H2 ^{iv}	2.8326	H18C···C11 ^x	3.0380
C21…H2 ^{iv}	3.0574	H19A…O2 ^{iv}	2.7165
C22…H12	2.9621	H19A…N4	2.9397
C22…H16	2.5611	H19A…H2 ^{iv}	2.1788
С23…Н9	2,4957	H19A…H15A	2.3682
C23…H16 ⁱⁱ	3.0973	H19A…C23 ^{viii}	3.0941
C23···H19A ^{ix}	3.0941	H19B…H21	2.3791
H2···N4 ⁱ	2.0984	H20H16	2,2054
$H2\cdots C3^{i}$	2.0901	H20H18C	2 3908
$H2 \cdots C5^{i}$	2.7111	H2001×	2.8425
$H2 \cdots C19^{i}$	2.7302	H20 01 H21H5B	2.3425
$H_2 \cdots C_{21}^{i}$	3.0574	H21H10B	2.3313
	2 4192		2.3791
	2.4105		2.7733
	2.3381	H22AC16	2.8834
	2.1/88	H22AH10	2.1993
	2.83/1	H22B····C12	2.7640
	2.4183	H22B···H12	2.3273
H3A…H15A	2.4629	H23A···H16 ⁿ	2.5421
H3A…C8 ^v	3.0377	H23A····H17A ⁿ	2.5916
H3B…C6	2.7084	H23B…C9	2.7024
НЗВ…Н5А	2.5657	H23B…H9	2.3157
НЗВ…Н6В	2.1577	H23C…C9	2.7226
H3B…H17B	2.4511	H23C…H9	2.2520
H3B····C8 ^v	3.0667	H23C····C18 ^{ix}	3.0500
C10—O1—C23	116.3 (3)	С5—С6—Н6А	108.37
С22—О2—Н2	109.52	С5—С6—Н6В	108.42
C2—N1—C13	109.4 (3)	С7—С6—Н6А	108.40
C2—N1—C22	125.3 (3)	С7—С6—Н6В	108.44
C13—N1—C22	125.0 (3)	H6A—C6—H6B	107.47
C3—N4—C5	115.3 (3)	С8—С9—Н9	120.72
C3—N4—C21	110.8 (3)	С10—С9—Н9	120.77
C5—N4—C21	115.0 (3)	C10—C11—H11	118.88
N1—C2—C16	122.4 (3)	C12—C11—H11	118.78
C7—C2—C16	129.2 (3)	C11—C12—H12	121.28
N1—C2—C7	108.3(3)	C13—C12—H12	121.25
N4-C3-C14	100.0(3)	C3-C14-H14	110.42
N4-C5-C6	110.1(3) 1191(3)	C15-C14-H14	110.12
$C_{5}-C_{6}-C_{7}$	115.5 (3)	C17 - C14 - H14	110.38
$C_{2} = C_{7} = C_{8}$	107.5(3)	C14— $C15$ — $H15A$	109.40
$C_{2} = C_{7} = C_{8}$	126 5 (3)	C14 $C15$ $H15R$	100.40
C_{2} C_{7} C_{6}	126.0(3)	$C_{14} = C_{15} = H_{15} M_{15}$	109.39
$C_2 - C_7 - C_0$	120.0(3) 107.0(2)	$C_{20} = C_{13} = H_{13}A$	107.43
$C_{1} = C_{0} = C_{13}$	107.9(3) 110.7(2)	$U_{15} = U_{15} = U_{15} = U_{15}$	107.3/
$C_{7} = C_{8} = C_{13}$	119.7(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.01
U/U9	132.4 (3)	U2-U10-H10	107.30

C8—C9—C10	118.5 (3)	C17—C16—H16	107.47
O1—C10—C9	124.3 (3)	C21—C16—H16	107.47
O1—C10—C11	115.2 (3)	C14—C17—H17A	109.54
C9—C10—C11	120.5 (3)	C14—C17—H17B	109.54
C10-C11-C12	122.3 (3)	С16—С17—Н17А	109.49
C11—C12—C13	117.5 (3)	C16—C17—H17B	109.50
N1—C13—C8	107.0 (3)	H17A—C17—H17B	108.06
C8—C13—C12	121.4 (3)	C19—C18—H18A	109.51
N1—C13—C12	131.6 (3)	C19—C18—H18B	109.56
C3—C14—C15	107.5 (3)	C19—C18—H18C	109.50
C15—C14—C17	109.6 (3)	H18A—C18—H18B	109.45
C3—C14—C17	108.5 (3)	H18A—C18—H18C	109.38
C14—C15—C20	111.2 (4)	H18B—C18—H18C	109.44
C2-C16-C17	113.6 (3)	С18—С19—Н19А	108.82
C2—C16—C21	113.5 (3)	C18—C19—H19B	108.86
C17—C16—C21	107.0 (3)	С20—С19—Н19А	108.77
C14—C17—C16	110.7 (3)	C20—C19—H19B	108.75
C18—C19—C20	113.8 (4)	H19A—C19—H19B	107.64
C15—C20—C21	107.2 (3)	C15—C20—H20	106.43
C19—C20—C21	114.2 (4)	C19—C20—H20	106.40
C15—C20—C19	115.5 (4)	С21—С20—Н20	106.43
N4—C21—C16	113.5 (3)	N4—C21—H21	108.88
C16—C21—C20	107.4 (3)	C16—C21—H21	108.85
N4—C21—C20	109.2 (3)	C20—C21—H21	108.85
O2—C22—N1	111.4 (3)	O2—C22—H22A	109.35
N4—C3—H3A	109.57	O2—C22—H22B	109.29
N4—C3—H3B	109.56	N1—C22—H22A	109.39
С14—С3—НЗА	109.57	N1—C22—H22B	109.36
C14—C3—H3B	109.57	H22A—C22—H22B	107.99
НЗА—СЗ—НЗВ	108.08	O1—C23—H23A	109.46
N4—C5—H5A	107.53	O1—C23—H23B	109.51
N4—C5—H5B	107.56	O1—C23—H23C	109.47
С6—С5—Н5А	107.52	H23A—C23—H23B	109.49
C6—C5—H5B	107.55	H23A—C23—H23C	109.41
H5A—C5—H5B	107.04	H23B—C23—H23C	109.48
C23—O1—C10—C9	8.4 (6)	C6-C7-C8-C13	-179.5 (3)
C23—O1—C10—C11	-173.2 (4)	C6—C7—C8—C9	0.3 (7)
C13—N1—C2—C16	-176.6 (3)	C2-C7-C8-C13	0.2 (4)
C13—N1—C2—C7	0.6 (4)	C7—C8—C13—C12	178.5 (3)
C22—N1—C2—C7	174.5 (3)	C7—C8—C13—N1	0.2 (4)
C2-N1-C13-C12	-178.5 (4)	C13—C8—C9—C10	-0.7 (6)
C22—N1—C13—C12	7.5 (6)	C7—C8—C9—C10	179.5 (4)
C2—N1—C22—O2	-68.4 (4)	C9—C8—C13—N1	-179.7 (3)
C13—N1—C22—O2	104.6 (4)	C9—C8—C13—C12	-1.4 (5)
C22—N1—C2—C16	-2.7 (6)	C8—C9—C10—C11	2.3 (6)
C22—N1—C13—C8	-174.4 (3)	C8—C9—C10—O1	-179.5 (4)
C2—N1—C13—C8	-0.5 (4)	O1—C10—C11—C12	179.7 (4)

C5—N4—C21—C16	74.8 (4)	C9-C10-C11-C12	-1.8 (6)
C3—N4—C21—C16	-58.2 (4)	C10-C11-C12-C13	-0.2 (6)
C5—N4—C21—C20	-165.3 (3)	C11—C12—C13—C8	1.8 (5)
C5—N4—C3—C14	-133.2 (3)	C11—C12—C13—N1	179.6 (4)
C21—N4—C3—C14	-0.3 (4)	C17—C14—C15—C20	-59.4 (4)
C21—N4—C5—C6	-72.2 (4)	C3—C14—C17—C16	-62.3 (4)
C3—N4—C21—C20	61.6 (4)	C3-C14-C15-C20	58.3 (4)
C3—N4—C5—C6	58.7 (4)	C15—C14—C17—C16	54.8 (4)
N1—C2—C7—C6	179.2 (3)	C14—C15—C20—C19	-128.7 (3)
C7—C2—C16—C17	-70.8 (5)	C14—C15—C20—C21	-0.1 (4)
N1-C2-C16-C17	105.7 (4)	C2-C16-C21-C20	166.7 (3)
C16—C2—C7—C8	176.5 (4)	C17—C16—C21—N4	53.7 (4)
N1-C2-C16-C21	-131.7 (3)	C2-C16-C21-N4	-72.4 (4)
C16—C2—C7—C6	-3.8 (7)	C2-C16-C17-C14	133.0 (3)
N1—C2—C7—C8	-0.5 (4)	C17—C16—C21—C20	-67.2 (4)
C7—C2—C16—C21	51.7 (5)	C21—C16—C17—C14	6.9 (4)
N4—C3—C14—C17	59.5 (4)	C18—C19—C20—C21	157.5 (5)
N4—C3—C14—C15	-59.0 (4)	C18—C19—C20—C15	-77.5 (6)
N4—C5—C6—C7	64.4 (5)	C19—C20—C21—N4	68.8 (5)
C5—C6—C7—C8	137.5 (4)	C19—C20—C21—C16	-167.7 (4)
C5—C6—C7—C2	-42.2 (6)	C15—C20—C21—C16	63.0 (4)
C2—C7—C8—C9	-180.0 (4)	C15—C20—C21—N4	-60.5 (4)

Symmetry codes: (i) x+1, y, z; (ii) -x+1/2, -y+1, z+1/2; (iii) x+1/2, -y+3/2, -z+1; (iv) x-1, y, z; (v) x-1/2, -y+1/2, -z+1; (vi) x+1/2, -y+1/2, -z+1; (vii) x-1/2, -y+1/2, -z+1; (vii) x-1/2, -y+1/2, -z+1; (vii) x-1/2, -y+1/2, -z+1; (vii) x+1/2, -y+1/2, -z+1; (vii) x-1/2, -y+1/2, -z+1; (vii) x+1/2, -z+1/2, -z+1; (vii) x+1/2, -z+1/2, -z+1/

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
O2—H2···N4 ⁱ	0.8200	2.1000	2.825 (3)	148.00

Symmetry code: (i) x+1, y, z.