

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N'-Bis[(*E*)-2-Benzylidenepropylidene]ethane-1,2-diamine

Aliakbar Dehno Khalaji^a and Seik Weng Ng^{b*}

^aDepartment of Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 11 August 2008; accepted 11 August 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.069; wR factor = 0.228; data-to-parameter ratio = 13.8.

The two independent molecules in the asymmetric unit of the title Schiff base, $C_{22}H_{24}N_2$, lie across centers of inversion. The C—N double bonds are in a *trans* configuration.

Related literature

There are many examples of similar Schiff bases in the current (2008) Cambridge Structural Database; for example, see: Khalaji *et al.* (2007). For the structure of bis[(E)-3-phenyl-propen-1-al]-1,2-diiminoethane, see: Khalaji & Weil (2007).

organic compounds

Experimental

Crvstal data

$\begin{array}{l} C_{22}H_{24}N_2 \\ M_r = 316.43 \\ \text{Triclinic, } P\overline{1} \\ a = 9.524 \ (2) \ \mathring{A} \\ b = 9.576 \ (2) \ \mathring{A} \\ c = 10.202 \ (2) \ \mathring{A} \\ \alpha = 88.160 \ (3)^{\circ} \\ \beta = 76.865 \ (2)^{\circ} \end{array}$	$\gamma = 78.651 (3)^{\circ}$ $V = 888.3 (3) \text{ Å}^3$ Z = 2 Mo K α radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 100 (2) K $0.24 \times 0.12 \times 0.08 \text{ mm}$
Data collection	
Bruker SMART APEX diffractometer Absorption correction: none 4114 measured reflections	3015 independent reflections 2186 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.228$ S = 1.13 3015 reflections	219 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.30 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank Gorgan University of Agricultural Sciences and Natural Resources and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2448).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Khalaji, A. D., Brad, K. & Zhang, Y. (2007). Acta Cryst. E63, 04389.
Khalaji, A. D. & Weil, M. (2007). Anal. Sci. 23, x187–x188.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2008). *publCIF*. In preparation.

supporting information

Acta Cryst. (2008). E64, o1771 [doi:10.1107/S1600536808025919]

N,N'-Bis[(E)-2-Benzylidenepropylidene]ethane-1,2-diamine

Aliakbar Dehno Khalaji and Seik Weng Ng

S1. Experimental

Ethylenediamine (1 mmol, 60 mg) and α -methylcinnamaldehyde (2 mmol, 292 mg) were dissolved in methanol (10 ml) to give a colorless solution. Slow evaporation of the solvent yielded colorless crystals in about 85% yield.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2 to 1.5U(C).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the two independent molecules of the title compound; probability ellipsoids are set at the 70% level, and H atoms are drawn as spheres of arbitrary radius. The two molecules lie about centers of inversion.

N,N'-Bis[(E)-2-Benzylidenepropylidene]ethane-1,2-diamine

Crystal data	
$C_{22}H_{24}N_2$	$\alpha = 88.160 \ (3)^{\circ}$
$M_r = 316.43$	$\beta = 76.865 \ (2)^{\circ}$
Triclinic, P1	$\gamma = 78.651 \ (3)^{\circ}$
Hall symbol: -P 1	V = 888.3 (3) Å ³
a = 9.524 (2) Å	Z = 2
b = 9.576 (2) Å	F(000) = 340
c = 10.202 (2) Å	$D_{\rm x} = 1.183 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 1031 reflections $\theta = 3.2-28.0^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$

Data collection

Data collection	
Bruker SMART APEX	2186 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.023$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Graphite monochromator	$h = -11 \rightarrow 11$
ω scans	$k = -11 \rightarrow 7$
4114 measured reflections	$l = -12 \rightarrow 12$
3015 independent reflections	
Refinement	

T = 100 K

Block, colorless

 $0.24\times0.12\times0.08~mm$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.069$	Hydrogen site location: inferred from
$wR(F^2) = 0.228$	neighbouring sites
S = 1.13	H-atom parameters constrained
3015 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0966P)^2 + 1.385P]$
219 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

			_	IT */IT
	X	У	Ζ	$U_{\rm iso} / U_{\rm eq}$
N1	0.3982 (3)	1.1256 (3)	0.1398 (3)	0.0221 (7)
N2	0.3642 (3)	0.5970 (3)	0.1443 (3)	0.0220 (7)
C1	0.1158 (4)	1.3426 (4)	0.6498 (4)	0.0242 (8)
H1	0.0674	1.3700	0.5785	0.029*
C2	0.0423 (4)	1.3777 (4)	0.7810 (4)	0.0268 (9)
H2	-0.0567	1.4279	0.7993	0.032*
C3	0.1114 (4)	1.3405 (4)	0.8862 (4)	0.0238 (8)
Н3	0.0597	1.3646	0.9762	0.029*
C4	0.2550 (4)	1.2685 (4)	0.8602 (4)	0.0238 (8)
H4	0.3026	1.2428	0.9322	0.029*
C5	0.3297 (4)	1.2335 (4)	0.7291 (3)	0.0218 (8)
H5	0.4296	1.1860	0.7118	0.026*
C6	0.2613 (4)	1.2668 (4)	0.6210 (3)	0.0209 (8)
C7	0.3478 (4)	1.2169 (4)	0.4872 (3)	0.0211 (8)
H7	0.4501	1.1871	0.4819	0.025*
C8	0.3067 (4)	1.2062 (4)	0.3699 (3)	0.0198 (8)
С9	0.1543 (4)	1.2473 (5)	0.3469 (4)	0.0358 (10)
H9A	0.0849	1.2137	0.4217	0.054*
H9B	0.1502	1.2039	0.2625	0.054*
H9C	0.1279	1.3512	0.3415	0.054*
C10	0.4227 (4)	1.1443 (4)	0.2552 (3)	0.0209 (8)
H10	0.5204	1.1169	0.2671	0.025*

C11	0.5216 (4)	1.0601 (4)	0.0345 (3)	0.0224 (8)
H11A	0.6070	1.0211	0.0738	0.027*
H11B	0.5500	1.1325	-0.0326	0.027*
C12	0.1872 (4)	0.8841 (4)	0.6385 (4)	0.0234 (8)
H12	0.1826	0.9391	0.5599	0.028*
C13	0.1387 (4)	0.9502 (4)	0.7643 (4)	0.0235 (8)
H13	0.1002	1.0497	0.7709	0.028*
C14	0.1461 (4)	0.8727 (4)	0.8798 (4)	0.0252 (8)
H14	0.1117	0.9184	0.9656	0.030*
C15	0.2040 (4)	0.7277 (4)	0.8698 (4)	0.0238 (8)
H15	0.2112	0.6740	0.9488	0.029*
C16	0.2510 (4)	0.6617 (4)	0.7450 (4)	0.0224 (8)
H16	0.2901	0.5622	0.7394	0.027*
C17	0.2427 (3)	0.7372 (4)	0.6261 (3)	0.0188 (8)
C18	0.2977 (4)	0.6565 (4)	0.4993 (4)	0.0210 (8)
H18	0.3495	0.5626	0.5085	0.025*
C19	0.2885 (4)	0.6906 (4)	0.3718 (3)	0.0201 (8)
C20	0.2131 (4)	0.8296 (4)	0.3247 (4)	0.0260 (9)
H20A	0.1151	0.8581	0.3833	0.039*
H20B	0.2041	0.8184	0.2320	0.039*
H20C	0.2711	0.9028	0.3282	0.039*
C21	0.3610 (4)	0.5804 (4)	0.2695 (3)	0.0207 (8)
H21	0.4084	0.4915	0.2977	0.025*
C22	0.4398 (4)	0.4776 (4)	0.0556 (3)	0.0245 (8)
H22A	0.3687	0.4421	0.0145	0.029*
H22B	0.4845	0.3993	0.1079	0.029*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0217 (15)	0.0204 (16)	0.0237 (17)	-0.0038 (12)	-0.0043 (13)	-0.0017 (12)
N2	0.0225 (15)	0.0213 (16)	0.0224 (17)	-0.0058 (12)	-0.0041 (12)	0.0005 (12)
C1	0.0238 (18)	0.026 (2)	0.0222 (19)	-0.0025 (15)	-0.0076 (15)	0.0024 (15)
C2	0.0238 (19)	0.027 (2)	0.028 (2)	-0.0021 (16)	-0.0043 (16)	-0.0027 (16)
C3	0.0293 (19)	0.0191 (19)	0.0221 (19)	-0.0049 (15)	-0.0035 (15)	-0.0022 (15)
C4	0.030(2)	0.0163 (18)	0.027 (2)	-0.0048 (15)	-0.0112 (16)	0.0010 (15)
C5	0.0228 (18)	0.0181 (18)	0.026 (2)	-0.0040 (15)	-0.0085 (15)	0.0012 (15)
C6	0.0238 (18)	0.0178 (18)	0.0226 (19)	-0.0077 (14)	-0.0054 (15)	0.0012 (14)
C7	0.0198 (17)	0.0186 (18)	0.0239 (19)	-0.0034 (14)	-0.0031 (15)	-0.0003 (15)
C8	0.0233 (18)	0.0190 (18)	0.0191 (18)	-0.0075 (15)	-0.0062 (15)	0.0033 (14)
C9	0.028 (2)	0.053 (3)	0.025 (2)	0.0003 (19)	-0.0093 (17)	-0.0110 (19)
C10	0.0200 (17)	0.0176 (18)	0.026 (2)	-0.0054 (14)	-0.0064 (15)	0.0046 (14)
C11	0.0220 (18)	0.026 (2)	0.0196 (18)	-0.0063 (15)	-0.0036 (15)	0.0001 (15)
C12	0.0253 (19)	0.023 (2)	0.026 (2)	-0.0094 (15)	-0.0108 (16)	0.0056 (15)
C13	0.0176 (17)	0.0210 (19)	0.031 (2)	-0.0011 (14)	-0.0054 (15)	-0.0033 (15)
C14	0.0189 (18)	0.030(2)	0.0243 (19)	-0.0042 (15)	0.0006 (15)	-0.0064 (16)
C15	0.0227 (18)	0.030 (2)	0.0179 (18)	-0.0043 (16)	-0.0046 (15)	0.0036 (15)
C16	0.0208 (17)	0.0196 (19)	0.027 (2)	-0.0033 (15)	-0.0076 (15)	0.0042 (15)

supporting information

C17	0.0143 (16)	0.0236 (19)	0.0185 (18)	-0.0059 (14)	-0.0021 (13)	0.0023 (14)
C18	0.0196 (17)	0.0153 (18)	0.028 (2)	-0.0020 (14)	-0.0057 (15)	0.0013 (14)
C19	0.0190 (17)	0.0210 (19)	0.0215 (19)	-0.0072 (14)	-0.0043 (14)	0.0018 (14)
C20	0.028 (2)	0.0214 (19)	0.025 (2)	0.0013 (16)	-0.0037 (16)	0.0007 (16)
C21	0.0236 (18)	0.0176 (18)	0.0222 (19)	-0.0061 (15)	-0.0059 (14)	0.0014 (14)
C22	0.031 (2)	0.0207 (19)	0.0220 (19)	-0.0058 (16)	-0.0067 (16)	-0.0025 (15)

Geometric parameters (Å, °)

N1-C10	1.276 (5)	C11—H11A	0.9900	
N1-C11	1.452 (5)	C11—H11B	0.9900	
N2-C21	1.276 (5)	C12—C13	1.389 (5)	
N2-C22	1.446 (5)	C12—C17	1.401 (5)	
C1—C2	1.380 (5)	C12—H12	0.9500	
C1—C6	1.403 (5)	C13—C14	1.380 (5)	
C1—H1	0.9500	C13—H13	0.9500	
C2—C3	1.384 (5)	C14—C15	1.388 (5)	
С2—Н2	0.9500	C14—H14	0.9500	
C3—C4	1.375 (5)	C15—C16	1.380 (5)	
С3—Н3	0.9500	C15—H15	0.9500	
C4—C5	1.382 (5)	C16—C17	1.401 (5)	
C4—H4	0.9500	C16—H16	0.9500	
С5—С6	1.401 (5)	C17—C18	1.464 (5)	
С5—Н5	0.9500	C18—C19	1.349 (5)	
С6—С7	1.465 (5)	C18—H18	0.9500	
С7—С8	1.354 (5)	C19—C21	1.462 (5)	
С7—Н7	0.9500	C19—C20	1.502 (5)	
C8—C10	1.463 (5)	C20—H20A	0.9800	
С8—С9	1.497 (5)	C20—H20B	0.9800	
С9—Н9А	0.9800	C20—H20C	0.9800	
С9—Н9В	0.9800	C21—H21	0.9500	
С9—Н9С	0.9800	C22—C22 ⁱⁱ	1.534 (7)	
C10—H10	0.9500	C22—H22A	0.9900	
C11-C11 ⁱ	1.536 (7)	C22—H22B	0.9900	
C10-N1-C11	117.7 (3)	H11A—C11—H11B	108.2	
C21—N2—C22	117.0 (3)	C13—C12—C17	120.8 (3)	
C2-C1-C6	120.5 (3)	C13—C12—H12	119.6	
C2—C1—H1	119.8	C17—C12—H12	119.6	
C6C1H1	119.8	C14—C13—C12	120.6 (3)	
C1—C2—C3	120.7 (3)	C14—C13—H13	119.7	
C1—C2—H2	119.7	C12—C13—H13	119.7	
С3—С2—Н2	119.7	C13—C14—C15	119.6 (3)	
C4—C3—C2	119.9 (3)	C13—C14—H14	120.2	
С4—С3—Н3	120.0	C15—C14—H14	120.2	
С2—С3—Н3	120.0	C16—C15—C14	119.8 (3)	
C3—C4—C5	119.8 (3)	C16—C15—H15	120.1	
C3—C4—H4	120.1	C14—C15—H15	120.1	

C5—C4—H4	120.1	C15—C16—C17	121.8 (3)
C4—C5—C6	121.4 (3)	C15—C16—H16	119.1
C4—C5—H5	119.3	C17—C16—H16	119.1
С6—С5—Н5	119.3	C12—C17—C16	117.3 (3)
C5—C6—C1	117.6 (3)	C12—C17—C18	125.6 (3)
C5—C6—C7	116.9 (3)	C16—C17—C18	117.1 (3)
C1—C6—C7	125.5 (3)	C19—C18—C17	132.0 (3)
C8—C7—C6	131.0 (3)	C19—C18—H18	114.0
С8—С7—Н7	114.5	C17—C18—H18	114.0
С6—С7—Н7	114.5	C18—C19—C21	116.0 (3)
C7—C8—C10	116.5 (3)	C18—C19—C20	126.8 (3)
C7—C8—C9	126.6 (3)	C21—C19—C20	117.2 (3)
C10—C8—C9	116.9 (3)	C19—C20—H20A	109.5
С8—С9—Н9А	109.5	C19—C20—H20B	109.5
С8—С9—Н9В	109.5	H20A—C20—H20B	109.5
Н9А—С9—Н9В	109.5	C19—C20—H20C	109.5
С8—С9—Н9С	109.5	H20A—C20—H20C	109.5
Н9А—С9—Н9С	109.5	H20B-C20-H20C	109.5
Н9В—С9—Н9С	109.5	N2-C21-C19	123.5 (3)
N1-C10-C8	122.7 (3)	N2—C21—H21	118.2
N1-C10-H10	118.6	C19—C21—H21	118.2
C8—C10—H10	118.6	N2-C22-C22 ⁱⁱ	110.4 (4)
N1-C11-C11 ⁱ	109.5 (3)	N2—C22—H22A	109.6
N1-C11-H11A	109.8	C22 ⁱⁱ —C22—H22A	109.6
C11 ⁱ —C11—H11A	109.8	N2—C22—H22B	109.6
N1-C11-H11B	109.8	C22 ⁱⁱ —C22—H22B	109.6
C11 ⁱ —C11—H11B	109.8	H22A—C22—H22B	108.1
C6—C1—C2—C3	0.9 (6)	C17—C12—C13—C14	0.8 (5)
C1—C2—C3—C4	0.4 (6)	C12—C13—C14—C15	0.7 (5)
C2—C3—C4—C5	0.0 (5)	C13—C14—C15—C16	-1.2 (5)
C3—C4—C5—C6	-1.6 (5)	C14—C15—C16—C17	0.2 (5)
C4—C5—C6—C1	2.8 (5)	C13—C12—C17—C16	-1.8 (5)
C4—C5—C6—C7	-176.2 (3)	C13—C12—C17—C18	-179.5 (3)
C2-C1-C6-C5	-2.4 (5)	C15—C16—C17—C12	1.3 (5)
C2-C1-C6-C7	176.5 (3)	C15—C16—C17—C18	179.2 (3)
C5—C6—C7—C8	165.1 (4)	C12—C17—C18—C19	-12.3 (6)
C1—C6—C7—C8	-13.8 (6)	C16—C17—C18—C19	169.9 (4)
C6—C7—C8—C10	-177.0 (3)	C17—C18—C19—C21	178.9 (3)
C6—C7—C8—C9	1.1 (6)	C17—C18—C19—C20	-0.6 (6)
C11—N1—C10—C8	-178.6 (3)	C22—N2—C21—C19	-179.8 (3)
C7—C8—C10—N1	178.6 (3)	C18—C19—C21—N2	-178.9 (3)
C9—C8—C10—N1	0.2 (5)	C20—C19—C21—N2	0.6 (5)
C10-N1-C11-C11 ⁱ	131.7 (4)	C21—N2—C22—C22 ⁱⁱ	-124.0 (4)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) -*x*+1, -*y*+1, -*z*.