

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Piperidinium 3-hydroxy-2-naphthoate

Yong-Tao Wang,* Gui-Mei Tang, Yong-Chun Zhang and Wen-Zhu Wan

Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250353, People's Republic of China Correspondence e-mail: ceswyt@sohu.com

Received 30 July 2008; accepted 8 August 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.161; data-to-parameter ratio = 18.7.

The crystals of the title salt, $C_5H_{12}N^+ \cdot C_{11}H_7O_3^-$, were obtained from a methanol/water solution of 3-hydroxy-2-naphthoic acid and piperidine at room temperature. In the crystal structure, the piperidinium cations display a chair conformation and link with hydroxynaphthoate anions *via* $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds. An intramolecular $O-H\cdots O$ interaction is also present.

Related literature

For background, see: Shen *et al.* (2008); Wang *et al.* (2005*a*,*b*, 2006).

Experimental

Crystal data $C_5H_{12}N^+ \cdot C_{11}H_7O_3^ M_r = 273.32$

Monoclinic, $P2_1/n$ *a* = 8.6683 (3) Å b = 19.4537 (5) Å c = 9.5932 (3) Å $\beta = 111.959 (2)^{\circ}$ $V = 1500.34 (8) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector
diffractometer3385 independent reflections1512 reflections with $I > \sigma(I)$ Absorption correction: none
10640 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 181 parameters $wR(F^2) = 0.160$ H-atom parameters constrainedS = 0.99 $\Delta \rho_{max} = 0.13 \text{ e } \text{\AA}^{-3}$ 3385 reflections $\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1B \cdots O3$ $N1 - H1C \cdots O2^{i}$ $N1 - H1D \cdots O3$ $C12 - H12A \cdots O1^{ii}$	0.82 0.96 0.96 0.97	1.77 1.83 1.75 2.40	2.504 (2) 2.783 (2) 2.709 (2) 3.336 (3)	149 173 173 161

Symmetry codes: (i) -x, -y, -z + 1; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Y-TW thanks the Starting Fund of Shandong Institute of Light Industry for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2446).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shen, H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, o1146-o1147.

Wang, Y.-T., Tang, G.-M. & Qin, D.-W. (2005*a*). *Acta Cryst.* E61, 03623–03624. Wang, Y.-T., Tang, G.-M. & Qin, D.-W. (2005*b*). *Acta Cryst.* E61, 03979–03980.

Wang, Y.-T., Tang, G.-M. & Qin, X.-Y. (2006). Acta Cryst. E62, o1496-o1497.

Mo $K\alpha$ radiation

 $0.40 \times 0.30 \times 0.20$ mm

 $\mu = 0.08 \text{ mm}^{-1}$

T = 298 (2) K

supporting information

Acta Cryst. (2008). E64, o1753 [doi:10.1107/S1600536808025567]

Piperidinium 3-hydroxy-2-naphthoate

Yong-Tao Wang, Gui-Mei Tang, Yong-Chun Zhang and Wen-Zhu Wan

S1. Comment

In some biological system, intermolecular interactions play the important role (Shen *et al.*, 2008), these interactions have attracted our much attention in past years. A series of compounds with weak intermolecular interactions have been synthesized and their crystal structures have been characterized (Wang *et al.*, 2005a,b, 2006). As part of our investigation, we recently prepared the title compound and present here its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one 3-hydroxy-2-naphthoate anion and one piperidinium cation. The piperidinium cation displays a typical chair conformation. The carboxylate group is coplanar with the naphthalene ring. Intermolecular N—H…O and C—H…O hydrogen bonding presents in the crystal structure (Table 1).

S2. Experimental

3-Hydroxy-2-naphthoic acid (94 mg, 0.5 mmol) and piperidine (43 mg, 0.5 mmol) were dissolved in methanol (5 ml) and water (1 ml) at room temperature. The single crystals of the title compound were obtained from the solution after several days.

S3. Refinement

H atoms were placed in calculated positions with O—H = 0.82, N—H = 0.96, C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode with $U_{iso}(H) = 1.5U_{eq}(O,N)$ and $1.2U_{iso}(C)$.

Figure 1

A drawing of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Piperidinium 3-hydroxy-2-naphthoate

Crystal data

 $C_{5}H_{12}N^{+}C_{11}H_{7}O_{3}^{-}$ $M_{r} = 273.32$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 8.6683 (3) Å b = 19.4537 (5) Å c = 9.5932 (3) Å $\beta = 111.959$ (2)° V = 1500.34 (8) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	1512 reflections with $I > \sigma(I)$
diffractometer	$R_{\rm int} = 0.035$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Graphite monochromator	$h = -9 \rightarrow 11$
φ and ω scans	$k = -25 \rightarrow 22$
10640 measured reflections	$l = -12 \rightarrow 12$
3385 independent reflections	

F(000) = 584

 $\theta = 2.5 - 20.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 298 K

Block. colourless

 $0.40 \times 0.30 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.210 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1627 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.160$	neighbouring sites
<i>S</i> = 0.99	H-atom parameters constrained
3385 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0733P)^2]$
181 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	-0.1726 (2)	0.09197 (8)	0.39856 (18)	0.0718 (5)	
H1C	-0.1979	0.0491	0.4346	0.108*	
H1D	-0.0626	0.1054	0.4635	0.108*	
01	0.31760 (19)	0.22455 (7)	0.73435 (18)	0.0944 (5)	
H1B	0.2331	0.2051	0.6786	0.142*	

O2	0.24997 (18)	0.03674 (7)	0.51894 (15)	0.0832 (5)
O3	0.14101 (19)	0.13370 (8)	0.56381 (18)	0.0948 (5)
C1	0.6069 (3)	0.20988 (10)	0.8318 (2)	0.0692 (6)
H1A	0.6176	0.2530	0.8763	0.083*
C2	0.4523 (3)	0.18561 (9)	0.7481 (2)	0.0636 (5)
C3	0.4321 (2)	0.12071 (9)	0.67629 (19)	0.0561 (5)
C4	0.5718 (3)	0.08253 (9)	0.69633 (19)	0.0604 (5)
H4A	0.5597	0.0398	0.6498	0.072*
C5	0.7325 (3)	0.10544 (10)	0.7844 (2)	0.0629 (5)
C6	0.8758 (3)	0.06627 (12)	0.8062 (3)	0.0930 (7)
H6A	0.8654	0.0229	0.7626	0.112*
C7	1.0287 (3)	0.09073 (16)	0.8897 (3)	0.1178 (10)
H7A	1.1223	0.0642	0.9027	0.141*
C8	1.0468 (3)	0.15586 (15)	0.9569 (3)	0.1102 (9)
H8A	1.1524	0.1724	1.0137	0.132*
C9	0.9119 (3)	0.19463 (12)	0.9394 (2)	0.0838 (6)
H9A	0.9256	0.2375	0.9852	0.101*
C10	0.7497 (3)	0.17107 (10)	0.8523 (2)	0.0623 (5)
C11	0.2638 (3)	0.09412 (11)	0.5796 (2)	0.0669 (6)
C12	-0.2927 (3)	0.14545 (10)	0.4042 (2)	0.0772 (6)
H12A	-0.2619	0.1895	0.3749	0.093*
H12B	-0.2893	0.1495	0.5061	0.093*
C13	-0.4652 (3)	0.12680 (12)	0.3005 (3)	0.0900 (7)
H13A	-0.5412	0.1634	0.3004	0.108*
H13B	-0.5001	0.0853	0.3366	0.108*
C14	-0.4732 (3)	0.11527 (13)	0.1424 (3)	0.0995 (8)
H14A	-0.5837	0.0996	0.0798	0.119*
H14B	-0.4525	0.1583	0.1015	0.119*
C15	-0.3471 (3)	0.06288 (13)	0.1397 (2)	0.0857 (7)
H15A	-0.3759	0.0184	0.1690	0.103*
H15B	-0.3490	0.0589	0.0383	0.103*
C16	-0.1763 (3)	0.08263 (11)	0.2440 (3)	0.0852 (7)
H16A	-0.0979	0.0471	0.2439	0.102*
H16B	-0.1434	0.1251	0.2097	0.102*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0655 (12)	0.0642 (11)	0.0731 (11)	-0.0064 (8)	0.0116 (9)	0.0044 (8)
O1	0.0755 (11)	0.0761 (10)	0.1167 (13)	0.0101 (8)	0.0186 (9)	-0.0260 (8)
02	0.0942 (12)	0.0604 (9)	0.0768 (10)	-0.0154 (7)	0.0110 (8)	-0.0074 (7)
O3	0.0677 (11)	0.0869 (11)	0.1111 (13)	-0.0032 (9)	0.0121 (9)	-0.0172 (9)
C1	0.0774 (16)	0.0539 (11)	0.0683 (13)	-0.0059 (11)	0.0182 (12)	-0.0120 (9)
C2	0.0689 (15)	0.0538 (12)	0.0641 (12)	0.0031 (11)	0.0203 (11)	-0.0032 (9)
C3	0.0682 (14)	0.0483 (10)	0.0481 (10)	-0.0035 (9)	0.0176 (9)	0.0014 (8)
C4	0.0753 (15)	0.0505 (11)	0.0529 (11)	-0.0009 (10)	0.0211 (10)	-0.0031 (8)
C5	0.0656 (14)	0.0660 (13)	0.0545 (11)	0.0015 (11)	0.0192 (10)	-0.0012 (9)
C6	0.0789 (19)	0.0897 (16)	0.0979 (17)	0.0125 (14)	0.0187 (14)	-0.0205 (13)
				. ,		

supporting information

C7	0.071 (2)	0.130 (2)	0.131 (2)	0.0165 (16)	0.0138 (17)	-0.0327 (19)
C8	0.0669 (19)	0.126 (2)	0.119 (2)	-0.0029 (16)	0.0122 (15)	-0.0265 (18)
C9	0.0794 (17)	0.0836 (15)	0.0786 (15)	-0.0114 (13)	0.0181 (13)	-0.0138 (12)
C10	0.0655 (14)	0.0637 (13)	0.0536 (11)	-0.0056 (10)	0.0174 (10)	-0.0023 (9)
C11	0.0755 (16)	0.0566 (13)	0.0604 (12)	-0.0084 (12)	0.0160 (11)	0.0031 (10)
C12	0.1010 (19)	0.0594 (13)	0.0748 (14)	-0.0006 (12)	0.0371 (14)	0.0028 (10)
C13	0.0788 (18)	0.0879 (16)	0.1040 (19)	0.0125 (13)	0.0351 (15)	0.0085 (14)
C14	0.0805 (18)	0.116 (2)	0.0847 (17)	0.0087 (15)	0.0112 (13)	0.0173 (15)
C15	0.0853 (19)	0.1038 (18)	0.0645 (13)	-0.0124 (14)	0.0239 (13)	-0.0070 (12)
C16	0.0800 (18)	0.0910 (16)	0.0915 (16)	-0.0034 (13)	0.0401 (14)	-0.0088 (13)

Geometric parameters (Å, °)

N1—C12	1.487 (2)	C7—C8	1.403 (3)	
N1-C16	1.482 (3)	C7—H7A	0.9300	
N1—H1C	0.9601	C8—C9	1.348 (3)	
N1—H1D	0.9600	C8—H8A	0.9300	
O1—C2	1.357 (2)	C9—C10	1.417 (3)	
O1—H1B	0.8200	С9—Н9А	0.9300	
O2—C11	1.244 (2)	C12—C13	1.498 (3)	
O3—C11	1.276 (2)	C12—H12A	0.9700	
C1—C2	1.363 (3)	C12—H12B	0.9700	
C1-C10	1.400 (3)	C13—C14	1.509 (3)	
C1—H1A	0.9300	C13—H13A	0.9700	
C2—C3	1.417 (2)	C13—H13B	0.9700	
C3—C4	1.372 (3)	C14—C15	1.502 (3)	
C3—C11	1.498 (3)	C14—H14A	0.9700	
C4—C5	1.404 (3)	C14—H14B	0.9700	
C4—H4A	0.9300	C15—C16	1.494 (3)	
C5—C6	1.404 (3)	C15—H15A	0.9700	
C5—C10	1.416 (2)	C15—H15B	0.9700	
C6—C7	1.353 (3)	C16—H16A	0.9700	
С6—Н6А	0.9300	C16—H16B	0.9700	
C12—N1—C16	111.63 (16)	C1—C10—C9	122.6 (2)	
C12—N1—H1C	109.7	C5-C10-C9	118.3 (2)	
C16—N1—H1C	109.4	O2—C11—O3	123.8 (2)	
C12—N1—H1D	108.9	O2—C11—C3	120.0 (2)	
C16—N1—H1D	109.2	O3—C11—C3	116.16 (19)	
H1C—N1—H1D	108.0	N1-C12-C13	110.18 (17)	
C2—O1—H1B	109.5	N1-C12-H12A	109.6	
C2-C1-C10	121.22 (18)	C13—C12—H12A	109.6	
C2—C1—H1A	119.4	N1-C12-H12B	109.6	
C10-C1-H1A	119.4	C13—C12—H12B	109.6	
O1—C2—C1	118.97 (18)	H12A—C12—H12B	108.1	
O1—C2—C3	120.30 (19)	C12—C13—C14	111.27 (19)	
C1—C2—C3	120.74 (19)	C12—C13—H13A	109.4	
C4—C3—C2	118.14 (18)	C14—C13—H13A	109.4	

C4—C3—C11	120.27 (18)	C12—C13—H13B	109.4
C2—C3—C11	121.58 (19)	C14—C13—H13B	109.4
C3—C4—C5	122.53 (18)	H13A—C13—H13B	108.0
C3—C4—H4A	118.7	C15—C14—C13	110.99 (19)
C5—C4—H4A	118.7	C15—C14—H14A	109.4
C6—C5—C4	122.70 (19)	C13—C14—H14A	109.4
C6—C5—C10	119.1 (2)	C15—C14—H14B	109.4
C4—C5—C10	118.21 (18)	C13—C14—H14B	109.4
C7—C6—C5	120.9 (2)	H14A—C14—H14B	108.0
С7—С6—Н6А	119.6	C16—C15—C14	111.0 (2)
С5—С6—Н6А	119.6	C16—C15—H15A	109.4
C6—C7—C8	120.4 (2)	C14—C15—H15A	109.4
С6—С7—Н7А	119.8	C16—C15—H15B	109.4
С8—С7—Н7А	119.8	C14—C15—H15B	109.4
C9—C8—C7	120.3 (2)	H15A—C15—H15B	108.0
С9—С8—Н8А	119.8	N1—C16—C15	110.30 (17)
С7—С8—Н8А	119.8	N1—C16—H16A	109.6
C8—C9—C10	121.0 (2)	C15—C16—H16A	109.6
С8—С9—Н9А	119.5	N1—C16—H16B	109.6
С10—С9—Н9А	119.5	C15—C16—H16B	109.6
C1—C10—C5	119.13 (19)	H16A—C16—H16B	108.1

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O1—H1 <i>B</i> …O3	0.82	1.77	2.504 (2)	149
N1—H1C···O2 ⁱ	0.96	1.83	2.783 (2)	173
N1—H1 <i>D</i> ···O3	0.96	1.75	2.709 (2)	173
C12—H12A…O1 ⁱⁱ	0.97	2.40	3.336 (3)	161

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) *x*-1/2, -*y*+1/2, *z*-1/2.