Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$

Tamara Dordević

Institut für Mineralogie und Kristallographie, Universität Wien-Geozentrum, Althanstrasse 14, A-1090 Vienna, Austria
Correspondence e-mail: tamara.djordjevic@univie.ac.at

Received 6 August 2008; accepted 11 August 2008

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma($ As-O) $=0.002 \AA$; R factor $=0.015 ; w R$ factor $=0.038$; data-to-parameter ratio $=15.5$.

Suitable single crystals of the title compound, barium dicobalt(II) bis[orthoarsenate(V)], were prepared under hydrothermal conditions. This phase belongs to a series of compounds with general formula $A M_{2}\left(\mathrm{XO}_{4}\right)_{2}$, where $A=$ alkaline earth metal, $M=\mathrm{Mg}$ or a divalent first-row transition element, and $X=\mathrm{P}$, As or V. $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ is isotypic with $\mathrm{BaNi}_{2}\left(\mathrm{XO}_{4}\right)_{2}(X=\mathrm{P}, \mathrm{V}$ or As) and is characterized by brucitelike sheets of edge-sharing CoO_{6} octahedra (3 symmetry) parallel to (001), with one-third of the octahedral positions being vacant. The sheets are capped above and below by AsO_{4} tetrahedra (3 symmetry) and are interconnected by distorted BaO_{12} cuboctahedra ($\overline{3}$ symmetry).

Related literature

For isostructural compounds, see: Eymond et al. (1969a,b); Bircsak \& Harrison (1998); El-Bali et al. (1999); Faza et al. (2001); Rogado et al. (2002); Wichmann, \& Müller-Buschbaum (1984). For magnetic properties of $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$, see: Dojčilović et al. (1994); Regnault et al. (2006). For related compounds, see: Effenberger \& Pertlik (1993); El-Bali et al. (1993a,b); Hemon \& Courbion (1990); Kreidler \& Hummel (1961); Lucas et al. (1998); Mihajlović et al. (2004); Moquine et al. (1993); Osterloh \& Müller-Buschbaum (1994). For general background, see: Brese \& O’Keeffe (1991).

Experimental

Crystal data

$\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$
$M_{r}=533.04$
Hexagonal, $R \overline{3}$
$a=5.007$ (1) \AA
$c=23.491$ (5) A
$V=510.02(18) \AA^{3}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (Otwinowski \& Minor, 1997; Otwinowski et al., 2003)
$T_{\text {min }}=0.221, T_{\text {max }}=0.362$

$Z=3$

Mo $K \alpha$ radiation
$\mu=20.22 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.09 \times 0.05 \times 0.05 \mathrm{~mm}$

681 measured reflections 341 independent reflections 336 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.009$

Refinement

$\begin{array}{ll}R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.014 & 22 \text { parameters } \\ w R\left(F^{2}\right)=0.038 & \Delta \rho_{\max }=0.96 \mathrm{e} \AA^{-3} \\ S=1.30 & \Delta \rho_{\min }=-1.09 \mathrm{e}^{-}\end{array}$
341 reflections

Table 1
Selected bond lengths (\AA).

$\mathrm{Ba} 1-\mathrm{O} 1$	$2.9344(8)$	$\mathrm{Co} 1-\mathrm{O} 2$	$2.1017(17)$
$\mathrm{Ba} 1-\mathrm{O} 2$	$3.1611(17)$	$\mathrm{As} 1-\mathrm{O} 1$	$1.656(3)$
$\mathrm{Co} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.0791(17)$	$\mathrm{As} 1-\mathrm{O} 2$	$1.7050(17)$

Symmetry code: (i) $x-y+\frac{2}{3}, x+\frac{1}{3},-z+\frac{1}{3}$.

Data collection: COLLECT (Nonius, 2002); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN (Otwinowski et al., 2003); method used to solve structure: starting parameters from an isostructural compound (Eymond et al., 1969a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: publCIF (Westrip, 2008).

The author gratefully acknowledges financial support by the Austrian Science Foundation (FWF) (grant No. T300-N19).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2189).

References

Bircsak, Z. \& Harrison, W. T. A. (1998). Acta Cryst. C54, 1554-1556.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Dojčilović, J., Novaković, L., Napijalo, M. \& Napijalo, M. (1994). Proc. Nat. Sci. Matica Srpska 85, 269-273.
Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
Effenberger, H. \& Pertlik, F. (1993). Monatsch. Chem. 124, 381-389.
El-Bali, B., Bolte, M., Boukhari, A., Aride, J. \& Taibe, M. (1999). Acta Cryst. C55, 701-702.
El-Bali, B., Boukhari, A., Aride, J. \& Abraham, F. (1993a). J. Solid State Chem. 104, 453-459.
El-Bali, B., Boukhari, A., Holt, E. M. \& Aride, J. (1993b). J. Crystallogr. Spectrosc. Res. 23, 1001-1004.
Eymond, S., Martin, M. C. \& Durif, A. (1969a). C. R. Acad. Sci. Ser. C, 286, 1694-1696.
Eymond, S., Martin, M. C. \& Durif, A. (1969b). Mater. Res. Bull. 4, 595-600. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Faza, N., Treutmann, W. \& Babel, D. (2001). Z. Anorg. Allg. Chem. 627, 687692.

Hemon, A. \& Courbion, G. (1990). J. Solid State Chem. 85, 164-148.
Kreidler, E. R. \& Hummel, F. A. (1961). Inorg. Chem. 6, 524-528.
Lucas, F., Elfakir, A., Wallez, G. \& Quarton, M. (1998). Can. Mineral. 36, 10451051.

Mihajlović, T., Kolitsch, U. \& Effenberger, H. (2004). J. Alloys Compd, 379, 103-109.
Moquine, A., Boukhari, A. \& Darriet, J. (1993). J. Solid State Chem. 107, 362367.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
Osterloh, D. \& Müller-Buschbaum, Hk. (1994). Z. Anorg. Allg. Chem. 620, 651-654.
Otwinowski, Z., Borek, D., Majewski, W. \& Minor, W. (2003). Acta Cryst. A59, 228-234.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Regnault, L. P., Boullier, C. \& Henry, J. Y. (2006). Physica B, 385-386, 425-427.

inorganic compounds

Rogado, N., Huang, Q., Lynn, J. W., Ramirez, A. P., Huse, D. \& Cava, R. J. (2002). Phys. Rev. B, 65, 144443.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.
Wichmann, R. \& Müller-Buschbaum, Hk. (1984). Rev. Chim. Miner. 21, 824829.

supporting information

Acta Cryst. (2008). E64, i58-i59 [doi:10.1107/S1600536808025865]

$\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$

Tamara Đordević

S1. Comment

The crystal structures of phosphates, arsenates and vanadates with the general formula $A M_{2}\left(X \mathrm{O}_{4}\right)_{2}$ where $A=$ alkaline earth metal, $M=\mathrm{Mg}$ or divalent first row transition elements and $X=\mathrm{P}$, As or V , are relatively well known (Bircsak \& Harrison, 1998; El-Bali et al., 1993a,b, 1999; Eymond et al., 1969a,b; Hemon \& Courbion, 1990; Kreidler \& Hummel, 1961; Lucas et al., 1998; Moquine et al., 1993; Osterloh \& Müller-Buschbaum, 1994; Wichmann \& Müller-Buschbaum, 1984, and references therein). These phases adopt different structure types and exhibit interesting physical properties (phase transitions, magnetism). Six compounds, viz. $\mathrm{BaMg}_{2}\left(\mathrm{AsO}_{4}\right)_{2}, \mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\right.$ Eymond et al., 1969b), $\mathrm{BaNi}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (Eymond et al., 1969a,b), $\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Bircsak \& Harrison, 1998), $\mathrm{BaNi}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (El-Bali et al., 1999; Faza et al., 2001) and $\mathrm{BaNi}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (Wichmann \& Müller-Buschbaum, 1984; Rogado et al., 2002) are isostructural with the title compound, $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$. The underlying crystal structure was described for the first time for $\mathrm{BaNi}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ by Eymond et al. (1969a). Although two-dimensional magnetic properties of these compounds have been widely studied (Dojčilović et al., 1994; Regnault et al., 2006, and references therein), a full determination of their crystal structures was not given for all members of this structural family. Hydrothermal synthesis and the crystal structure of $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ are presented in this communication.
Besides $\mathrm{BaCoAs}_{2} \mathrm{O}_{7}$ (Mihajlović et al., 2004), $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ represents the second compound structurally characterised in the system $\mathrm{BaO}-\mathrm{CoO}-\mathrm{As}_{2} \mathrm{O}_{5}$. Its crystal structure is made up of brucite-like sheets of edge-sharing CoO_{6} octahedra parallel to (001), with one-thirds of the octahedral positions being vacant. AsO_{4} tetrahedra are situated above and below the sheets. The resulting anionic $\left[\mathrm{Co}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\right]^{2-}$ layers are stacked with a sequence $A B C A B C$ along [001] and are laterally displaced by $\Delta x=2 / 3 a$, with $\Delta x=1 / 3 b$ between the layers. Adjacent layers are interconnected by BaO_{12} polyhedra to form a three-dimensional framework (Fig. 1).
The Bal atom has site symmetry $\overline{3}$ and is coordinated by twelve oxygen atoms (Fig. 2) with an average Ba1—O bond length of $3.048 \AA$. This bond length compares well with the average bond length for $\mathrm{Ba}-\mathrm{O}$ distances of $3.015 \AA$ in the isostructural Ni compound $\mathrm{BaNi}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (Eymond et al., 1969a,b). The Ba 1 atom is bonded to six O 1 and six O 2 atoms, resulting in a distorted cuboctahedral coordination polyhedron. The Co1 atom has site-symmetry 3 and is octahedrally coordinated to O 1 atoms with a mean $\mathrm{Co} 1-\mathrm{O} 1$ distance of $2.091 \AA$. The $\mathrm{As} 1 \mathrm{O}_{4}$ tetrahedron (3 symmetry) exhibits an average bond length of $1.692 \AA$, with two symmetrically independent As1—O bonds of 1.656 (3) $\AA(\mathrm{O} 1)$ and of $1.7050(17) \AA(\mathrm{O} 2,3 \times)$ due to the different other coordination partners of the two oxygen atoms. O1, which bridges the barium ions, shows a shorter $\mathrm{As} 1-\mathrm{O}$ bond than O 2 , which bridges the cobalt ions (Fig. 2).
Bond-valence calculations for all atoms, using the parameters of Brese \& O'Keeffe (1991), give 1.63 v.u. (valence units) for $\mathrm{Ba} 1,2.04$ v.u. for $\mathrm{Co} 1,4.89 \mathrm{v.u}$. for As 1 , and $1.53 \mathrm{v} . \mathrm{u}$ and 1.96 v .u for O 1 and O 2 , respectively. If one takes into account that the O 2 atom is bonded to two Co 1 , one As 1 , and one Ba 1 atom, and the O 1 atom is bonded to one As1 and three Ba 1 neighbours, the calculated values are close to the theoretical valences. However, it is worth mentioning that in $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ and all isostructural compounds the Ba 1 atom is strongly undersaturated in terms of its bond valence.

S2. Experimental

Single crystals of $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ were obtained as reaction products from mixtures of $\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}$ (Merck, $>97 \%$), $\mathrm{Co}(\mathrm{OH})_{2}$ (Alfa Products) and $\mathrm{As}_{2} \mathrm{O}_{5}$ (Alfa Products, $>99.9 \%$) under hydrothermal conditions. The mixture was transferred into a Teflon vessel and filled to approximately 70% of its inner volume with distilled water $(\mathrm{pH}$ of the resulting solution was $\simeq 2.5$). Finally, the vessel was enclosed into a stainless steel autoclave and was heated from room temperature to 493 $\mathrm{K}(2 \mathrm{~h})$, held at 493 K for 24 h , then cooled to 393 K within 14 h , kept at this temperature for 24 h , and finally cooled to room temperature within 4 h . At the end of the reaction the pH was $\simeq 6$. The solid reaction products were filtered and washed thoroughly with distilled water. $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (yield $\mathrm{ca} 50 \%$) crystallized as transparent pink crystals and was accompanied with prismatic blue-green crystals of $\mathrm{BaCoAs}_{2} \mathrm{O}_{7}$ (Mihajlović et al., 2004) (yield ca 30\%) and $\mathrm{Co}_{2} \mathrm{As}_{2} \mathrm{O}_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Effenberger \& Pertlik, 1993) (yield ca 15%), besides very few prismatic blue crystals of an yet unidentified compound (yield $c a 5 \%$). All crystals were up to 0.2 mm in length.

S3. Refinement

The crystal structure was refined with the atomic coordinates of $\mathrm{BaNi}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (Eymond et al., 1969a) as starting parameters in the hexagonal setting of space group $R \overline{3}$.

Figure 1
The crystal structure of $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ with sheets consisting of CoO_{6} octahedra and AsO_{4} tetrahedra (both in polyhedral representation) parallel to (001). Ba atoms are displayed as spheres.

Figure 2

Coordination of Ba and Co with atoms displayed as ellipsoids at the 50% probability level.

Barium dicobalt(II) bis-arsenate(V)

Crystal data

$\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$
$M_{r}=533.04$
Hexagonal, $R \overline{3}$
Hall symbol: -R 3
$a=5.007$ (1) \AA
$c=23.491(5) \AA$
$V=510.02(18) \AA^{3}$
$Z=3$
$F(000)=720$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(Otwinowski \& Minor, 1997; Otwinowski et al., 2003)
$T_{\text {min }}=0.221, T_{\text {max }}=0.362$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.014$
$w R\left(F^{2}\right)=0.038$
$S=1.30$
341 reflections
22 parameters
0 restraints
$D_{\mathrm{x}}=5.206 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 675 reflections
$\theta=1.0-30.0^{\circ}$
$\mu=20.22 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Pseudo-hexagonal plate, pink
$0.09 \times 0.05 \times 0.05 \mathrm{~mm}$

681 measured reflections
341 independent reflections
336 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.009$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-7 \rightarrow 7$
$k=-5 \rightarrow 5$
$l=-33 \rightarrow 33$

Primary atom site location: isomorphous structure methods
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0133 P)^{2}+3.104 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.96$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.09 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0118 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ba1	0.0000	0.0000	0.0000	$0.01170(15)$
Co1	0.0000	0.0000	$0.17014(2)$	$0.00614(16)$
As1	0.3333	0.6667	$0.091941(18)$	$0.00473(15)$
O1	0.3333	0.6667	$0.02145(13)$	$0.0118(6)$
O2	$0.0163(4)$	$0.3375(4)$	$0.11476(7)$	$0.0077(3)$

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	$0.01138(17)$	$0.01138(17)$	$0.0124(2)$	$0.00569(8)$	0.000	0.000
Co1	$0.00474(19)$	$0.00474(19)$	$0.0089(3)$	$0.00237(9)$	0.000	0.000
As1	$0.00414(16)$	$0.00414(16)$	$0.0059(2)$	$0.00207(8)$	0.000	0.000
O1	$0.0149(9)$	$0.0149(9)$	$0.0055(13)$	$0.0075(5)$	0.000	0.000
O2	$0.0055(7)$	$0.0050(7)$	$0.0116(8)$	$0.0019(6)$	$0.0017(6)$	$0.0020(6)$

Geometric parameters $\left({ }^{(},^{\circ}{ }^{\circ}\right)$

$\mathrm{Ba}-\mathrm{Ol}^{\text {i }}$	2.9344 (8)	$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {ix }}$	3.1611 (17)
$\mathrm{Ba} 1-\mathrm{Ol}^{\text {ii }}$	2.9344 (8)	$\mathrm{Col}-\mathrm{O}^{\text {x }}$	2.0791 (17)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	2.9344 (8)	$\mathrm{Co} 1-\mathrm{O} 2^{\text {xi }}$	2.0791 (17)
$\mathrm{Ba}-\mathrm{O} 1$	2.9344 (8)	$\mathrm{Co} 1-\mathrm{O} 2^{\text {xii }}$	2.0792 (17)
$\mathrm{Ba}-\mathrm{Ol}^{\text {iv }}$	2.9344 (8)	$\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {vii }}$	2.1017 (17)
$\mathrm{Ba} 1-\mathrm{O} 1^{v}$	2.9344 (8)	Col-O2	2.1017 (17)
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {vi }}$	3.1611 (17)	$\mathrm{Col}-\mathrm{O}^{\text {vi }}$	2.1017 (17)
$\mathrm{Ba}-\mathrm{O} 2$	3.1611 (17)	As1-O1	1.656 (3)
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {vii }}$	3.1611 (17)	As1-O2 ${ }^{\text {xiii }}$	1.7050 (17)
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	3.1611 (17)	As1-O2	1.7050 (17)
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {viii }}$	3.1611 (17)	As1-O2 ${ }^{\text {xiv }}$	1.7050 (17)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	180.00 (12)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	126.22 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba}-\mathrm{Ol}^{\text {iii }}$	117.11 (3)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {viii }}$	52.94 (6)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Ba}-\mathrm{O} 1^{\text {iii }}$	62.89 (3)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {viii }}$	127.06 (6)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 1$	62.89 (3)	$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {viii }}$	82.85 (6)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 1$	117.11 (3)	$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2^{\text {viii }}$	97.15 (6)
$\mathrm{O} 1 \mathrm{iii}-\mathrm{Ba} 1-\mathrm{O} 1$	180.00 (12)	$\mathrm{O} 1^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {viii }}$	106.72 (6)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{O}^{\text {iv }}$	117.11 (3)	$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {viii }}$	73.28 (6)

$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Ol}^{\text {iv }}$	62.89 (3)
$\mathrm{O} 1^{\text {iii- }} \mathrm{Ba}-\mathrm{O} 1^{\text {iv }}$	117.11 (3)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{Ol}^{\text {iv }}$	62.89 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba}-\mathrm{O}^{v}$	62.89 (3)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 1^{v}$	117.11 (3)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 1^{v}$	62.89 (3)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O}^{v}$	117.11 (3)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {v }}$	180.00 (12)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vi }}$	127.06 (6)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vi }}$	52.94 (6)
$\mathrm{O} 1^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{O} 2^{\text {vi }}$	97.15 (6)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O}^{\text {vi }}$	82.85 (6)
$\mathrm{O} 1^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vi }}$	73.28 (6)
$\mathrm{O} 1^{v}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vi }}$	106.72 (6)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 2$	73.28 (6)
$\mathrm{O} 1{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 2$	106.72 (6)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2$	127.06 (6)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{O} 2$	52.94 (6)
$\mathrm{O} 1^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 2$	97.15 (6)
$\mathrm{O} 1{ }^{2}-\mathrm{Ba} 1-\mathrm{O} 2$	82.85 (6)
$\mathrm{O} 2{ }^{\text {vi}}-\mathrm{Ba} 1-\mathrm{O} 2$	53.78 (5)
$\mathrm{O} 1^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$	97.15 (6)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$	82.85 (6)
$\mathrm{O} 1^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$	73.28 (6)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {vii }}$	106.72 (6)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$	127.06 (6)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {vii }}$	52.94 (6)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {vii }}$	53.78 (5)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {vii }}$	53.78 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	106.72 (6)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	73.28 (6)
$\mathrm{O} 1^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	52.94 (6)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	127.06 (6)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	82.85 (6)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	97.15 (6)
$\mathrm{O} 2{ }^{\text {vi}}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	126.22 (5)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	180.00 (7)

$\mathrm{O} 2{ }^{\text {vi}}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {viii }}$	180.00 (7)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2^{\text {viii }}$	126.22 (5)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {viii }}$	126.22 (5)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {viii }}$	53.78 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {ix }}$	82.85 (6)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {ix }}$	97.15 (6)
$\mathrm{O} 1^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{O} 2^{\text {ix }}$	106.72 (6)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {ix }}$	73.28 (6)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {ix }}$	52.94 (6)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {ix }}$	127.06 (6)
$\mathrm{O} 2{ }^{\text {vi}}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {ix }}$	126.22 (5)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {ix }}$	126.22 (5)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {ix }}$	180.00 (3)
$\mathrm{O} 2{ }^{\text {iii] }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {ix }}$	53.78 (5)
$\mathrm{O} 2{ }^{\text {viiil }}$ - $\mathrm{Ba} 1-\mathrm{O} 2^{\text {ix }}$	53.78 (5)
$\mathrm{O} 2{ }^{\mathrm{x}}-\mathrm{Co} 1-\mathrm{O} 2^{\mathrm{xi}}$	92.91 (7)
$\mathrm{O} 2 \times$ - $\mathrm{Co} 1-\mathrm{O} 2^{\text {xii }}$	92.91 (7)
$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Col}-\mathrm{O} 2^{\text {xii }}$	92.91 (7)
$\mathrm{O} 2{ }^{\mathrm{x}}-\mathrm{Co} 1-\mathrm{O} 2^{\text {vii }}$	92.34 (6)
$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Co} 1-\mathrm{O} 2^{\text {vii }}$	174.36 (6)
$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {vii }}$	88.86 (9)
$\mathrm{O} 2 \times-\mathrm{Co} 1-\mathrm{O} 2$	174.36 (6)
$\mathrm{O} 2{ }^{\text {xi- }} \mathrm{Co} 1-\mathrm{O} 2$	88.86 (9)
$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Co} 1-\mathrm{O} 2$	92.34 (6)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Co} 1-\mathrm{O} 2$	85.72 (7)
$\mathrm{O} 2{ }^{\mathrm{x}}-\mathrm{Col}-\mathrm{O} 2^{\text {vi }}$	88.86 (9)
$\mathrm{O} 2{ }^{\text {xi }}-\mathrm{Co} 1-\mathrm{O} 2^{\text {vi }}$	92.34 (6)
$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Col}-\mathrm{O}^{\text {vi }}$	174.36 (6)
$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Col}-\mathrm{O} 2^{\text {vi }}$	85.72 (7)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {vi }}$	85.72 (7)
$\mathrm{O} 1-\mathrm{As} 1-\mathrm{O} 2^{\text {xiii }}$	108.33 (6)
$\mathrm{O} 1-\mathrm{As} 1-\mathrm{O} 2$	108.33 (6)
$\mathrm{O} 2{ }^{\text {xiii }}$ - $\mathrm{As} 1-\mathrm{O} 2$	110.59 (5)
$\mathrm{O} 1-\mathrm{As} 1-\mathrm{O} 2^{\text {xiv }}$	108.33 (6)
$\mathrm{O} 2{ }^{\text {xiii }}$-As1-O2 ${ }^{\text {xiv }}$	110.59 (5)
$\mathrm{O} 2-\mathrm{As} 1-\mathrm{O} 2{ }^{\text {xiv }}$	110.59 (5)

[^0]
[^0]: Symmetry codes: (i) $-x,-y+1,-z$; (ii) $x, y-1, z$; (iii) $-x,-y$, $-z$; (iv) $-x+1,-y+1,-z$; (v) $x-1, y-1, z$; (vi) $-x+y,-x, z$; (vii) $-y, x-y, z$; (viii) $x-y, x$, $-z$; (ix) $y,-x+y,-z$; (x) $y-1 / 3,-x+y-2 / 3,-z+1 / 3$; (xi) $x-y+2 / 3, x+1 / 3,-z+1 / 3$; (xii) $-x-1 / 3,-y+1 / 3,-z+1 / 3$; (xiii) $-x+y,-x+1, z$; (xiv) $-y+1, x-y+1, z$.

