Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Dicyclohexylnaphthalene-1,8;4:5dicarboximide

Deepak Shukla and Manju Rajeswaran*

Eastman Kodak Company, Kodak Research Laboratories, Rochester, NY 14650-2106, USA Correspondence e-mail: manju.rajeswaran@kodak.com

Received 31 July 2008; accepted 5 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.067; wR factor = 0.183; data-to-parameter ratio = 13.5.

The title compound, $C_{26}H_{26}N_2O_4$, synthesized by the reaction of naphthalene-1,4,5,8-tetracarboxylic acid anhydride and cyclohexylamine, exhibits good *n*-type semiconducting properties. Accordingly, thin-film transistor devices comprising this compound show *n*-type behavior with high field-effect electron moblity ca 6 cm²/Vs [Shukla, Nelson, Freeman, Rajeswaran, Ahearn, Meyer & Carey(2008). Chem. Mater. Submitted]. The asymmetric unit comprises one-quarter of the centrosymmetric molecule in which all but two methylene C atoms of the cyclohexane ring lie on a mirror plane; the pointgroup symmetry is 2/m. The naphthalenediimide unit is strictly planar, and the cyclohexane rings adopt chair conformations with the diimide unit in an equatorial position on each ring.

Related literature

For general background on the semi-conducting properties and use of this class of material in organic thin-film transistor applications, see: Chesterfield et al. (2004a,b); Facceti et al. (2008); Jones et al. (2004); Katz et al. (2000a,b); Shukla et al. (2008).

Experimental

Crystal data

$C_{26}H_{26}N_2O_4$	V = 1026.19 (6) Å ³
$M_r = 430.49$	Z = 2
Monoclinic, C2/m	Mo $K\alpha$ radiation
a = 8.5410 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 6.6780 (2) Å	T = 293 (2) K
c = 18.4270 (9) Å	$0.35 \times 0.25 \times 0.17 \text{ mm}$
$\beta = 102.4790 \ (18)^{\circ}$	

Data collection

Refinement

1227 reflections

S = 1.06

 $R[F^2 > 2\sigma(F^2)] = 0.067$ wR(F²) = 0.182

Nonius KappaCCD diffractometer
Absorption correction: none
3354 measured reflections

1227 independent reflections 787 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.087$

91 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2007).

We thank Ms Wendy Ahearn and Ms Dianne Meyer of Eastman Kodak Company for material purification and crystal growth via sublimation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2528).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Chesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da SilvaFilho, D. A., Brédas, J. L., Miller, L. L., Mann, K. R. & Frisbie, C. D. (2004a). J. Phys. Chem. B, 108, 19281-19292.
- Chesterfield, R. J., McKeen, J. C., Newman, C. R., Frisbie, C. D., Ewbank, P. C., Mann, K. R. & Miller, L. L. (2004b). Appl. Phys. Lett. 95, 6396-6405.
- Facceti, A., Yoon, M.-H. & Marks, T. J. (2008). Adv. Mater. 17, 1705-1725.
- Jones, B. A., Ahrens, M. J., Yoon, M.-H., Facchetti, A., Marks, T. J. & Wasielewski, M. R. (2004). Angew. Chem. Int. Ed. 43, 6363-6366.
- Katz, H. E., Johnson, J., Lovinger, A. J. & Li, W. (2000a). J. Am. Chem. Soc. 122, 7787-7792.
- Katz, H. E., Lovinger, A. J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.-Y. & Dodabalapur, A. (2000b). Nature (London), 404, 478-481.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. & Carey, J. T. (2008). Chem. Mater. Submitted.
- Westrip, S. P. (2007). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, o1735 [doi:10.1107/S1600536808025221]

N,N'-Dicyclohexylnaphthalene-1,8;4:5-dicarboximide

Deepak Shukla and Manju Rajeswaran

S1. Comment

Amongst n-type semiconductors, naphthalene diimide (NDI) and perylene diimide (PDI) based systems have been studied extensively (Chesterfield, *et al.*, 2004*a*; Chesterfield *et al.*, 2004*b*; Facceti *et al.*, 2008; Jones, *et al.*, 2004; Katz, *et al.*, 2000*a*; Katz, *et al.*, 2000*b*). We report here the structure of the title diimide molecule, I, (Fig. 1).

S2. Experimental

The diimide 1 was prepared by direct condensation of 1,4,5,8-naphthalenetetracarboxylic acid anhydride (1.34 g, 5.00 mmol) and cyclohexylamine (30 mmol) in the presence of zinc acetate (50 mg) in 15 mL quinoline. The mixture was heated at 140-150°C for four hours, cooled and diluted with several volumes of methanol. The resulting slurry was filtered, the collected solid washed with methanol and dried in air. The crude product was then purified by train sublimation at 10⁻⁴ to 10⁻⁶ torr. ¹H NMR (CD₂Cl₂,500.05 MHz): δ (ppm) = 8.76 (s, 4H), 5.10 (t,2H, J = 12 Hz), 2.64 (dt, 2H, J = 12 and 11.7 Hzs), 1.57 (dt, 2H, J = 12 and 11.7 Hz), 2.03 (d, 2H, J = 12 Hz), 1.87 (d, 2H, J = 12 Hz), 1.47 (m, 2H); ¹³C(CD₂Cl₂, 500.05 MHz): d = 163.23, 130.74, 127.13, 126.70,54.85, 29.38, 26.66, 25.52; MS (MALDI-TOF) *m/z* cald. for [C₂₆H₂₆N₂O₄]430.5 found: 430.2.

S3. Refinement

All H-atoms were positioned geometrically using a riding model with d(C-H) = 0.93Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic 0.97Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂ atoms.

Figure 1

Structure of the title compound (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

N,N'-dicyclohexylnaphthalene-1,8;4:5-dicarboximide

Crystal data

 $C_{26}H_{26}N_2O_4$ $M_r = 430.49$ Monoclinic, C2/mHall symbol: -C 2y a = 8.5410 (2) Å b = 6.6780(2) Å c = 18.4270(9) Å $\beta = 102.4790 (18)^{\circ}$ V = 1026.19 (6) Å³ Z = 2

Data collection

Nonius KappaCCD	1227 independent reflections
diffractometer	787 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{ m int}=0.087$
Graphite monochromator	$\theta_{\rm max} = 27.4^{\circ}, \theta_{\rm min} = 4.3^{\circ}$
Detector resolution: 9 pixels mm ⁻¹	$h = -10 \rightarrow 10$
φ and ω scans	$k = -8 \rightarrow 8$
3354 measured reflections	$l = -23 \rightarrow 20$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: inferred from

F(000) = 456

 $\theta = 1.0-27.5^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K

Block, orange

 $0.35 \times 0.25 \times 0.17 \text{ mm}$

 $D_{\rm x} = 1.393 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 21067 reflections

Least squares matrix. run	map
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: inferred from
$wR(F^2) = 0.182$	neighbouring sites
S = 1.06	H-atom parameters constrained
1227 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0638P)^2 + 1.0546P]$
91 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta ho_{ m min}$ = -0.29 e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.2160 (3)	0.0000	0.28476 (12)	0.0594 (8)	
O2	0.7630 (3)	0.0000	0.33332 (13)	0.0647 (8)	
N1	0.4894 (3)	0.0000	0.30625 (13)	0.0431 (7)	
C1	0.6391 (4)	0.0000	0.35566 (18)	0.0457 (8)	
C2	0.6418 (3)	0.0000	0.43622 (17)	0.0422 (8)	

C3	0.7854 (4)	0.0000	0.48703 (18)	0.0510 (9)
H3	0.8806	0.0000	0.4703	0.061*
C4	0.4979 (3)	0.0000	0.46157 (16)	0.0384 (7)
C5	0.2086 (4)	0.0000	0.43639 (18)	0.0494 (9)
Н5	0.1100	0.0000	0.4030	0.059*
C6	0.3486 (3)	0.0000	0.41020 (17)	0.0410(7)
C7	0.3427 (4)	0.0000	0.32968 (18)	0.0446 (8)
C8	0.4868 (4)	0.0000	0.22507 (16)	0.0460 (8)
H8	0.5991	0.0000	0.2207	0.055*
С9	0.4125 (3)	0.1896 (4)	0.18665 (13)	0.0591 (7)
H9A	0.4684	0.3060	0.2110	0.071*
H9B	0.3010	0.1986	0.1901	0.071*
C10	0.4238 (3)	0.1862 (5)	0.10529 (14)	0.0708 (9)
H10A	0.3699	0.3031	0.0803	0.085*
H10B	0.5356	0.1926	0.1022	0.085*
C11	0.3488 (5)	0.0000	0.0665 (2)	0.0664 (11)
H11A	0.3624	0.0000	0.0156	0.080*
H11B	0.2348	0.0000	0.0654	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0365 (12)	0.088 (2)	0.0494 (14)	0.000	0.0005 (9)	0.000
O2	0.0363 (12)	0.105 (2)	0.0535 (14)	0.000	0.0113 (10)	0.000
N1	0.0330 (12)	0.0522 (17)	0.0428 (14)	0.000	0.0052 (10)	0.000
C1	0.0323 (15)	0.051 (2)	0.0514 (19)	0.000	0.0047 (12)	0.000
C2	0.0322 (15)	0.0478 (19)	0.0456 (18)	0.000	0.0066 (12)	0.000
C3	0.0296 (15)	0.071 (2)	0.0513 (19)	0.000	0.0072 (12)	0.000
C4	0.0309 (14)	0.0364 (16)	0.0459 (16)	0.000	0.0040 (11)	0.000
C5	0.0292 (14)	0.065 (2)	0.0503 (19)	0.000	0.0012 (12)	0.000
C6	0.0303 (15)	0.0445 (18)	0.0460 (17)	0.000	0.0033 (12)	0.000
C7	0.0357 (15)	0.0466 (19)	0.0491 (18)	0.000	0.0038 (13)	0.000
C8	0.0379 (15)	0.059 (2)	0.0403 (17)	0.000	0.0059 (12)	0.000
C9	0.0643 (15)	0.0483 (15)	0.0601 (16)	-0.0050 (13)	0.0033 (11)	0.0031 (12)
C10	0.0716 (17)	0.080(2)	0.0561 (16)	-0.0103 (17)	0.0045 (12)	0.0170 (15)
C11	0.056 (2)	0.094 (3)	0.047 (2)	0.000	0.0059 (16)	0.000

Geometric parameters (Å, °)

01—C7	1.212 (3)	С5—Н5	0.9300	
O2—C1	1.216 (4)	C6—C7	1.474 (4)	
N1—C1	1.401 (4)	C8—C9 ⁱⁱ	1.521 (3)	
N1—C7	1.411 (4)	C8—C9	1.521 (3)	
N1—C8	1.491 (4)	C8—H8	0.9800	
C1—C2	1.480 (4)	C9—C10	1.523 (3)	
С2—С3	1.373 (4)	С9—Н9А	0.9700	
C2—C4	1.406 (4)	C9—H9B	0.9700	
C3—C5 ⁱ	1.401 (4)	C10—C11	1.506 (4)	

С3—Н3	0.9300	C10—H10A	0.9700
$C4$ — $C4^{i}$	1.409 (6)	C10—H10B	0.9700
C4—C6	1.415 (4)	C11—C10 ⁱⁱ	1.506 (4)
C5—C6	1.382 (4)	C11—H11A	0.9700
C5—C3 ⁱ	1.401 (4)	C11—H11B	0.9700
C1—N1—C7	123.2 (3)	N1-C8-C9 ⁱⁱ	112.42 (17)
C1—N1—C8	117.8 (3)	N1—C8—C9	112.42 (17)
C7—N1—C8	119.0 (2)	C9 ⁱⁱ —C8—C9	112.7 (3)
O2—C1—N1	121.3 (3)	N1—C8—H8	106.2
O2—C1—C2	120.9 (3)	С9 ^{іі} —С8—Н8	106.2
N1—C1—C2	117.8 (3)	С9—С8—Н8	106.2
C3—C2—C4	119.3 (3)	C8—C9—C10	109.7 (2)
C3—C2—C1	120.1 (3)	С8—С9—Н9А	109.7
C4—C2—C1	120.5 (3)	С10—С9—Н9А	109.7
C2—C3—C5 ⁱ	121.3 (3)	С8—С9—Н9В	109.7
С2—С3—Н3	119.3	С10—С9—Н9В	109.7
C5 ⁱ —C3—H3	119.3	H9A—C9—H9B	108.2
$C2-C4-C4^{i}$	120.0 (3)	C11—C10—C9	111.6 (3)
C2—C4—C6	120.3 (3)	C11—C10—H10A	109.3
C4 ⁱ C6	119.7 (3)	C9—C10—H10A	109.3
C6C5C3 ⁱ	120.4 (3)	C11—C10—H10B	109.3
С6—С5—Н5	119.8	C9-C10-H10B	109.3
C3 ⁱ —C5—H5	119.8	H10A—C10—H10B	108.0
C5—C6—C4	119.3 (3)	C10-C11-C10 ⁱⁱ	111.3 (3)
C5—C6—C7	120.5 (3)	C10-C11-H11A	109.4
C4—C6—C7	120.2 (3)	C10 ⁱⁱ —C11—H11A	109.4
O1—C7—N1	120.8 (3)	C10—C11—H11B	109.4
O1—C7—C6	121.2 (3)	C10 ⁱⁱ —C11—H11B	109.4
N1—C7—C6	118.0 (2)	H11A—C11—H11B	108.0
C7—N1—C1—O2	180.0	C2—C4—C6—C7	0.0
C8—N1—C1—O2	0.0	C4 ⁱ —C4—C6—C7	180.0
C7—N1—C1—C2	0.0	C1—N1—C7—O1	180.0
C8—N1—C1—C2	180.0	C8—N1—C7—O1	0.0
O2—C1—C2—C3	0.0	C1—N1—C7—C6	0.0
N1—C1—C2—C3	180.0	C8—N1—C7—C6	180.0
O2—C1—C2—C4	180.0	C5—C6—C7—O1	0.0
N1-C1-C2-C4	0.0	C4—C6—C7—O1	180.0
$C4-C2-C3-C5^{i}$	0.000(1)	C5—C6—C7—N1	180.0
$C1-C2-C3-C5^{i}$	180.0	C4—C6—C7—N1	0.0
C3-C2-C4-C4 ⁱ	0.0	C1—N1—C8—C9 ⁱⁱ	115.76 (19)
$C1-C2-C4-C4^{i}$	180.0	C7—N1—C8—C9 ⁱⁱ	-64.24 (19)
C3—C2—C4—C6	180.0	C1—N1—C8—C9	-115.76 (19)
C1—C2—C4—C6	0.0	C7—N1—C8—C9	64.24 (19)
C3 ⁱ —C5—C6—C4	0.000 (1)	N1-C8-C9-C10	176.2 (2)
C3 ⁱ —C5—C6—C7	180.0	C9 ⁱⁱ —C8—C9—C10	-55.5 (4)

supporting information

C2—C4—C6—C5	180.0	C8-C9-C10-C11	55.2 (3)
C4 ⁱ —C4—C6—C5	0.000 (1)	C9—C10—C11—C10 ⁱⁱ	-56.5 (4)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, -y, z.