Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,3,5,7,9,11,13,15-Octaazapentacyclo[9.5.1.1 $\left.{ }^{3,9} \cdot 0^{6,18} .0^{14,17}\right]$ octadecane-
 4,8,12,16-tetrone monohydrate: a methylene-bridged glycoluril dimer

Pei-Hua Ma, ${ }^{\text {a }}$ Xin Xiao, ${ }^{\text {a }}$ Yun-Qian Zhang, ${ }^{a}$ Sai-Feng Xue ${ }^{\text {b }}$ and Zhu Tao ${ }^{\text {b }}$

${ }^{\text {a Key }}$ Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and ${ }^{\mathbf{b}}$ Institute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China
Correspondence e-mail: sci.yqzhang@gzu.edu.cn

Received 23 July 2008; accepted 30 July 2008

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.033 ; w R$ factor $=0.089$; data-to-parameter ratio $=10.4$.

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, prepared from the reaction of glycoluril with paraformaldehyde, the organic molecule has mm symmetry. The asymmetric unit comprises one quarter of the molecule and a half-molecule of water. The dimer is formed by bridging two glycoluril molecules with methylene groups at the 1 and 6 positions. In the crystal structure, molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a two-dimensional framework.

Related literature

For general background, see: Zhao et al. (2004); Zheng et al. (2005).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$V=626.2(3) \AA^{3}$
$M_{r}=326.29$
Orthorhombic, Pmmn
$Z=2$
$a=10.292$ (3) A
Mo $K \alpha$ radiation
$b=12.286$ (4) A
$\mu=0.14 \mathrm{~mm}^{-}$
$c=4.9530(15) \AA$
$T=298$ (2) K
$0.18 \times 0.13 \times 0.10 \mathrm{~mm}$

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.975, T_{\text {max }}=0.986$
3977 measured reflections 616 independent reflections 528 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032 \quad 59$ parameters
$w R\left(F^{2}\right)=0.089$
H -atom parameters constrained
$S=1.11$
616 reflections
$\Delta \rho_{\text {max }}=0.18 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.01	$2.8417(17)$	164
O1 $^{\mathrm{i}}-\mathrm{H} 1 W A \cdots 1^{\mathrm{ii}}$	0.86	2.36	$3.0241(17)$	135
O1 $W-\mathrm{H} 1 W A \cdots \mathrm{O} 1$	0.86	2.36	$3.0241(17)$	135

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+\frac{3}{2}, z$.
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We acknowledge the support of the National Natural Science Foundation of China (No. 20662003) and the Foundation of the Governor of Guizhou Province, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2521).

References

Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhao, Y. J., Xue, S. F., Zhu, Q. J., Tao, Z., Zhang, J. X., Wei, Z. B., Long, L. S., Hu, M. L., Xiao, H. P. \& Day, A. I. (2004). Chin. Sci. Bull. 49, 1111-1116.
Zheng, L. M., Zhu, J. N., Zhang, Y. Q., Tao, Z., Xue, S. F., Zhu, Q. J., Wei, Z. B. \& Long, L. S. (2005). Chin. J. Inorg. Chem. 21, 1583-1588.

supporting information

1,3,5,7,9,11,13,15-Octaazapentacyclo[9.5.1.1 $\left.{ }^{3,9} .0^{6,18} .0^{14,17}\right]$ octa-decane-4,8,12,16-tetrone monohydrate: a methylene-bridged glycoluril dimer

Pei-Hua Ma, Xin Xiao, Yun-Qian Zhang, Sai-Feng Xue and Zhu Tao

S1. Comment

In recent years, we have used different alkyl substituted glycolurils and glycoluril dimers as building blocks in the synthesis of partially alkyl substituted cucurbit[n]urils In this work, we report the crystal structure of the title compound, a glycoluril dimer, Fig 1.
The molecule comproses two glycoluril units linked by methylene bridges at the 1 and 6 positions. Molecules have mm crystallographic symmetry and the asymmetric unit comprises one quarter of the molecule and a half molecule of water. In the crystal structure, molecules are linked via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{WA} \cdots \mathrm{O} 1$ hydrogen bonds forming a twodimensional framework (Table 1 and Fig. 2).

S2. Experimental

A solution of glycoluril ($7.0 \mathrm{~g}, 0.05 \mathrm{~mol}$) in $\mathrm{H}_{2} \mathrm{SO}_{4}(50 \mathrm{ml}, 25 \%)$ was added to a stirred solution of paraformaldehyde (6.0 $\mathrm{g}, 0.2 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{SO}_{4}(150 \mathrm{ml})$ and the mixture was kept at $40^{\circ} \mathrm{C}$ for 5 h . Glycoluril ($14.2 \mathrm{~g}, 0.1 \mathrm{~mol}$) and $\mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{ml}$, 25%) were added in small proportions to this reaction mixture and the solution held at $80^{\circ} \mathrm{C}$ on a water bath for 5 h . After cooling to room temperature, the mixture was filtered to remove the insoluble residue and the filtrate was neutralized with aqueous NH_{3} to $\mathrm{pH} 7 . \mathrm{HCl}(150 \mathrm{ml})$ was then added, the mixture, stirred for 10 min , then filtered again. The solid product was dissolved in 100 ml HCl , and then set aside for three weeks to form colourless crystals of I.

S3. Refinement

The water H atoms were located in a difference Fourier map and refined as riding on the O atom in these positions with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{O})$. All other H atoms were placed in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ (methylene) and $0.98 \AA$ (methine), $\mathrm{N}-\mathrm{H}=0.86 \AA$, and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, N)$.

Figure 1
The molecular structure of (I) showing the atom-labelling scheme (Symmetry codes: (A) $-x+3 / 2, y, z$, (B) $x,-y+3 / 2, z$, (C) $-x+3 / 2,-y+3 / 2, z$,). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing diagram of (I). Hydrogen bonds are shown as dashed lines.

$1,3,5,7,9,11,13,15-$ Octaazapentacyclo $\left[9.5 .1 .1^{3,9} \cdot 0^{6,18} .0^{14,17}\right]$ octadecane- 4,8,12,16-tetrone monohydrate

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=326.29$
Orthorhombic, Pmmn
Hall symbol: -P 2ab 2a
$a=10.292$ (3) \AA
$b=12.286$ (4) \AA
$c=4.9530(15) \AA$
$V=626.2(3) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.975, T_{\max }=0.986$
$F(000)=340$
$D_{\mathrm{x}}=1.730 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 616 reflections
$\theta=2.6-25.1^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, colorless
$0.18 \times 0.13 \times 0.10 \mathrm{~mm}$

3977 measured reflections
616 independent reflections
528 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.1^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-11 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-5 \rightarrow 5$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.089$
$S=1.11$
616 reflections
59 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.049 P)^{2}+0.1538 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.18$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1W	0.2500	0.7500	$0.5795(5)$	$0.0492(7)$
H1WA	0.3096	0.7500	0.4574	0.059^{*}
C1	$0.56573(14)$	$0.59339(12)$	$0.2017(3)$	$0.0263(4)$
C2	0.7500	$0.49067(16)$	$0.0938(4)$	$0.0272(5)$
H2	0.7500	0.4252	-0.0191	0.033^{*}
C3	0.7500	$0.59750(16)$	$-0.0774(4)$	$0.0254(5)$
H3	0.7500	0.5819	-0.2714	0.030^{*}
C4	$0.5795(2)$	0.7500	$-0.1105(4)$	$0.0265(5)$
H4A	0.5977	0.7500	-0.3027	0.032^{*}
H4B	0.4859	0.7500	-0.0883	0.032^{*}
N1	$0.63278(12)$	$0.50102(10)$	$0.2503(3)$	$0.0336(4)$
H1	0.6077	0.4527	0.3646	0.040^{*}
N2	$0.63117(12)$	$0.65109(9)$	$0.0058(2)$	$0.0290(4)$
O1	$0.46406(10)$	$0.62196(9)$	$0.3073(2)$	$0.0341(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1W	$0.0359(14)$	$0.0614(16)$	$0.0504(16)$	0.000	0.000	0.000
C1	$0.0257(8)$	$0.0270(8)$	$0.0263(9)$	$-0.0046(6)$	$-0.0020(6)$	$-0.0024(6)$
C2	$0.0257(11)$	$0.0248(10)$	$0.0312(12)$	0.000	0.000	$-0.0036(9)$
C3	$0.0239(11)$	$0.0281(10)$	$0.0241(11)$	0.000	0.000	$-0.0033(9)$
C4	$0.0243(11)$	$0.0290(10)$	$0.0262(11)$	0.000	$-0.0049(8)$	0.000
N1	$0.0328(8)$	$0.0307(7)$	$0.0374(8)$	$0.0027(6)$	$0.0088(6)$	$0.0078(5)$
N2	$0.0245(7)$	$0.0306(7)$	$0.0319(7)$	$0.0024(5)$	$0.0038(6)$	$0.0038(5)$
O1	$0.0291(6)$	$0.0352(6)$	$0.0380(7)$	$0.0024(5)$	$0.0081(5)$	$0.0019(5)$

Geometric parameters ($A,{ }^{\circ}$)

O1W—H1WA	0.8616	$\mathrm{C} 3-\mathrm{N} 2^{\mathrm{i}}$	$1.4487(16)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.2214(17)$	$\mathrm{C} 3-\mathrm{N} 2$	$1.4487(16)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.350(2)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9800
$\mathrm{C} 1-\mathrm{N} 2$	$1.3774(19)$	$\mathrm{C} 4-\mathrm{N} 2^{\mathrm{ii}}$	$1.4461(16)$
$\mathrm{C} 2-\mathrm{N} 1^{\mathrm{i}}$	$1.4395(17)$	$\mathrm{C} 4-\mathrm{N} 2$	$1.4461(16)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.4395(17)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.563(3)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700

$\mathrm{C} 2-\mathrm{H} 2$	0.9800	N1-H1	0.8600
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	127.08 (14)	C2-C3-H3	111.6
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	124.95 (14)	$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{C} 4-\mathrm{N} 2$	114.35 (17)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	107.97 (13)	$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.7
N1 ${ }^{\text {i }}$ - $\mathrm{C} 2-\mathrm{N} 1$	113.86 (18)	N2-C4-H4A	108.7
N1 ${ }^{\text {i }}$ - $\mathrm{C} 2-\mathrm{C} 3$	102.59 (11)	$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.7
N1-C2-C3	102.59 (11)	N2-C4-H4B	108.7
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{C} 2-\mathrm{H} 2$	112.3	H4A-C4-H4B	107.6
N1-C2-H2	112.3	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	113.98 (14)
C3-C2-H2	112.3	C1-N1-H1	123.0
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{N} 2$	115.16 (17)	C2-N1-H1	123.0
N2 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{C} 2$	103.14 (11)	C1-N2-C4	122.23 (14)
N2-C3-C2	103.14 (11)	C1-N2-C3	112.29 (13)
N2 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{H} 3$	111.6	C4-N2-C3	125.37 (15)
N2-C3-H3	111.6		
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2^{\mathrm{i}}$	0.93 (16)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	174.54 (13)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2^{\text {i }}$	119.26 (13)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	179.04 (14)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	-119.26 (13)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	-1.78 (18)
N1-C2-C3-N2	-0.93 (16)	$\mathrm{N} 2 \mathrm{ii}-\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1$	98.33 (19)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	-179.74 (14)	$\mathrm{N} 2 \mathrm{ii}-\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 3$	-85.8 (2)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	1.10 (18)	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	-109.90 (16)
N1 ${ }^{\text {i }} \mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	110.00 (16)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	1.67 (17)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	-0.06 (18)	$\mathrm{N} 2 \mathrm{i}-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	73.9 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	-4.6 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	-174.51 (14)

Symmetry codes: (i) $-x+3 / 2, y, z$; (ii) $x,-y+3 / 2, z$.
Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{iii}}$	0.86	2.01	$2.8417(17)$	164
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots 1^{\mathrm{ii}}$	0.86	2.36	$3.0241(17)$	135
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 1$	0.86	2.36	$3.0241(17)$	135

Symmetry codes: (ii) $x,-y+3 / 2, z$; (iii) $-x+1,-y+1,-z+1$.

