

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Bis(diphenylphosphorothioyl) trisulfide

#### Monika Kulcsar, Anca Silvestru\* and Marius Vonas

Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street 11, RO-400028 Cluj-Napoca, Romania Correspondence e-mail: ancas@chem.ubbcluj.ro

Received 14 July 2008; accepted 29 July 2008

Key indicators: single-crystal X-ray study; T = 297 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.107; data-to-parameter ratio = 18.5.

In the title compound,  $C_{24}H_{20}P_2S_5$ , the P atoms are arranged *trans* with respect to the S<sub>3</sub> group and the S=P-S-S systems have *cisoid* geometry, with an average S-P-S-S torsion angle of -56.7°. The dihedral angles between the two phenyl rings attached to the P atoms are 87.33 (12) and 75.67 (10)°. In the crystal structure, the molecules are linked into chains running parallel to the *a* axis by weak intermolecular C-H···S hydrogen bonds. Centrosymmetrically related chains are further connected by  $\pi$ - $\pi$  stacking interactions, with a centroid-to-centroid distance of 3.795 (5) Å.

#### **Related literature**

For related literature. see: Deleanu *et al.* (2002); Drake *et al.* (2001*a,b*); Gallacher & Pinkerton (1992*a,b*, 1993); Kulcsar *et al.* (2005); Newton *et al.* (1993); Silvestru *et al.* (1994*a,b*); Buranda *et al.* (1991); Fest & Schmidt (1982); Knopik *et al.* (1993); Lawton (1970); McCleverty *et al.* (1983); Molyneux (1967); Perlikowska *et al.* (2004); Potrzebowski *et al.* (1991, 1994); Tiekink (2001); Tkachev *et al.* (1976); Zhang *et al.* (2004); Emsley (1994); Yadav *et al.* (1989).



## Experimental

| Crystal data         |                                  |
|----------------------|----------------------------------|
| $C_{24}H_{20}P_2S_5$ | c = 12.9728 (12) Å               |
| $M_r = 530.64$       | $\alpha = 92.690 \ (2)^{\circ}$  |
| Triclinic, P1        | $\beta = 105.287 \ (2)^{\circ}$  |
| a = 9.2287 (8) Å     | $\gamma = 106.124 \ (2)^{\circ}$ |
| b = 11.5476 (10) Å   | V = 1270.3 (2) Å <sup>3</sup>    |

Z = 2Mo  $K\alpha$  radiation  $\mu = 0.59 \text{ mm}^{-1}$ 

#### Data collection

| Bruker SMART APEX                 |
|-----------------------------------|
| diffractometer                    |
| Absorption correction: multi-scan |
| (SADABS; Bruker, 2000)            |
| T = 0.819 $T = 0.885$             |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 280 parameters $wR(F^2) = 0.106$ H-atom parameters constrainedS = 1.13 $\Delta \rho_{max} = 0.40$  e Å $^{-3}$ 5178 reflections $\Delta \rho_{min} = -0.19$  e Å $^{-3}$ 

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------------|------|-------------------------|--------------|------------------|
| $C17-H17\cdots S5^i$        | 0.93 | 2.94                    | 3.737 (3)    | 145              |
| 6 ( ) ()                    |      |                         |              |                  |

Symmetry code: (i) x + 1, y, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2008).

This work was supported by the Romanian Ministry of Education and Research (CNCSIS grant No. 12/1456/2007). We thank the National Center for X-ray Diffraction (Babes-Bolyai University, Cluj-Napoca) for support in the solid-state structure determination.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2237).

#### References

- Brandenburg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buranda, T., Gallacher, A. C. & Pinkerton, A. A. (1991). Acta Cryst. C47, 1414–1418.
- Deleanu, C., Drake, J. E., Hursthouse, M. B., Kulcsar, M., Leight, M. E. & Silvestru, A. (2002). Appl. Organomet. Chem. 16, 727–731.
- Drake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001a). Phosphorus Sulfur Silicon Relat. Elem. 169, 293–296.
- Drake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001b). J. Organomet. Chem. 623, 153–160.
- Emsley, J. (1994). Die Elemente. Berlin: Walter de Gruyter.
- Fest, C. & Schmidt, K. J. (1982). The Chemistry of Organophosphorus Pesticides, 2nd ed. New York: Springer.
- Gallacher, A. C. & Pinkerton, A. A. (1992a). Acta Cryst. C48, 701-703.
- Gallacher, A. C. & Pinkerton, A. A. (1992b). Acta Cryst. C48, 2085-2088.
- Gallacher, A. C. & Pinkerton, A. A. (1993). Acta Cryst. C49, 1793-1796.
- Knopik, P., Luczak, L., Potrzebowski, M. J., Michalski, J., Blaszczyk, J. & Wieczorek, M. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2749–2757.
- Kulcsar, M., Silvestru, A., Silvestru, C., Drake, J. E., Macdonald, C. L. B., Hursthouse, M. B. & Light, M. E. (2005). J. Organomet. Chem. 690, 3217– 3228.

T = 297 (2) K

 $R_{\rm int} = 0.029$ 

 $0.35 \times 0.27 \times 0.21 \text{ mm}$ 

13712 measured reflections 5178 independent reflections

4536 reflections with  $I > 2\sigma(I)$ 

Lawton, S. L. (1970). Inorg. Chem. 9, 2269-2274.

- McCleverty, J. A., Kowalski, R. S. Z., Bailey, N. A., Mulvaney, R. & O'Cleirigh, D. A. (1983). J. Chem. Soc. Dalton Trans. pp. 627–634.
- Molyneux, P. H. (1967). Lubrication and Lubricants, ch. 3, edited by E. R. Braithwaite. Amsterdam: Elsevier.
- Newton, M. G., King, R. B., Haiduc, I. & Silvestru, A. (1993). Inorg. Chem. 32, 3795–3796.
- Perlikowska, W., Gouygou, M., Mikolajczyk, M. & Daran, J.-C. (2004). *Tetrahedron Asymmetry*, **15**, 3519–3529.
- Potrzebowski, M. J., Grossmann, G., Blaszczyk, J., Wieczorek, M. W., Sieler, J., Knopik, P. & Komber, H. (1994). *Inorg. Chem.* 33, 4688–4695.
- Potrzebowski, M. J., Reinbenspies, J. H. & Zhong, Z. (1991). *Heteroat. Chem.* 2, 455–460.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Silvestru, A., Haiduc, I., Ebert, K. H. & Breunig, H. J. (1994a). Inorg. Chem. 33, 1253-1254.
- Silvestru, A., Haiduc, I., Ebert, K. H. & Breunig, H. J. (1994b). J. Organomet. Chem. 482, 253–259.
- Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 247-248.

Tkachev, V. V., Atovmyan, L. O. & Shchepinov, S. A. (1976). Zh. Strukt. Khim. 17, 945–947.

Westrip, S. P. (2008). publCIF. In preparation.

- Yadav, J. S., Bohra, R., Mehrotra, R. K., Rai, A. K. & Srivastava, G. (1989). Acta Cryst. C45, 308–311.
- Zhang, S.-S., Li, X.-M., Wang, J.-L., Wan, J. & Jiao, K. (2004). Chem. Res. Chin. Univ. 20, 146–148.

# supporting information

Acta Cryst. (2008). E64, o1683-o1684 [doi:10.1107/S1600536808024070]

## Bis(diphenylphosphorothioyl) trisulfide

## Monika Kulcsar, Anca Silvestru and Marius Vonas

### S1. Comment

Our interest was focused for long time on studies concerning reactions between bis(diorganothiophosphoryl)disulfides and diorganodichalcogenides of type  $R_2E_2$  (E = Se, Te) in order to obtain new organochalcogen compounds with diorganodithiophosphorus ligands (Newton *et al.*, 1993; Silvestru *et al.*, 1994*a*,*b*; Drake *et al.*, 2001*a*,*b*; Kulcsar *et al.*, 2005; Deleanu *et al.*, 2002). Bis(diorganothiophosphoryl)disulfides attracted much interest also due to their potential applications as pesticides (Fest & Schmidt, 1982), additives in motor oils (Molyneux, 1967) and in the rubber vulcanization (McCleverty *et al.*, 1983). Both alkyl and aryl substituted derivatives of type [ $R_2P(S)S$ ]<sub>2</sub> were already structurally characterized, *e.g.* R = OPr-i (Lawton, 1970; Tkachev *et al.*, 1976; Tiekink, 2001; Zhang *et al.*, 2004), R =OMe, OBu-t (Potrzebowski *et al.*, 1991), cyclohexyl (Buranda *et al.*, 1991), Me, Pr-i (Gallacher & Pinkerton, 1992*b*), Ph (Gallacher & Pinkerton, 1993), OPh (Gallacher & Pinkerton, 1993; Knopik *et al.*, 1993), menthoxy (Perlikowska *et al.*, 2004),  $R_2 = OCMe_2$ —CMe<sub>2</sub>O (Yadav *et al.*, 1989), OCMe<sub>2</sub>—CH<sub>2</sub>O (Potrzebowski *et al.*, 1994). A search of the Cambridge Structure Database revealed that only for one trisulfide, [Et<sub>2</sub>P(S)S]<sub>2</sub>S, the X-ray crystal structure was determined (Gallacher & Pinkerton, 1992*a*). Here we report about the phenyl substituted analog, [Ph<sub>2</sub>P(S)S]<sub>2</sub>S.

The chalcogen atoms S2 and S3 are doubly bonded to phosphorus [S2=P1 = 1.9351 (9); S3=P2 = 1.9303 (9) Å], while the P1—S1 [2.1171 (9) Å] and P2—S4 [2.1282 (9) Å] distances correspond to single P—S bonds (cf.  $[Ph_2P(S)S]_2$ : P=S = 1.930 (1), P—S = 2.139 (1) Å; Gallacher & Pinkerton, 1993). The sulfur–sulfur distances within the S<sub>3</sub> group are not significantly different [S5-S4 = 2.0407 (10), S5-S1 = 2.0440 (10) Å], corresponding to a S-S single bond. These values are similar to those found in bis(diorganothiophosphoryl)disulfides or in [Et<sub>2</sub>P(S)S]<sub>2</sub>S. The SPS<sub>3</sub>PS skeleton of the title compound adopts a twisted zigzag chain structure (Fig. 1), with the torsion angles S2-P1-S1-S5 = -56.30 (5)°, P1-S1-S5-S4 = 96.84 (4)°, S1-S5-S4-P2 = 87.42 (5)° and S5-S4-P2-S3 = -57.13 (5)°. Although apparently the conformation of the SPS<sub>3</sub>PS skeleton is similar to that of the previously reported ethyl derivative, some differences should be noted. In the title compound the phosphorus atoms are *trans* with respect of the central  $S_3$  group [P1—S1···S5  $-P2 = 171.4^{\circ}$ , as are in the related [Et<sub>2</sub>P(S)S]<sub>2</sub>S compound (the torsion angle between corresponding atoms is 159.8°). In both cases the central S atom and the terminal S atoms, respectively, are placed on opposite sides of the best plane described by the remaining atoms of the skeleton. However, the S=P...P=S torsion angle is 138.8°, but only -89.4° in the ethyl derivative. Moreover, the S=P—S—S system has a *cisoid* geometry  $[S2-P1-S1-S5 = -56.30 (5)^\circ, S5-S4-P2$  $-S_3 = -57.13 (5)^\circ$ , while it has a *transoid* geometry in [Et<sub>2</sub>P(S)S]<sub>2</sub>S (average S=P-S-S torsion angle 179.6°; Gallacher & Pinkerton, 1992a). The S—P—S angles  $[S2-P1-S1 = 113.77 (4)^{\circ} \text{ and } S3-P2-S4 = 114.34 (4)^{\circ}]$  are consistent with a *cisoid* geometry, similar with that found for [Ph<sub>2</sub>P(S)S]<sub>2</sub> [114.44 (4)°; Gallacher & Pinkerton, 1993], but much larger than in the *transoid* derivatives [(PhO)<sub>2</sub>P(S)S]<sub>2</sub> [108.39 (7)°; Gallacher & Pinkerton, 1993] and [Et<sub>2</sub>P(S)S]<sub>2</sub>S [av. 103.7°; Gallacher & Pinkerton, 1992a]. The dihedral angles formed by the plane of the phenyl rings attached to the P1 and P2 atoms are 87.33 (12) 75.67 (10)° respectively. The crystal structure is stabilized by weak intermolecular hydrogen bonding interactions (Emsley, 1994) between the central sulfur atom and an aromatic proton of a neighbouring

molecule (Table 1) forming chains parellel to the *a* axis (Fig. 2). Weak intermolecular S···H contacts were observed in  $[(PhO)_2P(S)S]_2$  [2.954 (1) Å], but they are absent in  $[Et_2P(S)S]_2S$  or  $[Ph_2P(S)S]_2$ . Centrosymmetrically related chains are further connected by  $\pi$ - $\pi$  stacking interactions involving the C13–C18 phenyl rings, with centroid-to-centroid distance of 3.795 (5) Å.

## S2. Experimental

The title compound was isolated as a by-product during recrystallization of  $PhSeS_2PPh_2$  obtained in the reaction between  $[Ph_2P(S)S]_2$  and  $Ph_2Se_2$ .

## S3. Refinement

All C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and treated using a riding model with  $U_{iso} = 1.2U_{eq}(C)$ .



## Figure 1

A view of the title compound, with the atomic numbering scheme, showing displacement ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.



### Figure 2

View of the S···H intermolecular interactions (dashed lines) in the title compound. Only H involved in hydrogen bonding interactions are shown. Symmetry codes: (i) 1 + x, *y*, *z*, (ii) -1 + x, *y*, *z*.

### Bis(diphenylphosphorothioyl) trisulfide

Crystal data

 $C_{24}H_{20}P_2S_5$   $M_r = 530.64$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.2287 (8) Å b = 11.5476 (10) Å c = 12.9728 (12) Å a = 92.690 (2)°  $\beta = 105.287$  (2)°  $\gamma = 106.124$  (2)° V = 1270.3 (2) Å<sup>3</sup>

### Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000)  $T_{\min} = 0.819, T_{\max} = 0.886$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.047$  $wR(F^2) = 0.106$  Z = 2 F(000) = 548  $D_x = 1.387 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4229 reflections  $\theta = 2.4-25.3^{\circ}$   $\mu = 0.59 \text{ mm}^{-1}$ T = 297 K Block, yellow  $0.35 \times 0.27 \times 0.21 \text{ mm}$ 

13712 measured reflections 5178 independent reflections 4536 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.029$  $\theta_{max} = 26.4^\circ, \ \theta_{min} = 1.6^\circ$  $h = -11 \rightarrow 11$  $k = -14 \rightarrow 14$  $l = -16 \rightarrow 16$ 

S = 1.135178 reflections 280 parameters 0 restraints

| Primary atom site location: structure-invariant             | H-atom parameters constrained                                                                                                                                   |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| direct methods                                              | $w = 1/[\sigma^2(F_o^2) + (0.0406P)^2 + 0.4205P]$                                                                                                               |
| Secondary atom site location: difference Fourier            | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                  |
| map                                                         | $(\Delta/\sigma)_{max} = 0.001$                                                                                                                                 |
| Hydrogen site location: inferred from<br>neighbouring sites | $\Delta \rho_{\text{max}} = 0.001$<br>$\Delta \rho_{\text{max}} = 0.40 \text{ e } \text{Å}^{-3}$<br>$\Delta \rho_{\text{min}} = -0.19 \text{ e } \text{Å}^{-3}$ |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x           | у          | Ζ            | $U_{\rm iso}^*/U_{\rm eq}$ |
|-----|-------------|------------|--------------|----------------------------|
| C1  | 0.2158 (3)  | 0.8016 (2) | 1.01664 (19) | 0.0410 (6)                 |
| C2  | 0.3749 (3)  | 0.8562 (3) | 1.0317 (2)   | 0.0549 (7)                 |
| H2  | 0.4141      | 0.8641     | 0.9724       | 0.066*                     |
| C3  | 0.4758 (4)  | 0.8988 (3) | 1.1337 (3)   | 0.0649 (8)                 |
| Н3  | 0.5828      | 0.9348     | 1.1436       | 0.078*                     |
| C4  | 0.4171 (4)  | 0.8878 (3) | 1.2203 (3)   | 0.0689 (9)                 |
| H4  | 0.4848      | 0.9168     | 1.2894       | 0.083*                     |
| C5  | 0.2607 (4)  | 0.8349 (3) | 1.2068 (2)   | 0.0710 (9)                 |
| Н5  | 0.2225      | 0.8283     | 1.2665       | 0.085*                     |
| C6  | 0.1586 (3)  | 0.7909 (3) | 1.1050 (2)   | 0.0561 (7)                 |
| H6  | 0.0520      | 0.7543     | 1.0960       | 0.067*                     |
| C7  | -0.1095 (3) | 0.7270 (2) | 0.8809 (2)   | 0.0432 (6)                 |
| C8  | -0.2183 (3) | 0.6199 (3) | 0.8876 (2)   | 0.0541 (7)                 |
| H8  | -0.1877     | 0.5500     | 0.8980       | 0.065*                     |
| C9  | -0.3720 (4) | 0.6158 (4) | 0.8789 (3)   | 0.0721 (10)                |
| Н9  | -0.4449     | 0.5435     | 0.8832       | 0.087*                     |
| C10 | -0.4163 (4) | 0.7184 (5) | 0.8640 (3)   | 0.0890 (12)                |
| H10 | -0.5203     | 0.7156     | 0.8568       | 0.107*                     |
| C11 | -0.3101 (5) | 0.8242 (4) | 0.8595 (4)   | 0.0986 (13)                |
| H11 | -0.3412     | 0.8941     | 0.8513       | 0.118*                     |
| C12 | -0.1564 (4) | 0.8300 (3) | 0.8671 (3)   | 0.0735 (9)                 |
| H12 | -0.0848     | 0.9030     | 0.8629       | 0.088*                     |
| C13 | 0.3127 (3)  | 0.3345 (2) | 0.5892 (2)   | 0.0398 (5)                 |
| C14 | 0.2557 (3)  | 0.3370 (2) | 0.4795 (2)   | 0.0479 (6)                 |
| H14 | 0.1519      | 0.3359     | 0.4499       | 0.057*                     |
| C15 | 0.3525 (4)  | 0.3410 (3) | 0.4141 (2)   | 0.0556 (7)                 |
| H15 | 0.3143      | 0.3436     | 0.3406       | 0.067*                     |
| C16 | 0.5055 (4)  | 0.3413 (3) | 0.4577 (3)   | 0.0609 (8)                 |
| H16 | 0.5705      | 0.3430     | 0.4135       | 0.073*                     |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C17 | 0.5620 (3)   | 0.3390 (3)  | 0.5657 (3)   | 0.0619 (8)   |  |
|-----|--------------|-------------|--------------|--------------|--|
| H17 | 0.6657       | 0.3395      | 0.5946       | 0.074*       |  |
| C18 | 0.4675 (3)   | 0.3360 (2)  | 0.6329 (2)   | 0.0514 (7)   |  |
| H18 | 0.5072       | 0.3349      | 0.7065       | 0.062*       |  |
| C19 | 0.0085 (3)   | 0.2000 (2)  | 0.61159 (19) | 0.0391 (5)   |  |
| C20 | 0.0029 (3)   | 0.0881 (2)  | 0.6477 (2)   | 0.0553 (7)   |  |
| H20 | 0.0863       | 0.0805      | 0.7028       | 0.066*       |  |
| C21 | -0.1260 (4)  | -0.0116 (3) | 0.6021 (3)   | 0.0679 (9)   |  |
| H21 | -0.1291      | -0.0866     | 0.6261       | 0.082*       |  |
| C22 | -0.2495 (4)  | -0.0006 (3) | 0.5214 (3)   | 0.0663 (9)   |  |
| H22 | -0.3370      | -0.0679     | 0.4914       | 0.080*       |  |
| C23 | -0.2445 (3)  | 0.1094 (3)  | 0.4849 (2)   | 0.0590 (8)   |  |
| H23 | -0.3284      | 0.1163      | 0.4297       | 0.071*       |  |
| C24 | -0.1155 (3)  | 0.2102 (2)  | 0.5295 (2)   | 0.0468 (6)   |  |
| H24 | -0.1123      | 0.2846      | 0.5042       | 0.056*       |  |
| P1  | 0.09047 (8)  | 0.73820 (6) | 0.88233 (5)  | 0.03962 (16) |  |
| P2  | 0.18502 (8)  | 0.32528 (6) | 0.67495 (5)  | 0.03861 (16) |  |
| S1  | 0.11328 (9)  | 0.56101 (6) | 0.88821 (5)  | 0.04965 (18) |  |
| S2  | 0.15246 (9)  | 0.81659 (7) | 0.76545 (6)  | 0.0581 (2)   |  |
| S3  | 0.27532 (9)  | 0.31611 (7) | 0.82540 (5)  | 0.0562 (2)   |  |
| S4  | 0.12601 (8)  | 0.48837 (6) | 0.64407 (5)  | 0.04720 (18) |  |
| S5  | -0.02304 (8) | 0.48041 (6) | 0.73690 (6)  | 0.04856 (18) |  |
|     |              |             |              |              |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0431 (14) | 0.0406 (13) | 0.0377 (13) | 0.0128 (11)  | 0.0096 (11)  | 0.0023 (10)  |
| C2  | 0.0462 (15) | 0.0608 (18) | 0.0556 (17) | 0.0146 (13)  | 0.0134 (13)  | 0.0027 (14)  |
| C3  | 0.0443 (16) | 0.064 (2)   | 0.072 (2)   | 0.0126 (14)  | -0.0026 (15) | 0.0023 (16)  |
| C4  | 0.076 (2)   | 0.0575 (19) | 0.0514 (18) | 0.0143 (17)  | -0.0112 (16) | -0.0003 (14) |
| C5  | 0.089 (3)   | 0.074 (2)   | 0.0389 (16) | 0.0113 (19)  | 0.0159 (16)  | 0.0006 (15)  |
| C6  | 0.0559 (17) | 0.0611 (18) | 0.0435 (15) | 0.0060 (14)  | 0.0147 (13)  | 0.0017 (13)  |
| C7  | 0.0407 (13) | 0.0489 (15) | 0.0380 (13) | 0.0129 (11)  | 0.0096 (11)  | -0.0008 (11) |
| C8  | 0.0533 (16) | 0.0624 (18) | 0.0486 (16) | 0.0170 (14)  | 0.0183 (13)  | 0.0084 (13)  |
| C9  | 0.0529 (18) | 0.094 (3)   | 0.061 (2)   | 0.0040 (18)  | 0.0249 (16)  | -0.0066 (18) |
| C10 | 0.055 (2)   | 0.131 (4)   | 0.088 (3)   | 0.040 (2)    | 0.0229 (19)  | -0.009 (3)   |
| C11 | 0.085 (3)   | 0.093 (3)   | 0.137 (4)   | 0.056 (3)    | 0.034 (3)    | 0.007 (3)    |
| C12 | 0.067 (2)   | 0.0587 (19) | 0.103 (3)   | 0.0281 (17)  | 0.0295 (19)  | 0.0056 (18)  |
| C13 | 0.0425 (13) | 0.0311 (12) | 0.0428 (14) | 0.0077 (10)  | 0.0113 (11)  | 0.0010 (10)  |
| C14 | 0.0475 (15) | 0.0504 (15) | 0.0453 (15) | 0.0136 (12)  | 0.0138 (12)  | 0.0076 (12)  |
| C15 | 0.0659 (19) | 0.0535 (17) | 0.0465 (16) | 0.0101 (14)  | 0.0232 (14)  | 0.0062 (13)  |
| C16 | 0.0594 (19) | 0.0526 (17) | 0.072 (2)   | 0.0048 (14)  | 0.0353 (17)  | -0.0010 (15) |
| C17 | 0.0399 (15) | 0.0612 (19) | 0.078 (2)   | 0.0090 (13)  | 0.0144 (15)  | -0.0046 (16) |
| C18 | 0.0474 (15) | 0.0493 (16) | 0.0510 (16) | 0.0111 (13)  | 0.0081 (13)  | -0.0013 (12) |
| C19 | 0.0442 (13) | 0.0345 (12) | 0.0406 (13) | 0.0104 (10)  | 0.0173 (11)  | 0.0027 (10)  |
| C20 | 0.0587 (17) | 0.0399 (15) | 0.0614 (18) | 0.0117 (13)  | 0.0107 (14)  | 0.0075 (13)  |
| C21 | 0.083 (2)   | 0.0376 (16) | 0.072 (2)   | 0.0061 (15)  | 0.0157 (18)  | 0.0063 (14)  |
| C22 | 0.068 (2)   | 0.0485 (17) | 0.064 (2)   | -0.0070 (15) | 0.0186 (17)  | -0.0096 (15) |

# supporting information

| C23        | 0.0486 (16) | 0.0630 (19) | 0.0515 (17) | 0.0052 (14) | 0.0052 (13) | -0.0032 (14) |
|------------|-------------|-------------|-------------|-------------|-------------|--------------|
| C24        | 0.0480 (15) | 0.0451 (15) | 0.0454 (15) | 0.0117 (12) | 0.0129 (12) | 0.0061 (12)  |
| P1         | 0.0411 (4)  | 0.0412 (4)  | 0.0361 (3)  | 0.0117 (3)  | 0.0113 (3)  | 0.0044 (3)   |
| P2         | 0.0440 (4)  | 0.0349 (3)  | 0.0359 (3)  | 0.0113 (3)  | 0.0105 (3)  | 0.0039 (3)   |
| <b>S</b> 1 | 0.0608 (4)  | 0.0496 (4)  | 0.0432 (4)  | 0.0259 (3)  | 0.0128 (3)  | 0.0062 (3)   |
| S2         | 0.0642 (5)  | 0.0640 (5)  | 0.0451 (4)  | 0.0116 (4)  | 0.0206 (3)  | 0.0161 (3)   |
| S3         | 0.0658 (5)  | 0.0598 (4)  | 0.0378 (4)  | 0.0173 (4)  | 0.0073 (3)  | 0.0082 (3)   |
| S4         | 0.0632 (4)  | 0.0346 (3)  | 0.0467 (4)  | 0.0161 (3)  | 0.0191 (3)  | 0.0064 (3)   |
| S5         | 0.0403 (3)  | 0.0436 (4)  | 0.0562 (4)  | 0.0096 (3)  | 0.0097 (3)  | -0.0040 (3)  |
|            |             |             |             |             |             |              |

Geometric parameters (Å, °)

| C1—C6    | 1.380 (4) | C14—C15     | 1.378 (4)   |
|----------|-----------|-------------|-------------|
| C1—C2    | 1.384 (4) | C14—H14     | 0.9300      |
| C1—P1    | 1.805 (2) | C15—C16     | 1.375 (4)   |
| С2—С3    | 1.377 (4) | C15—H15     | 0.9300      |
| С2—Н2    | 0.9300    | C16—C17     | 1.365 (4)   |
| C3—C4    | 1.367 (5) | C16—H16     | 0.9300      |
| С3—Н3    | 0.9300    | C17—C18     | 1.382 (4)   |
| C4—C5    | 1.361 (5) | C17—H17     | 0.9300      |
| C4—H4    | 0.9300    | C18—H18     | 0.9300      |
| C5—C6    | 1.380 (4) | C19—C24     | 1.379 (3)   |
| С5—Н5    | 0.9300    | C19—C20     | 1.387 (3)   |
| С6—Н6    | 0.9300    | C19—P2      | 1.816 (2)   |
| C7—C12   | 1.379 (4) | C20—C21     | 1.376 (4)   |
| С7—С8    | 1.383 (4) | C20—H20     | 0.9300      |
| C7—P1    | 1.809 (3) | C21—C22     | 1.369 (4)   |
| С8—С9    | 1.381 (4) | C21—H21     | 0.9300      |
| С8—Н8    | 0.9300    | C22—C23     | 1.369 (4)   |
| C9—C10   | 1.362 (5) | C22—H22     | 0.9300      |
| С9—Н9    | 0.9300    | C23—C24     | 1.383 (4)   |
| C10-C11  | 1.353 (6) | С23—Н23     | 0.9300      |
| С10—Н10  | 0.9300    | C24—H24     | 0.9300      |
| C11—C12  | 1.378 (5) | P1—S2       | 1.9351 (9)  |
| C11—H11  | 0.9300    | P1—S1       | 2.1171 (9)  |
| C12—H12  | 0.9300    | P2—S3       | 1.9303 (9)  |
| C13—C14  | 1.385 (3) | P2—S4       | 2.1282 (9)  |
| C13—C18  | 1.386 (4) | S1—S5       | 2.0440 (10) |
| C13—P2   | 1.808 (2) | S4—S5       | 2.0407 (10) |
| C6—C1—C2 | 119.4 (2) | C14—C15—H15 | 120.1       |
| C6—C1—P1 | 121.7 (2) | C17—C16—C15 | 120.0 (3)   |
| C2—C1—P1 | 118.9 (2) | C17—C16—H16 | 120.0       |
| C3—C2—C1 | 120.5 (3) | C15—C16—H16 | 120.0       |
| C3—C2—H2 | 119.8     | C16—C17—C18 | 121.0 (3)   |
| C1—C2—H2 | 119.8     | С16—С17—Н17 | 119.5       |
| C4—C3—C2 | 119.4 (3) | C18—C17—H17 | 119.5       |
| С4—С3—Н3 | 120.3     | C17—C18—C13 | 119.1 (3)   |
|          |           |             |             |

|                                 | 120.2                | C17 C10 H10                               | 100 4       |
|---------------------------------|----------------------|-------------------------------------------|-------------|
| С2—С3—Н3                        | 120.3                | C1/C18H18                                 | 120.4       |
| C5—C4—C3                        | 120.8 (3)            | C13—C18—H18                               | 120.4       |
| C5—C4—H4                        | 119.6                | C24—C19—C20                               | 119.5 (2)   |
| C3—C4—H4                        | 119.6                | C24—C19—P2                                | 123.69 (19) |
| C4—C5—C6                        | 120.4 (3)            | C20—C19—P2                                | 116.8 (2)   |
| С4—С5—Н5                        | 119.8                | C21—C20—C19                               | 120.1 (3)   |
| С6—С5—Н5                        | 119.8                | C21—C20—H20                               | 120.0       |
| C1—C6—C5                        | 119.6 (3)            | С19—С20—Н20                               | 120.0       |
| С1—С6—Н6                        | 120.2                | C22—C21—C20                               | 120.2 (3)   |
| C5-C6-H6                        | 120.2                | $C_{22} = C_{21} = H_{21}$                | 119.9       |
| C12-C7-C8                       | 118.9(3)             | $C_{20}$ $C_{21}$ $H_{21}$                | 119.9       |
| $C_{12} = C_{7} = P_{1}$        | 117.5(2)             | $C_{23}$ $C_{22}$ $C_{21}$ $C_{21}$       | 120.1(3)    |
| $C_{12} = C_7 = D_1$            | 117.5(2)<br>123.5(2) | $C_{23}^{23} = C_{22}^{22} = C_{21}^{21}$ | 120.1 (5)   |
| $C_0 = C_1 = C_1$               | 123.3(2)<br>120.5(2) | $C_{23} = C_{22} = H_{22}$                | 119.9       |
| $C_{2}$                         | 120.3 (3)            | $C_{21} = C_{22} = C_{24}$                | 119.9       |
| C9—C8—H8                        | 119.8                | $C_{22} = C_{23} = C_{24}$                | 120.4 (3)   |
| C/C8H8                          | 119.8                | С22—С23—Н23                               | 119.8       |
| C10—C9—C8                       | 119.6 (3)            | C24—C23—H23                               | 119.8       |
| С10—С9—Н9                       | 120.2                | C19—C24—C23                               | 119.8 (3)   |
| С8—С9—Н9                        | 120.2                | C19—C24—H24                               | 120.1       |
| C11—C10—C9                      | 120.4 (3)            | C23—C24—H24                               | 120.1       |
| C11—C10—H10                     | 119.8                | C1—P1—C7                                  | 107.49 (11) |
| С9—С10—Н10                      | 119.8                | C1—P1—S2                                  | 116.30 (9)  |
| C10-C11-C12                     | 120.9 (4)            | C7—P1—S2                                  | 113.64 (9)  |
| C10-C11-H11                     | 119.5                | C1—P1—S1                                  | 96.94 (8)   |
| C12—C11—H11                     | 119.5                | C7—P1—S1                                  | 107.14 (9)  |
| C11—C12—C7                      | 119.6 (3)            | S2—P1—S1                                  | 113.77 (4)  |
| C11—C12—H12                     | 120.2                | C13—P2—C19                                | 106.48 (11) |
| C7—C12—H12                      | 120.2                | C13—P2—S3                                 | 116.70 (9)  |
| C14—C13—C18                     | 119.7 (2)            | C19—P2—S3                                 | 113.09 (8)  |
| C14—C13—P2                      | 120.46 (19)          | C13—P2—S4                                 | 97.91 (8)   |
| C18—C13—P2                      | 119.8 (2)            | C19 - P2 - S4                             | 106 85 (8)  |
| $C_{15}$ $C_{14}$ $C_{13}$      | 120.2(3)             | S3_P2_S4                                  | 114 34 (4)  |
| $C_{15}$ $C_{14}$ $H_{14}$      | 110.0                | S5S1P1                                    | 100.37(4)   |
| $C_{13}$ $C_{14}$ $H_{14}$      | 110.0                | S5 S4 D2                                  | 100.37(4)   |
| $C_{15} = C_{14} = 1114$        | 119.9                | 53 - 54 - 12                              | 33.32(4)    |
| C16 - C15 - C14                 | 119.9 (3)            | 54-55-51                                  | 100.77 (4)  |
| C10-C13-H13                     | 120.1                |                                           |             |
| $C_{1}$ $C_{1}$ $C_{2}$ $C_{3}$ | 0.4.(4)              | C6 C1 D1 C7                               | 24.6(2)     |
| $C_0 - C_1 - C_2 - C_3$         | 0.4(4)               | $C_0 = C_1 = P_1 = C_7$                   | 24.0(3)     |
| PI = CI = C2 = C3               | -1/6.0(2)            | $C_2 = C_1 = P_1 = C_7$                   | -139.0(2)   |
|                                 | -0.6(5)              | $C_0 - C_1 - P_1 - S_2$                   | 153.3 (2)   |
| C2—C3—C4—C5                     | 0.3 (5)              | C2—C1—P1—S2                               | -30.4 (2)   |
| C3—C4—C5—C6                     | 0.3 (5)              | C6—C1—P1—S1                               | -85.9 (2)   |
| C2-C1-C6-C5                     | 0.1 (4)              | C2-C1-P1-S1                               | 90.5 (2)    |
| P1—C1—C6—C5                     | 176.4 (2)            | C12—C7—P1—C1                              | 82.6 (2)    |
| C4—C5—C6—C1                     | -0.4 (5)             | C8—C7—P1—C1                               | -100.7 (2)  |
| С12—С7—С8—С9                    | 1.0 (4)              | C12—C7—P1—S2                              | -47.6 (3)   |
| P1—C7—C8—C9                     | -175.7 (2)           | C8—C7—P1—S2                               | 129.2 (2)   |
| C7—C8—C9—C10                    | -0.2 (5)             | C12—C7—P1—S1                              | -174.1 (2)  |
|                                 |                      |                                           |             |

| C8—C9—C10—C11   | -1.2 (6)   | C8—C7—P1—S1    | 2.6 (2)      |
|-----------------|------------|----------------|--------------|
| C9—C10—C11—C12  | 1.7 (7)    | C14—C13—P2—C19 | 50.3 (2)     |
| C10-C11-C12-C7  | -0.9 (6)   | C18—C13—P2—C19 | -128.0 (2)   |
| C8—C7—C12—C11   | -0.4 (5)   | C14—C13—P2—S3  | 177.66 (17)  |
| P1-C7-C12-C11   | 176.5 (3)  | C18—C13—P2—S3  | -0.6 (2)     |
| C18—C13—C14—C15 | -0.1 (4)   | C14—C13—P2—S4  | -59.9 (2)    |
| P2-C13-C14-C15  | -178.4 (2) | C18—C13—P2—S4  | 121.75 (19)  |
| C13—C14—C15—C16 | 0.7 (4)    | C24—C19—P2—C13 | -82.9 (2)    |
| C14—C15—C16—C17 | -0.8 (4)   | C20-C19-P2-C13 | 95.5 (2)     |
| C15—C16—C17—C18 | 0.2 (5)    | C24—C19—P2—S3  | 147.60 (19)  |
| C16—C17—C18—C13 | 0.4 (4)    | C20—C19—P2—S3  | -34.0 (2)    |
| C14—C13—C18—C17 | -0.4 (4)   | C24—C19—P2—S4  | 20.9 (2)     |
| P2-C13-C18-C17  | 177.9 (2)  | C20-C19-P2-S4  | -160.63 (19) |
| C24—C19—C20—C21 | -0.3 (4)   | C1—P1—S1—S5    | -179.08 (9)  |
| P2-C19-C20-C21  | -178.8 (2) | C7—P1—S1—S5    | 70.17 (9)    |
| C19—C20—C21—C22 | -0.4 (5)   | S2—P1—S1—S5    | -56.30 (5)   |
| C20—C21—C22—C23 | 0.8 (5)    | C13—P2—S4—S5   | 178.76 (8)   |
| C21—C22—C23—C24 | -0.5 (5)   | C19—P2—S4—S5   | 68.80 (9)    |
| C20-C19-C24-C23 | 0.7 (4)    | S3—P2—S4—S5    | -57.13 (5)   |
| P2-C19-C24-C23  | 179.1 (2)  | P2—S4—S5—S1    | 87.43 (4)    |
| C22—C23—C24—C19 | -0.3 (4)   | P1—S1—S5—S4    | 96.84 (4)    |
|                 |            |                |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                 | D—H  | H…A  | D····A    | D—H…A |
|-------------------------|------|------|-----------|-------|
| C17—H17…S5 <sup>i</sup> | 0.93 | 2.94 | 3.737 (3) | 145   |

Symmetry code: (i) x+1, y, z.