Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

6,6'-Dihydroxy-2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol

Wen-Kui Dong,* Xue-Ni He, Yong-Hong Guan, Li Xu and Zong-Li Ren

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
Correspondence e-mail: dongwk@mail.Izjtu.cn
Received 12 August 2008; accepted 19 August 2008
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.066 ; w R$ factor $=0.186 ;$ data-to-parameter ratio $=12.9$.

The molecule of the title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$, adopts a Vshaped conformation, the dihedral angle between the two halves of the molecule being 81.31 (4) ${ }^{\circ}$. There is one halfmolecule in the asymmetric unit, with a crystallographic twofold rotation axis passing through the central C atom. There are strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the hydroxy group and adjacent O and N atoms. In the crystal structure, intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules, forming an infinite three-dimensional supramolecular structure.

Related literature

For related literature, see: Akine et al. (2006); Dong \& Feng (2006); Dong et al. (2008a,b,c); Duan et al. (2007); Sharma (2002); Sun et al. (2004); Venkataramanan et al. (2005); Wang et al. (2007).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \\
& M_{r}=346.33 \\
& \text { Monoclinic, } C 2 / c \\
& a=27.836(3) \AA \\
& b=4.5949(5) \AA \\
& c=13.8081(10) \AA
\end{aligned}
$$

$$
V=1666.2(3) \AA^{3}
$$

$$
Z=4
$$Mo $K \alpha$ radiation

$$
\mu=0.11 \mathrm{~mm}^{-1}
$$

$$
T=298(2) \mathrm{K}
$$

$$
0.43 \times 0.40 \times 0.31 \mathrm{~mm}
$$

Data collection

Brucker SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.956, T_{\text {max }}=0.968$
4032 measured reflections 1476 independent reflections
1025 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$

114 parameters

$w R\left(F^{2}\right)=0.186$
H -atom parameters constrained
$S=1.05$
1476 reflections
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 $\cdots \mathrm{N} 1$	0.82	1.94	$2.650(3)$	144
O3-H3 $\cdots \mathrm{O} 2$	0.82	2.25	$2.694(4)$	115
O3-H3 \cdots O1 $^{\mathrm{i}}$	0.82	2.24	$2.914(4)$	140
Symmetry code: (i) $x,-y+1, z-\frac{1}{2}$				

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604-01) and the 'Qing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03-01 A), which are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2099).

References

Akine, S., Dong, W. K. \& Nabeshima, T. (2006). Inorg. Chem. 45, 4677-4684. Dong, W.-K. \& Feng, J.-H. (2006). Acta Cryst. E62, o3577-o3578.
Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. \& Ren, Z.-L. (2008a). Acta Cryst. E64, o1600-o1601.
Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. \& Tong, J.-F. (2008c). Acta Cryst. E64, o1405.
Dong, W.-K., Zhao, C.-Y., Zhong, J.-K., Tang, X.-L. \& Yu, T.-Z. (2008b). Acta Cryst. E64, o1323.
Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. \& Dong, W.-K. (2007). Acta Cryst. E63, o2704-o2705.
Sharma, C. V. K. (2002). Cryst. Growth Des. 2, 465-474.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sun, S. S., Stern, C. L., Nguyen, S. T. \& Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314-6326.
Venkataramanan, N. S., Kuppuraj, G. \& Rajagopal, S. (2005). Coord. Chem. Rev. 249, 1249-1268.
Wang, L., He, X., Sun, Y. \& Xu, L. (2007). Acta Cryst. E63, o4517.

supporting information

Acta Cryst. (2008). E64, o1810 [doi:10.1107/S1600536808026731]

6,6'-Dihydroxy-2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol

Wen-Kui Dong, Xue-Ni He, Yong-Hong Guan, Li Xu and Zong-Li Ren

S1. Comment

Salen-type compounds are chelate ligands, which have received great attention during the last decades (Sharma 2002; Akine et al., 2006; Dong et al., 2008a) due to their excellent complexing abilities towards various metal ions, especially in view of their potential use as ligands for preparation of functional complex materials (Venkataramanan et al., 2005). They are widely used in supramolecular chemistry for the construction of some one-dimensional chains, two-dimensional planar or three-dimensional network structural supramolecular complexes. To our interest, some salen-type compounds can be used as elemental building blocks for construction of supramolecular structures via intermolecular hydrogen bonding or short contact interaction (Sun et al., 2004; Akine et al., 2006; Wang et al., 2007). As an extension of our work (Dong \& Feng 2006; Dong et al., 2008b; Dong et al., 2008c) on the structural characterization of salen-type bisoxime compounds, we report the structure of the title compound in this paper here.
The molecule of title compound adopts a V-shaped conformation with the dihedral angle between the two halves of the molecule is 81.31 (4) ${ }^{\circ}$ (Fig. 1). There is a half molecule in an asymmetric unit with a crystallographic twofold rotation axis passing through the central carbon of the three carbon atoms in the $\left(-\mathrm{CH}=\mathrm{N}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{O}-\mathrm{N}=\mathrm{CH}-\right)$ bridge. This structure is similar to what was observed in our previously reported salen-type bisoxime compound (Duan et al., 2007). The dihedral angle formed by the two benzene rings in the molecule of the title compound is $82.22(5)^{\circ}$. There are strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the hydroxy group and an adjacent O (or N) atoms (Table 1). In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link each molecule to 2 others into infinite three-dimensional supramolecular structure (Fig. 2), which is not similar to what was observed in our previously reported series salen-type compounds containing two- (Akine et al., 2006) and five-methene (Dong et al., 2008a) bridge.

S2. Experimental

6,6'-Dihydroxy-2,2'-[(pentane-1,5-diyldioxy)bis(nitrilomethylidyne)]diphenol was synthesized according to an analogous method reported earlier (Dong et al., 2006; Dong et al., 2008a). To an ethanol solution (5 ml) of 2,3-dihydroxybenzaldehyde ($276.6 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added an ethanol solution (5 ml) of 1, 3-bis(aminooxy)propane ($106.8 \mathrm{mg}, 1.0$ mmol). After the solution had been stirred at 328 K for 3 h , the mixture was filtered, washed successively with ethanol and ethanol/hexane (1:4), respectively. The product was dried under reduced pressure and purified by recrystallization from ethanol to yield 204.8 mg of pale-brown crystalline solid.
Pale-brown prismatical crystals of the title compound suitable for X-ray crystal analysis were grown up from a tetra-hydrofuran-ethanol (3:4) mixed solution by slow evaporation of the solvent at room temperature.

S3. Refinement

Non- H atoms were refined anisotropically. H atoms were treated as riding atoms with distances $\mathrm{C}-\mathrm{H}=0.97\left(\mathrm{CH}_{2}\right)$, or $0.93 \AA(\mathrm{CH}), \mathrm{O}-\mathrm{H}=0.82 \AA$, and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$.

Figure 1

The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level. [Symmetry code: $-x+1, y,-z+5 / 2$]

Figure 2

The packing diagram of the title compound showing intermolecular hydrogen bonds. H atoms are omitted for clarity.

6,6'-Dihydroxy-2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$
$M_{r}=346.33$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=27.836$ (3) \AA
$b=4.5949$ (5) \AA
$c=13.8081(10) \AA$
$\beta=109.363(2)^{\circ}$
$V=1666.2$ (3) \AA^{3}
$Z=4$
$F(000)=728$
$D_{\mathrm{x}}=1.381 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1493 reflections
$\theta=2.8-27.7^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prismatic, pale-brown
$0.43 \times 0.40 \times 0.31 \mathrm{~mm}$

Data collection

Brucker SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.956, T_{\text {max }}=0.968$

> 4032 measured reflections
> 1476 independent reflections
> 1025 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.030$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=1.6^{\circ}$
> $h=-32 \rightarrow 27$
> $k=-5 \rightarrow 5$
> $l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.186$
$S=1.05$
1476 reflections
114 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0856 P)^{2}+2.8739 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.20$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$

Special details

Experimental. Yield, 59.1\%, mp. 425-427 K. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 59.96; H, 5.24; N, 8.09. Found: C, 60.17; H, 5.31; N, 7.92.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O1	$0.43592(8)$	$0.2306(5)$	$1.15521(16)$	$0.0466(6)$	
O2	$0.41085(8)$	$0.6412(6)$	$0.88832(17)$	$0.0539(7)$	
H2	0.4236	0.5367	0.9385	0.081^{*}	
O3	$0.36020(10)$	$1.0086(6)$	$0.73677(18)$	$0.0671(9)$	
H3	0.3855	0.9080	0.7439	0.101^{*}	
N1	$0.41732(9)$	$0.4035(6)$	$1.06706(18)$	$0.0413(7)$	
C1	$0.48064(12)$	$0.0823(7)$	$1.1531(2)$	$0.0456(8)$	
H1A	0.5063	0.2214	1.1500	0.055^{*}	0.055^{*}
H1B	0.4727	-0.0431	1.0933	$0.0529(13)$	
C2	0.5000	$-0.0961(11)$	1.2500	0.063^{*}	0.50
H2A	0.4727	-0.2207	1.2545	0.063^{*}	0.50
H2B	0.5273	-0.2207	1.2455	$0.0409(8)$	
C4	$0.37794(11)$	$0.5439(7)$	$1.0649(2)$	0.049^{*}	
H4	0.3650	0.5210	1.1185		

C5	$0.35228(11)$	$0.7400(7)$	$0.9813(2)$	$0.0372(7)$
C6	$0.36954(11)$	$0.7802(7)$	$0.8979(2)$	$0.0387(8)$
C7	$0.34391(12)$	$0.9687(7)$	$0.8197(2)$	$0.0446(8)$
C8	$0.30183(13)$	$1.1161(8)$	$0.8225(3)$	$0.0499(9)$
H8	0.2850	1.2423	0.7695	0.060^{*}
C9	$0.28425(12)$	$1.0774(8)$	$0.9046(3)$	$0.0490(9)$
H9	0.2555	1.1772	0.9066	0.059^{*}
C10	$0.30912(12)$	$0.8929(8)$	$0.9822(2)$	$0.0443(8)$
H10	0.2971	0.8682	1.0369	0.053^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0425(12)$	$0.0521(15)$	$0.0435(13)$	$0.0042(11)$	$0.0119(10)$	$0.0151(11)$
O2	$0.0523(14)$	$0.0655(16)$	$0.0510(14)$	$0.0138(12)$	$0.0267(11)$	$0.0107(12)$
O3	$0.0821(19)$	$0.0788(19)$	$0.0470(15)$	$0.0177(15)$	$0.0303(13)$	$0.0176(13)$
N1	$0.0411(15)$	$0.0424(16)$	$0.0377(14)$	$-0.0041(13)$	$0.0096(11)$	$0.0029(12)$
C1	$0.0406(18)$	$0.044(2)$	$0.0480(19)$	$0.0026(15)$	$0.0094(15)$	$-0.0031(16)$
C2	$0.049(3)$	$0.044(3)$	$0.056(3)$	0.000	$0.005(2)$	0.000
C4	$0.0387(17)$	$0.047(2)$	$0.0377(17)$	$-0.0033(15)$	$0.0133(14)$	$-0.0002(15)$
C5	$0.0364(16)$	$0.0367(18)$	$0.0360(16)$	$-0.0084(14)$	$0.0088(13)$	$-0.0060(14)$
C6	$0.0352(16)$	$0.0391(18)$	$0.0407(17)$	$-0.0009(14)$	$0.0110(13)$	$-0.0033(15)$
C7	$0.051(2)$	$0.047(2)$	$0.0352(17)$	$-0.0083(16)$	$0.0123(15)$	$-0.0008(15)$
C8	$0.0468(19)$	$0.048(2)$	$0.0446(19)$	$0.0064(17)$	$0.0017(15)$	$0.0040(16)$
C9	$0.0396(18)$	$0.054(2)$	$0.050(2)$	$0.0042(17)$	$0.0106(15)$	$-0.0062(18)$
C10	$0.0418(18)$	$0.050(2)$	$0.0429(18)$	$-0.0044(16)$	$0.0165(14)$	$-0.0055(16)$

Geometric parameters ($\AA,{ }^{\circ}$)

O1-N1	1.401 (3)	C2-H2B	0.9700
O1-C1	1.428 (4)	C4-C5	1.452 (4)
O2-C6	1.359 (4)	C4-H4	0.9300
$\mathrm{O} 2-\mathrm{H} 2$	0.8207	C5-C10	1.395 (4)
O3-C7	1.377 (4)	C5-C6	1.400 (4)
O3-H3	0.8195	C6-C7	1.383 (4)
N1-C4	1.264 (4)	C7-C8	1.365 (5)
$\mathrm{C} 1-\mathrm{C} 2$	1.508 (4)	C8-C9	1.387 (5)
C1-H1A	0.9700	C8-H8	0.9300
C1-H1B	0.9700	C9-C10	1.362 (5)
$\mathrm{C} 2-\mathrm{Cl}{ }^{\text {i }}$	1.508 (4)	C9-H9	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	C10-H10	0.9300
N1-O1-C1	109.0 (2)	C10-C5-C6	118.2 (3)
C6-O2-H2	109.7	C10-C5-C4	120.2 (3)
$\mathrm{C} 7-\mathrm{O} 3-\mathrm{H} 3$	109.3	C6-C5-C4	121.6 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{O} 1$	112.2 (2)	O2-C6-C7	116.9 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	107.4 (2)	O2-C6-C5	123.4 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.2	C7-C6-C5	119.7 (3)

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.2	C8-C7-O3	118.7 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.2	C8-C7-C6	121.0 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.2	O3-C7-C6	120.3 (3)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.5	C7-C8-C9	119.9 (3)
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{C} 2-\mathrm{C} 1$	114.2 (4)	C7-C8-H8	120.1
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7	C9-C8-H8	120.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7	C10-C9-C8	119.9 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7	C10-C9-H9	120.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7	C8-C9-H9	120.1
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.6	C9-C10-C5	121.4 (3)
N1-C4-C5	122.0 (3)	C9-C10-H10	119.3
N1-C4-H4	119.0	C5-C10-H10	119.3
C5-C4-H4	119.0		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 4$	-179.2 (3)	O2-C6-C7-C8	179.6 (3)
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	178.9 (3)	C5-C6-C7-C8	-0.2 (5)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl}^{\text {i }}$	-66.8 (2)	$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 3$	0.3 (5)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	179.3 (3)	C5-C6-C7-O3	-179.5 (3)
N1-C4-C5-C10	-179.5 (3)	O3-C7-C8-C9	179.3 (3)
N1-C4-C5-C6	0.9 (5)	C6-C7-C8-C9	0.0 (5)
C10-C5-C6-O2	-179.4 (3)	C7-C8-C9-C10	0.1 (5)
C4-C5-C6-O2	0.2 (5)	C8-C9-C10-C5	0.0 (5)
C10-C5-C6-C7	0.3 (4)	C6-C5-C10-C9	-0.2 (5)
C4-C5-C6-C7	179.9 (3)	C4-C5-C10-C9	-179.8 (3)

Symmetry code: (i) $-x+1, y,-z+5 / 2$.

Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 1$	0.82	1.94	$2.650(3)$	144
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2$	0.82	2.25	$2.694(4)$	115
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 11^{\mathrm{ii}}$	0.82	2.24	$2.914(4)$	140

Symmetry code: (ii) $x,-y+1, z-1 / 2$.

