metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-1-Ferrocenyl-3-(4-methoxyphenyl)prop-2-en-1-one

Shi-Jia Long,^a Xiao-Lan Liu^b and Yong-Hong Liu^{b*}

^aCollege of Life Sciences and Chemistry, Tianshui Normal University, Tianshui 741000, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China Correspondence e-mail: yhliuyzu@yahoo.com.cn

Received 29 July 2008; accepted 8 August 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.090; data-to-parameter ratio = 18.1.

In the title compound, $[Fe(C_5H_5)(C_{15}H_{13}O_2)]$, a conjugated substituent group bridges a five-membered η^5 -C₅H₄ ring and a benzene ring. In the ferrocene unit, the substituted (Cps) and unsubstituted (Cp) cyclopentadienyl rings are eclipsed and almost parallel [Cps—Fe—Cps angle = 176.1 (2)°]. The molecule is linked into an *S*(5) motif *via* intramolecular C—H···O hydrogen bonds. The molecules are arranged into a three-dimensional framework by five intermolecular C— H···O hydrogen bonds and one intermolecular C— H···O interaction.

Related literature

For related literature, see: Bernstein *et al.* (1995); Edwards *et al.* (1975); Huang *et al.* (1998); Liang *et al.* (1998); Liu *et al.* (2001, 2003, 2008); Shi *et al.* (2004); Yarishkin *et al.* (2008); Zhai *et al.* (1999).

Experimental

Crystal data [Fe(C₅H₅)(C₁₅H₁₃O₂)] $M_r = 346.19$ Orthorhombic, *Pbca* a = 12.3124 (14) Å b = 10.2316 (11) Å c = 25.914 (3) Å

 $V = 3264.5 \text{ (6) } \text{\AA}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.93 \text{ mm}^{-1}$ T = 296 (2) K $0.30 \times 0.30 \times 0.20 \text{ mm}$

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{min} = 0.768, T_{max} = 0.836$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	209 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
3787 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

26999 measured reflections

 $R_{\rm int} = 0.037$

3787 independent reflections

2662 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the substituted cyclopentadienyl ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C13-H13···O1	0.93	2.50	2.830 (2)	101
$C8-H8\cdots O1^{i}$	0.93	2.60	3.345 (2)	137
C9−H9···O1 ⁱⁱ	0.93	2.54	3.414 (2)	156
C12-H12···O1 ⁱⁱ	0.93	2.46	3.346 (2)	160
C15-H15···O1 ⁱⁱ	0.93	2.65	3.441 (2)	143
C19−H19···O2 ⁱⁱⁱ	0.93	2.59	3.472 (3)	157
$C3-H3\cdots Cg1^{i}$	0.93	3.24	3.808 (2)	121

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, z$; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank the Natural Science Foundation of Tianshui Normal College (grant No. TSB0715) and Yangzhou University (grant No. 2006XJJ03) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2096).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Edwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23.
- Huang, G.-S., Chen, B.-H., Liu, C.-M., Ma, Y.-X. & Liu, Y.-H. (1998). Transition Met. Chem. 23, 589–592.
- Liang, Y.-M., Chen, B.-H., Jin, H.-W., Ma, Y.-X. & Liu, Y.-H. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 803–810.
- Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729–2738.
- Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443-4452.
- Liu, Y.-H., Liu, J.-F., Jian, P.-M. & Liu, X.-L. (2008). Acta Cryst. E64, m1001– m1002.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, Y. C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541– 1546.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137–140.
- Zhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother. 43, 793–803.

supporting information

Acta Cryst. (2008). E64, m1164 [doi:10.1107/S1600536808025518]

(E)-1-Ferrocenyl-3-(4-methoxyphenyl)prop-2-en-1-one

Shi-Jia Long, Xiao-Lan Liu and Yong-Hong Liu

S1. Comment

Chalcone and its derivatives, as natural products, have attracted considerable attention for their stronge antibacterial, antifungal, antitumor and anti-inflammatory properties, especially antileishmanial and antimalarial (Zhai *et al.*,1999; Liu *et al.*, 2001, 2003) over the past years. Some chalcones demonstrated the ability to block voltage-dependent potassium channels (Yarishkin *et al.*, 2008). It was proved that the replacement of the aromatic group by the ferrocenyl moiety in penicillins and cephalosporins improves their antibiotic activity (Edwards *et al.*, 1975). As part of our search for new biologically active compounds (Liu *et al.*,2008; Shi *et al.*, 2004; Liang *et al.*, 1998), we have synthesized the title compound (I) and describe its structure in this paper.

The molecule of the title compound (I) exists as the most stable configuration of (*E*)-isomer (Scheme 1, Fig.1) and all carbon atoms (except that of methoxyl group) and O1 are sp^2 -hybridized and form two large conjugated systems; one is formed by C1 to C5 and the other C6 to C19 including O1, just as its parent compound II (Scheme 2) (Liu *et al.*, 2008). In the molecule there is a *C*(*5*) (Bernstein *et al.*, 1995) C–H···O intra-molecular hydrogen-bond which makes the four atoms O1, C11, C12 and C13 be coplanar (plane-1). The Cps (the substituted cyclopentadienyl ring) plane, the plane-1 and plane-2 (the phenyl ring plane) are not coplanar. In the ferrocene moiety, the Cps and the Cp (the unsubstituted cyclopentadienyl ring) planes are almost parallel and the C-atoms of these tings are in an eclipsed conformation. The Fe atom lies in the middle of the two planes of Cp and Cps. The Cgs—Fe—*Cg* angle is 176.1 (2)°, where Cgs and *Cg* are the centroids of Cps and Cp rings, respectively.

The molecules are linked into C(5) (Bernstein *et al.*, 1995) chains *via* C19–H19···O1 inter-molecular hydrogen-bonds, forming zigzag chains (Fig. 2, Table 1) along the *b* axis. In addition, there are three inter-molecular hydrogen-bonds C9–H9···O1, C12–H12···O1 and C15–H15···O1, thus forming cross edge-fused zigzag C(5), C(4), C(7) chains (Fig. 2) along the *b* axis. Furthermore, the molecules are linked into C(6) (Bernstein *et al.*, 1995) chains *via* C8–H8···O1 and C3–H3··· π (Cps ring) inter-molecular hydrogen-bonds, along the *a* axis thus resulting in other zigzag chains (Fig. 3, Table 1). All of the above mentioned inter-molecular hydrogen-bonds link the molecules into a three-dimensional structure of considerable complexity.

S2. Experimental

The title compound was synthesized according to the literature procedure (Huang *et al.* 1998). Crystals of I suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in dichloromethane / ether (5:1 v/v) at room temperature over a period of 6 days.

S3. Refinement

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C—H distances of 0.93 - 0.96, and with $U_{iso}(H)$ values of $1.2U_{eq}$ (C).

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The C–H…O intramolecular hydrogen bond is shown as dashed lines.

Figure 2

Unit cell packing of (I) showing the hydrogen bonded chains (dashed lines). For clarity, H atoms not involved in hydrogen bonding have been omitted.

Figure 3

Unit cell packing of (I) showing the hydrogen bonded chains *via* C8–H8···O1 and C3–H3··· π (Cps ring) inter-molecular interactions; for clarity, H atoms not involved in hydrogen bonding have been omitted.

Figure 4

Schematic representations of the structures of (I) and (II).

(E)-1-Ferrocenyl-3-(4-methoxyphenyl)prop-2-en-1-one

 Crystal data
 $V = 3264.5 (6) Å^3$
 $[Fe(C_5H_5)(C_{15}H_{13}O_2)]$ $V = 3264.5 (6) Å^3$
 $M_r = 346.19$ Z = 8

 Orthorhombic, Pbca
 F(000) = 1440

 Hall symbol: -P 2ac 2ab
 $D_x = 1.409 Mg m^{-3}$

 a = 12.3124 (14) Å Mo Ka radiation, $\lambda = 0.71073 Å$

 b = 10.2316 (11) Å Cell parameters from 6158 reflections

 c = 25.914 (3) Å $\theta = 3.0-25.5^{\circ}$

 $\mu = 0.93 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART 1000 CCD	26999 measured reflections
diffractometer	3787 independent reflections
Radiation source: fine-focus sealed tube	2662 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.037$
φ and ω scans	$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 1.6^\circ$
Absorption correction: multi-scan	$h = -14 \rightarrow 16$
(SADABS; Bruker, 2002)	$k = -13 \rightarrow 13$
$T_{\min} = 0.768, \ T_{\max} = 0.836$	$l = -33 \rightarrow 33$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$P[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from

Block, red

 $0.30 \times 0.30 \times 0.20 \text{ mm}$

Hydrogen site location: inferred from $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.089$ neighbouring sites S = 1.02H-atom parameters constrained 3787 reflections $w = 1/[\sigma^2(F_o^2) + (0.0396P)^2 + 0.9963P]$ where $P = (F_o^2 + 2F_c^2)/3$ 209 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.47330 (2)	0.24558 (2)	0.447598 (9)	0.03889 (10)	
01	0.17057 (11)	0.14263 (12)	0.41478 (5)	0.0509 (3)	
C14	0.14386 (15)	0.45292 (18)	0.30462 (7)	0.0423 (4)	
C12	0.22120 (15)	0.35247 (17)	0.38469 (7)	0.0424 (4)	
H12	0.2671	0.4235	0.3898	0.051*	
C17	0.12977 (17)	0.6313 (2)	0.22287 (7)	0.0502 (5)	
C15	0.22061 (16)	0.5508 (2)	0.29796 (7)	0.0502 (5)	
H15	0.2777	0.5574	0.3213	0.060*	
C13	0.15074 (15)	0.35526 (18)	0.34563 (7)	0.0433 (4)	
H13	0.1004	0.2876	0.3444	0.052*	
C16	0.21475 (17)	0.6392 (2)	0.25751 (7)	0.0530 (5)	
H16	0.2677	0.7033	0.2537	0.064*	
C19	0.05897 (17)	0.4478 (2)	0.26898 (8)	0.0552 (5)	
H19	0.0062	0.3833	0.2723	0.066*	

C11	0.22818 (15)	0.23985 (17)	0.41997 (7)	0.0405 (4)
C18	0.05177 (18)	0.5362 (2)	0.22907 (8)	0.0589 (6)
H18	-0.0062	0.5316	0.2061	0.071*
C7	0.43869 (17)	0.1790 (2)	0.52041 (8)	0.0553 (5)
H7	0.4829	0.1267	0.5409	0.066*
C9	0.36118 (15)	0.35924 (19)	0.48277 (7)	0.0454 (4)
Н9	0.3459	0.4455	0.4740	0.055*
C1	0.54687 (18)	0.1382 (2)	0.39076 (8)	0.0580 (5)
H1	0.5308	0.0523	0.3818	0.070*
C6	0.36007 (15)	0.13343 (19)	0.48474 (8)	0.0495 (5)
H6	0.3436	0.0465	0.4778	0.059*
C10	0.31062 (15)	0.24527 (17)	0.46128 (7)	0.0418 (4)
C5	0.49898 (18)	0.2505 (2)	0.36970 (8)	0.0548 (5)
Н5	0.4455	0.2521	0.3443	0.066*
C2	0.62385 (17)	0.1786 (2)	0.42794 (8)	0.0600 (6)
H2	0.6674	0.1240	0.4478	0.072*
C3	0.62294 (17)	0.3156 (2)	0.42965 (8)	0.0582 (6)
H3	0.6658	0.3677	0.4509	0.070*
C8	0.43881 (17)	0.3170 (2)	0.51975 (7)	0.0529 (5)
H8	0.4822	0.3709	0.5400	0.064*
C4	0.54580 (18)	0.3608 (2)	0.39360 (8)	0.0569 (5)
H4	0.5288	0.4477	0.3868	0.068*
O2	0.11598 (14)	0.71299 (17)	0.18152 (6)	0.0679 (4)
C20	0.1979 (2)	0.8096 (3)	0.17227 (11)	0.0906 (9)
H20A	0.1996	0.8703	0.2005	0.136*
H20B	0.1818	0.8555	0.1409	0.136*
H20C	0.2674	0.7677	0.1692	0.136*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.03704 (16)	0.03933 (16)	0.04030 (15)	0.00167 (11)	0.00085 (10)	0.00384 (11)
O1	0.0463 (7)	0.0378 (7)	0.0686 (8)	-0.0054 (6)	0.0019 (7)	0.0049 (6)
C14	0.0404 (10)	0.0407 (10)	0.0458 (10)	0.0023 (8)	-0.0012 (8)	-0.0031 (8)
C12	0.0399 (10)	0.0333 (9)	0.0541 (10)	0.0000 (8)	-0.0016 (8)	0.0020 (8)
C17	0.0562 (12)	0.0520 (12)	0.0425 (10)	0.0149 (10)	0.0028 (9)	0.0008 (9)
C15	0.0477 (11)	0.0524 (12)	0.0506 (11)	-0.0053 (10)	-0.0095 (9)	0.0036 (9)
C13	0.0391 (10)	0.0364 (10)	0.0545 (10)	-0.0007 (8)	0.0011 (8)	-0.0001 (8)
C16	0.0561 (13)	0.0490 (12)	0.0541 (11)	-0.0040 (10)	-0.0012 (10)	0.0052 (9)
C19	0.0453 (11)	0.0578 (13)	0.0626 (13)	-0.0075 (10)	-0.0082 (10)	-0.0002 (10)
C11	0.0362 (9)	0.0348 (9)	0.0504 (10)	0.0040 (8)	0.0076 (7)	0.0014 (8)
C18	0.0518 (12)	0.0698 (15)	0.0552 (12)	0.0036 (11)	-0.0159 (10)	0.0025 (11)
C7	0.0519 (12)	0.0666 (14)	0.0475 (11)	0.0084 (11)	0.0023 (10)	0.0179 (10)
C9	0.0462 (10)	0.0434 (10)	0.0466 (10)	0.0056 (9)	0.0033 (9)	-0.0014 (8)
C1	0.0591 (13)	0.0538 (13)	0.0613 (13)	0.0016 (11)	0.0120 (11)	-0.0105 (11)
C6	0.0465 (11)	0.0434 (11)	0.0586 (11)	0.0025 (9)	0.0083 (10)	0.0162 (9)
C10	0.0360 (9)	0.0413 (10)	0.0481 (9)	0.0032 (8)	0.0064 (8)	0.0073 (8)
C5	0.0491 (11)	0.0756 (16)	0.0397 (10)	-0.0032 (11)	0.0015 (8)	0.0007 (10)

supporting information

C2	0.0431 (12)	0 0792 (17)	0.0578 (12)	0 0134 (11)	0 0053 (10)	0 0048 (12)
C3	0.0454 (12)	0.0774 (16)	0.0516 (12)	-0.0177(11)	0.0040 (10)	-0.0041(11)
C8	0.0526 (12)	0.0649 (14)	0.0412 (10)	0.0058 (10)	0.0021 (9)	-0.0020 (10)
C4	0.0665 (14)	0.0525 (13)	0.0518 (11)	-0.0069 (11)	0.0112 (10)	0.0099 (10)
O2	0.0735 (11)	0.0751 (10)	0.0552 (8)	0.0178 (9)	0.0000 (8)	0.0171 (8)
C20	0.0817 (19)	0.103 (2)	0.0877 (18)	0.0128 (17)	0.0247 (16)	0.0454 (17)

Geometric parameters (Å, °)

Fe1—C9	2.0220 (18)	C11—C10	1.476 (3)
Fe1—C3	2.031 (2)	C18—H18	0.9300
Fe1—C10	2.0341 (18)	C7—C8	1.412 (3)
Fe1—C4	2.036 (2)	C7—C6	1.417 (3)
Fe1—C2	2.041 (2)	С7—Н7	0.9300
Fe1—C5	2.044 (2)	C9—C8	1.421 (3)
Fe1—C6	2.0462 (18)	C9—C10	1.434 (3)
Fe1—C1	2.049 (2)	С9—Н9	0.9300
Fe1—C7	2.0507 (19)	C1—C5	1.403 (3)
Fe1—C8	2.052 (2)	C1—C2	1.414 (3)
O1—C11	1.229 (2)	C1—H1	0.9300
C14—C15	1.388 (3)	C6C10	1.432 (2)
C14—C19	1.396 (3)	С6—Н6	0.9300
C14—C13	1.461 (2)	C5—C4	1.410 (3)
C12—C13	1.333 (2)	С5—Н5	0.9300
C12—C11	1.473 (2)	C2—C3	1.403 (3)
C12—H12	0.9300	C2—H2	0.9300
C17—O2	1.369 (2)	C3—C4	1.410 (3)
C17—C18	1.377 (3)	С3—Н3	0.9300
C17—C16	1.381 (3)	C8—H8	0.9300
C15—C16	1.386 (3)	C4—H4	0.9300
C15—H15	0.9300	O2—C20	1.433 (3)
С13—Н13	0.9300	C20—H20A	0.9600
C16—H16	0.9300	C20—H20B	0.9600
C19—C18	1.377 (3)	С20—Н20С	0.9600
С19—Н19	0.9300		
C9—Fel—C3	121.31 (9)	C19—C18—H18	119.8
C9—Fe1—C10	41.42 (7)	C17—C18—H18	119.8
C3—Fe1—C10	159.03 (9)	C8—C7—C6	108.78 (18)
C9—Fe1—C4	106.03 (9)	C8—C7—Fel	69.92 (11)
C3—Fe1—C4	40.57 (9)	C6—C7—Fel	69.59 (11)
C10—Fe1—C4	123.54 (8)	С8—С7—Н7	125.6
C9—Fe1—C2	157.77 (9)	С6—С7—Н7	125.6
C3—Fe1—C2	40.30 (10)	Fe1—C7—H7	126.5
C10—Fe1—C2	159.61 (9)	C8—C9—C10	107.85 (17)
C4—Fe1—C2	67.95 (9)	C8—C9—Fe1	70.72 (11)
C9—Fe1—C5	122.45 (8)	C10—C9—Fe1	69.74 (10)
C3—Fe1—C5	67.96 (9)	С8—С9—Н9	126.1

C10—Fe1—C5	108.94 (8)	С10—С9—Н9	126.1
C4—Fe1—C5	40.44 (8)	Fe1—C9—H9	125.1
C2—Fe1—C5	67.74 (9)	C5—C1—C2	107.9 (2)
C9—Fe1—C6	69.23 (8)	C5—C1—Fe1	69.76 (12)
C3—Fe1—C6	157.48 (9)	C2—C1—Fe1	69.47 (12)
C10—Fe1—C6	41.08 (7)	С5—С1—Н1	126.1
C4—Fe1—C6	161.23 (9)	C2—C1—H1	126.1
C2—Fe1—C6	123.23 (9)	Fe1—C1—H1	126.3
C5—Fe1—C6	125.73 (9)	C7—C6—C10	107.71 (18)
C9—Fe1—C1	159.13 (9)	C7—C6—Fe1	69.93 (11)
C3—Fe1—C1	67.89 (9)	C10—C6—Fe1	69.00 (10)
C10—Fe1—C1	124.04 (8)	С7—С6—Н6	126.1
C4—Fe1—C1	67 83 (10)	C10-C6-H6	126.1
C2—Fe1—C1	40.44 (9)	Fe1—C6—H6	126.5
C_5 —Fe1—C1	40.09 (8)	C6-C10-C9	107.48(17)
C6—Fe1—C1	109 79 (9)	C6-C10-C11	124 77 (17)
C9—Fe1—C7	68 56 (8)	C9-C10-C11	127.62 (16)
C3—Fe1—C7	121.09.(9)	C6-C10-Fe1	69 91 (10)
C10—Fe1—C7	68 56 (8)	C9-C10-Fe1	68 84 (10)
C4—Fe1—C7	156 32 (9)	C_{11} C_{10} F_{e1}	123 41 (13)
C_2 —Fe1—C7	107.87 (9)	C1 - C5 - C4	123.41(13) 108.2(2)
C_{5} Fe1 C_{7}	161 64 (9)	C1-C5-Fe1	70.15(12)
C6-Fe1-C7	40.48 (8)	C4-C5-Fel	69 47 (11)
C1—Fe1—C7	125 11 (9)	C1-C5-H5	125.9
C9—Fe1—C8	40.82 (8)	C4-C5-H5	125.9
C3—Fe1—C8	10571(9)	Fe1—C5—H5	126.1
C10—Fe1—C8	68 77 (8)	C_{3} C_{2} C_{1}	108.00 (19)
C4—Fe1—C8	12073(9)	$C_3 - C_2 - F_{el}$	69 48 (12)
C^2 —Fe1—C8	120.75(9) 122.34(9)	C1-C2-Fel	70.09(12)
C_{5} Fe1 C_{8}	157 40 (9)	$C_3 = C_2 = H_2$	126.0
C6—Fe1—C8	68 28 (9)	$C_1 - C_2 - H_2$	126.0
C1—Fe1—C8	159 65 (9)	Fe1 = C2 = H2	126.0
C7—Fe1—C8	40 25 (9)	$C_2 - C_3 - C_4$	108 18 (19)
C_{15} C_{14} C_{19}	117.06 (18)	$C_2 = C_3 = Fel$	70 23 (12)
C15-C14-C13	123.00(17)	C4-C3-Fel	69 89 (12)
C19 - C14 - C13	119.92 (18)	C2-C3-H3	125.9
C13-C12-C11	121 71 (17)	C4-C3-H3	125.9
C13 - C12 - H12	119.1	Fe1 - C3 - H3	125.5
$C_{11} - C_{12} - H_{12}$	119.1	C7 - C8 - C9	108 16 (19)
02-C17-C18	115.87 (19)	C7 - C8 - Fel	69 83 (12)
02 - C17 - C16	1245(2)	C9-C8-Fel	68 47 (11)
C_{18} C_{17} C_{16}	119 58 (18)	C7-C8-H8	125.9
C16-C15-C14	121.96 (18)	C9-C8-H8	125.9
C16-C15-H15	119.0	Fe1 - C8 - H8	123.9
C14—C15—H15	119.0	C_{3} — C_{4} — C_{5}	107.7(2)
C12-C13-C14	127 19 (17)	$C3-C4-Fe^{1}$	69 53 (11)
C12—C13—H13	116.4	C5-C4-Fe1	70.09 (12)
C14—C13—H13	116.4	C3—C4—H4	126.1
~	· · · · ·		

C17—C16—C15	119 55 (19)	C5—C4—H4	126.1
C_{17} C_{16} H_{16}	120.2	$F_{e1} = CA = HA$	125.8
$C_{17} = C_{10} = H_{10}$	120.2	$C_1 T = C_1 T = C_2 $	117 68 (10)
$C_{13} = C_{10} = C_{14}$	120.2 121.4(2)	$O_{2}^{2} = O_{2}^{2} = O_{2}^{2} = O_{2}^{2}$	100.5
$C_{10} = C_{10} = C_{14}$	121.4(2)	$O_2 = C_2 O_2 = H_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O$	109.5
С14 С19—Н19	119.5		109.5
C14—C19—H19	119.3	H20A—C20—H20B	109.5
01 - 01 - 012	122.11 (17)	02-020-H200	109.5
	120.43 (16)	H20A—C20—H20C	109.5
C12—C11—C10	117.43 (16)	H20B—C20—H20C	109.5
C19—C18—C17	120.48 (19)		
C19—C14—C15—C16	-0.7 (3)	C8—Fe1—C10—C9	38.10 (11)
C13—C14—C15—C16	177.32 (18)	C9—Fe1—C10—C11	121.93 (19)
C11—C12—C13—C14	-172.39 (17)	C3—Fe1—C10—C11	81.7 (3)
C15—C14—C13—C12	7.6 (3)	C4—Fe1—C10—C11	46.44 (18)
C19—C14—C13—C12	-174.41 (19)	C2-Fe1-C10-C11	-72.9 (3)
O2-C17-C16-C15	-179.85 (19)	C5—Fe1—C10—C11	3.99 (17)
C18—C17—C16—C15	0.2 (3)	C6—Fe1—C10—C11	-119.1 (2)
C14—C15—C16—C17	0.7 (3)	C1—Fe1—C10—C11	-37.90 (18)
C15—C14—C19—C18	-0.1 (3)	C7—Fe1—C10—C11	-156.61 (17)
C13—C14—C19—C18	-178.24 (19)	C8—Fe1—C10—C11	160.03 (17)
C13—C12—C11—O1	0.9 (3)	C2-C1-C5-C4	0.0 (2)
C13—C12—C11—C10	178.68 (17)	Fe1—C1—C5—C4	59.23 (15)
C14—C19—C18—C17	1.0 (3)	C2-C1-C5-Fe1	-59.23(14)
02-C17-C18-C19	179 00 (19)	C9-Fe1-C5-C1	-16459(12)
C_{16} C_{17} C_{18} C_{19}	-11(3)	C_{3} —Fe1—C5—C1	81 40 (14)
C9-Fe1-C7-C8	-3740(12)	C10 - Fe1 - C5 - C1	-120.76(13)
C_{3} Fe1 C_{7} C_{8}	77 12 (15)	C_{4} Fe1 C5 C1	120.70(13)
$C_{10} = C_{1} = C_{1} = C_{1} = C_{1}$	-82.06(13)	C_{1} C_{2} C_{2} C_{2} C_{3} C_{3	119.4(2)
C_{10} F_{e1} C_{7} C_{8}	-82.00(13)	C_2 —rei— C_3 — C_1	37.73(13)
C4 - FeI - C7 - C8	43.0 (3)	C_0 FeI C_5 C_1	-/8.03 (13)
C_2 —FeI—C/—C8	119.28 (13)	C/-FeI-C5-CI	-41.9(3)
C_{5} FeI $-C_{7}$ C_{8}	-16/./(2)	C_8 —FeI—C5—CI	159.1 (2)
C6—Fel—C/—C8	-120.12 (17)	C9—Fe1—C5—C4	76.03 (15)
C1—Fe1—C/—C8	160.61 (13)	C3—Fe1—C5—C4	-37.98 (14)
C9—Fe1—C7—C6	82.72 (13)	C10—Fe1—C5—C4	119.86 (13)
C3—Fe1—C7—C6	-162.76 (12)	C2—Fe1—C5—C4	-81.64 (15)
C10—Fe1—C7—C6	38.06 (11)	C6—Fe1—C5—C4	162.57 (12)
C4—Fe1—C7—C6	163.7 (2)	C1—Fe1—C5—C4	-119.4 (2)
C2—Fe1—C7—C6	-120.60 (13)	C7—Fe1—C5—C4	-161.3 (2)
C5—Fe1—C7—C6	-47.6 (3)	C8—Fe1—C5—C4	39.8 (3)
C1—Fe1—C7—C6	-79.27 (15)	C5—C1—C2—C3	0.1 (2)
C8—Fe1—C7—C6	120.12 (17)	Fe1—C1—C2—C3	-59.36 (14)
C3—Fe1—C9—C8	-77.33 (14)	C5-C1-C2-Fe1	59.41 (15)
C10—Fe1—C9—C8	118.37 (16)	C9—Fe1—C2—C3	-40.4 (3)
C4—Fe1—C9—C8	-118.72 (13)	C10—Fe1—C2—C3	166.3 (2)
C2—Fe1—C9—C8	-48.0 (3)	C4—Fe1—C2—C3	37.87 (12)
C5—Fe1—C9—C8	-159.64 (13)	C5—Fe1—C2—C3	81.70 (13)
C6—Fe1—C9—C8	80.43 (13)	C6—Fe1—C2—C3	-159.21 (12)

C1—Fe1—C9—C8	171.7 (2)	C1—Fe1—C2—C3	119.11 (18)
C7—Fe1—C9—C8	36.90 (13)	C7—Fe1—C2—C3	-117.30 (13)
C3—Fe1—C9—C10	164.30 (11)	C8—Fe1—C2—C3	-75.45 (15)
C4—Fe1—C9—C10	122.91 (12)	C9—Fe1—C2—C1	-159.5 (2)
C2—Fe1—C9—C10	-166.3(2)	C3—Fe1—C2—C1	-119.11 (18)
C5—Fe1—C9—C10	81.99 (13)	C10—Fe1—C2—C1	47.2 (3)
C6—Fe1—C9—C10	-37.94 (11)	C4—Fe1—C2—C1	-81.24 (15)
C1—Fe1—C9—C10	53.3 (3)	C5—Fe1—C2—C1	-37.41 (13)
C7—Fe1—C9—C10	-81.47 (12)	C6—Fe1—C2—C1	81.68 (15)
C8—Fe1—C9—C10	-118.37 (16)	C7—Fe1—C2—C1	123.59 (14)
C9—Fe1—C1—C5	39.0 (3)	C8—Fe1—C2—C1	165.44 (13)
C3—Fe1—C1—C5	-81.58 (14)	C1—C2—C3—C4	-0.1 (2)
C10—Fe1—C1—C5	78.79 (15)	Fe1—C2—C3—C4	-59.83 (14)
C4—Fe1—C1—C5	-37.62 (13)	C1—C2—C3—Fe1	59.74 (14)
C2—Fe1—C1—C5	-119.17 (19)	C9—Fe1—C3—C2	163.33 (12)
C6—Fe1—C1—C5	122.43 (13)	C10—Fe1—C3—C2	-166.6 (2)
C7—Fe1—C1—C5	165.10 (13)	C4—Fe1—C3—C2	-118.99 (18)
C8—Fe1—C1—C5	-156.8 (2)	C5—Fe1—C3—C2	-81.13 (13)
C9—Fe1—C1—C2	158.2 (2)	C6—Fe1—C3—C2	50.8 (3)
C3—Fe1—C1—C2	37.58 (14)	C1—Fe1—C3—C2	-37.71 (12)
C10—Fe1—C1—C2	-162.04 (13)	C7—Fe1—C3—C2	80.97 (14)
C4—Fe1—C1—C2	81.55 (15)	C8—Fe1—C3—C2	121.84 (13)
C5—Fe1—C1—C2	119.17 (19)	C9—Fe1—C3—C4	-77.69 (15)
C6—Fe1—C1—C2	-118.41 (14)	C10—Fe1—C3—C4	-47.7 (3)
C7—Fe1—C1—C2	-75.73 (16)	C2—Fe1—C3—C4	118.99 (18)
C8—Fe1—C1—C2	-37.7 (3)	C5—Fe1—C3—C4	37.86 (13)
C8—C7—C6—C10	0.2 (2)	C6—Fe1—C3—C4	169.8 (2)
Fe1—C7—C6—C10	-58.86 (13)	C1—Fe1—C3—C4	81.27 (15)
C8—C7—C6—Fe1	59.10 (14)	C7—Fe1—C3—C4	-160.05 (13)
C9—Fe1—C6—C7	-80.92 (13)	C8—Fe1—C3—C4	-119.17 (13)
C3—Fe1—C6—C7	41.5 (3)	C6—C7—C8—C9	-1.0 (2)
C10—Fe1—C6—C7	-119.15 (17)	Fe1—C7—C8—C9	57.86 (13)
C4—Fe1—C6—C7	-159.5 (2)	C6-C7-C8-Fel	-58.90 (14)
C2—Fe1—C6—C7	78.32 (15)	C10—C9—C8—C7	1.4 (2)
C5—Fe1—C6—C7	163.36 (13)	Fe1—C9—C8—C7	-58.70 (14)
C1—Fe1—C6—C7	121.33 (13)	C10-C9-C8-Fe1	60.13 (13)
C8—Fe1—C6—C7	-36.99 (12)	C9—Fe1—C8—C7	120.13 (18)
C9—Fe1—C6—C10	38.24 (11)	C3—Fe1—C8—C7	-119.86 (13)
C3—Fe1—C6—C10	160.7 (2)	C10—Fe1—C8—C7	81.49 (13)
C4—Fe1—C6—C10	-40.3 (3)	C4—Fe1—C8—C7	-161.21 (13)
C2—Fe1—C6—C10	-162.52 (12)	C2—Fe1—C8—C7	-79.30 (15)
C5—Fe1—C6—C10	-77.48 (14)	C5—Fe1—C8—C7	169.9 (2)
C1—Fe1—C6—C10	-119.52 (12)	C6—Fe1—C8—C7	37.19 (12)
C7—Fe1—C6—C10	119.15 (17)	C1—Fe1—C8—C7	-51.3 (3)
C8—Fe1—C6—C10	82.17 (12)	C3—Fe1—C8—C9	120.01 (13)
C7—C6—C10—C9	0.6 (2)	C10—Fe1—C8—C9	-38.64 (11)
Fe1—C6—C10—C9	-58.79 (13)	C4—Fe1—C8—C9	78.66 (14)
C7—C6—C10—C11	176.81 (17)	C2—Fe1—C8—C9	160.57 (13)
			. ,

Fe1-C6-C10-C11	117.38 (18)	C5—Fe1—C8—C9	49.8 (3)
C7-C6-C10-Fe1	59.44 (13)	C6—Fe1—C8—C9	-82.94 (13)
C8—C9—C10—C6	-1.3 (2)	C1—Fe1—C8—C9	-171.5 (2)
Fe1-C9-C10-C6	59.47 (13)	C7—Fe1—C8—C9	-120.13 (18)
C8—C9—C10—C11	-177.31 (17)	C2—C3—C4—C5	0.1 (2)
Fe1-C9-C10-C11	-116.56 (19)	Fe1—C3—C4—C5	-59.95 (14)
C8-C9-C10-Fe1	-60.75 (13)	C2-C3-C4-Fe1	60.04 (14)
O1—C11—C10—C6	24.6 (3)	C1—C5—C4—C3	-0.1 (2)
C12—C11—C10—C6	-153.18 (17)	Fe1—C5—C4—C3	59.60 (14)
O1—C11—C10—C9	-159.99 (18)	C1-C5-C4-Fe1	-59.65 (15)
C12—C11—C10—C9	22.2 (3)	C9—Fe1—C4—C3	119.71 (14)
O1-C11-C10-Fe1	112.17 (18)	C10—Fe1—C4—C3	161.50 (13)
C12-C11-C10-Fe1	-65.6 (2)	C2—Fe1—C4—C3	-37.62 (14)
C9—Fe1—C10—C6	-118.98 (16)	C5—Fe1—C4—C3	-118.72 (19)
C3—Fe1—C10—C6	-159.2 (2)	C6—Fe1—C4—C3	-167.8 (2)
C4—Fe1—C10—C6	165.53 (12)	C1—Fe1—C4—C3	-81.43 (14)
C2—Fe1—C10—C6	46.2 (3)	C7—Fe1—C4—C3	46.7 (3)
C5—Fe1—C10—C6	123.08 (13)	C8—Fe1—C4—C3	77.89 (15)
C1—Fe1—C10—C6	81.19 (14)	C9—Fe1—C4—C5	-121.56 (13)
C7—Fe1—C10—C6	-37.52 (12)	C3—Fe1—C4—C5	118.72 (19)
C8—Fe1—C10—C6	-80.88 (13)	C10—Fe1—C4—C5	-79.78 (15)
C3—Fe1—C10—C9	-40.3 (3)	C2—Fe1—C4—C5	81.10 (14)
C4—Fe1—C10—C9	-75.49 (13)	C6—Fe1—C4—C5	-49.1 (3)
C2—Fe1—C10—C9	165.1 (2)	C1—Fe1—C4—C5	37.30 (13)
C5—Fe1—C10—C9	-117.94 (12)	C7—Fe1—C4—C5	165.4 (2)
C6—Fe1—C10—C9	118.98 (16)	C8—Fe1—C4—C5	-163.38 (13)
C1—Fe1—C10—C9	-159.83 (12)	C18—C17—O2—C20	-177.2 (2)
C7—Fe1—C10—C9	81.46 (12)	C16—C17—O2—C20	2.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
С13—Н13…О1	0.93	2.50	2.830 (2)	101
C8—H8···O1 ⁱ	0.93	2.60	3.345 (2)	137
С9—Н9…О1 ^{іі}	0.93	2.54	3.414 (2)	156
С12—Н12…О1 ^{іі}	0.93	2.46	3.346 (2)	160
С15—Н15…О1"	0.93	2.65	3.441 (2)	143
С19—Н19…О2 ^{ііі}	0.93	2.59	3.472 (3)	157
C3—H3… <i>Cg</i> 1 ⁱ	0.93	3.24	3.808 (2)	121

Symmetry codes: (i) *x*+1/2, -*y*+1/2, -*z*+1; (ii) -*x*+1/2, *y*+1/2, *z*; (iii) -*x*, *y*-1/2, -*z*+1/2.