organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Chloroanilino)pyridine

M. Zainal Abidin Fairuz, Zaharah Aiyub, Zanariah Abdullah and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 13 August 2008; accepted 14 August 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; R factor = 0.073; wR factor = 0.201; data-to-parameter ratio = 13.2.

The two aromatic rings of each of the four independent molecules in the asymmetric unit of the title compound, $C_{11}H_9CIN_2$, are approximately coplanar; the four molecules are arranged into two amino-pyridyl N-H···N hydrogenbonded pairs. The structure has a 15% twin component related by a twofold rotation about [100].

Related literature

The title compound exhibits fluorescence; see: Abdullah (2005); Kawai *et al.* (2001); Mohd Salleh *et al.* (2007). For the use of *PLATON* in the preparation of the diffraction data, see: Spek (2003).

Experimental

Crystal data

$C_{11}H_9ClN_2$	$\gamma = 87.128 \ (3)^{\circ}$
$M_r = 204.65$	$V = 1915.6 (1) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 8
a = 7.3926 (3) Å	Mo $K\alpha$ radiation
b = 15.3577 (5) Å	$\mu = 0.35 \text{ mm}^{-1}$
c = 17.6093 (6) Å	T = 100 (2) K
$\alpha = 73.723 \ (2)^{\circ}$	$0.26 \times 0.16 \times 0.03 \text{ mm}$
$\beta = 87.360 \ (3)^{\circ}$	

Data collection

Bruker SMART APEX

```
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.913, T_{max} = 0.989
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.073$	506 parameters
$vR(F^2) = 0.201$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
6679 reflections	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

14371 measured reflections

 $R_{\rm int} = 0.068$

6679 independent reflections

4259 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2n\cdots N3$	0.88	2.19	3.019 (5)	156
$N4 - H4n \cdot \cdot \cdot N1$	0.88	2.17	3.010 (5)	160
$N6 - H6n \cdot \cdot \cdot N7$	0.88	2.13	2.968 (5)	158
$N8 - H8n \cdot \cdot \cdot N5$	0.88	2.25	3.096 (5)	161

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank Dr Sean Parkin of the University of Kentucky for discussion of the twinning problem, and we thank the University of Malaya for supporting this study (grant No. FS358/2008 A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2115).

References

- Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9-15.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23–32.
 Mohd Salleh, N., Ling, L. P., Abdullah, Z. M. A. A. & Aiyub, Z. (2007).
 Malays. J. Anal. Sci. 11, 229–236.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, o1800 [doi:10.1107/S1600536808026317]

2-(4-Chloroanilino)pyridine

M. Zainal Abidin Fairuz, Zaharah Aiyub, Zanariah Abdullah and Seik Weng Ng

S1. Comment

The class of compounds represented by the title compound (Scheme I, Fig. 1) exhibit fluorescence (Abdullah, 2005; Kawai *et al.*, 2001; Mohd Salleh *et al.*, 2007). The compound crystallizes with four indepedent molecules; in each molecule, the two aromatic rings are approximately coplanar. The four molecules are arranged into two H-H_{amino}-N_{pyridyl} hydrogen-bonded pairs.

S2. Experimental

2-Chloropyridine (0.5 ml, 5.28 mmol) and 4-chloroaniline (0.67 g, 5.28 mmol) were heated for 5 h. The mixture was cooled and extracted with ether (3 x 100 ml). The ether extract was washed with water and then dried over sodium sulfate. Evaporation of the solvent gave a purple colored powder. Recrystallization from chloroform yielded colorless prisms.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement using the riding model approximation, with U(H) fixed at 1.2U(C). The amino H-atoms were similarly treated as riding (N–H 0.88 Å).

The structure initially refined to a rather high *R* index of 8.26%, and the difference Fourier map showed relatively large peaks for an all-light atom structure, although none were larger than 1 *e* Å⁻³. A preliminary check with the *TwinRotMat* routine of *PLATON* (Spek, 2003) showed strong evidence twofold twinning about [1 0 0]. Refinement against the *TwinRotMat*-generated data gave a lower *R* index of 7.26% along with a considerably flatter final difference Fourier map (no peak larger than *ca* 0.5 *e* Å⁻³). According to *TwinRotMat*, twinning should cause split reflections on the (*n*,*k*,*l*) layers with n = +/-1,2,3,4 although on some of these (*e.g.*, n = +/-1,4) the spot splitting was marginal. With n = -5,0,5 and on all (*h*,*n*,*l*) and (*h*,*k*,*n*) layers, the overlap was essentially perfect.

On the other hand, the reciprocal lattice diffraction data, when examined with the proprietary *RLATT* (Bruker, 2007) did not show any evidence of split reflections, most likely because the twin component is small.

Z = 8

F(000) = 848

 $\theta = 2.7 - 22.1^{\circ}$

 $\mu = 0.36 \text{ mm}^{-1}$

Plate, colorless

 $0.26 \times 0.16 \times 0.03 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.419 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1607 reflections

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the two pairs of hydrogen-bonded C₁₁H₉N₂Cl molecules.

2-(4-Chloroanilino)pyridine

Crystal data

C₁₁H₉ClN₂ $M_r = 204.65$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.3926 (3) Å b = 15.3577 (5) Å c = 17.6093 (6) Å a = 73.723 (2)° $\beta = 87.360$ (3)° $\gamma = 87.128$ (3)° V = 1915.6 (1) Å³

Data collection

Bruker SMART APEX diffractometer	14371 measured reflections 6679 independent reflections
Radiation source: fine-focus sealed tube	4259 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.068$
ω scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.2^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Sheldrick, 1996)	$k = -18 \rightarrow 18$
$T_{\min} = 0.913, \ T_{\max} = 0.989$	$l = -20 \longrightarrow 20$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.201$ S = 1.046679 reflections 506 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0956P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.52$ e Å⁻³ $\Delta\rho_{min} = -0.52$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.63490 (18)	0.33288 (8)	0.13449 (6)	0.0313 (3)	
Cl2	0.86940 (19)	0.47050 (8)	0.93970 (7)	0.0348 (4)	
C13	0.85771 (18)	0.82618 (8)	0.64005 (7)	0.0323 (3)	
Cl4	0.68780 (19)	0.97391 (8)	1.44898 (7)	0.0344 (4)	
N1	0.7638 (5)	0.2816 (2)	0.6012 (2)	0.0235 (9)	
N2	0.7050 (5)	0.3289 (2)	0.4689 (2)	0.0241 (9)	
H2N	0.6767	0.3812	0.4785	0.029*	
N3	0.7168 (6)	0.5220 (2)	0.4778 (2)	0.0274 (10)	
N4	0.8145 (6)	0.4735 (2)	0.6050 (2)	0.0266 (10)	
H4N	0.8259	0.4192	0.5975	0.032*	
N5	0.6763 (5)	0.7791 (2)	1.1073 (2)	0.0242 (9)	
N6	0.7641 (5)	0.8237 (2)	0.97657 (19)	0.0232 (9)	
H6N	0.7937	0.8742	0.9864	0.028*	
N7	0.7819 (6)	1.0150 (2)	0.9807 (2)	0.0264 (10)	
N8	0.6946 (6)	0.9785 (2)	1.1120 (2)	0.0253 (10)	
H8N	0.6648	0.9263	1.1056	0.030*	
C1	0.7593 (6)	0.2583 (3)	0.5324 (2)	0.0198 (10)	
C2	0.8080 (6)	0.1703 (3)	0.5277 (3)	0.0231 (11)	
H2	0.8022	0.1552	0.4792	0.028*	
C3	0.8645 (7)	0.1062 (3)	0.5954 (3)	0.0268 (11)	
H3	0.8996	0.0465	0.5934	0.032*	
C4	0.8702 (7)	0.1288 (3)	0.6660 (3)	0.0256 (11)	
H4	0.9076	0.0854	0.7131	0.031*	
C5	0.8195 (7)	0.2166 (3)	0.6653 (3)	0.0241 (11)	
H5	0.8244	0.2324	0.7136	0.029*	
C6	0.6904 (7)	0.3257 (3)	0.3904 (2)	0.0234 (11)	
C7	0.6014 (6)	0.2570 (3)	0.3717 (3)	0.0224 (11)	
H7	0.5506	0.2092	0.4126	0.027*	
C8	0.5873 (6)	0.2588 (3)	0.2926 (3)	0.0243 (11)	
H8	0.5312	0.2108	0.2795	0.029*	
C9	0.6547 (6)	0.3301 (3)	0.2336 (2)	0.0221 (11)	
C10	0.7396 (6)	0.4008 (3)	0.2509 (2)	0.0219 (11)	
H10	0.7847	0.4500	0.2098	0.026*	
C11	0.7564 (7)	0.3970 (3)	0.3299 (2)	0.0236 (11)	
H11	0.8145	0.4445	0.3428	0.028*	
C12	0.7827 (6)	0.5452 (3)	0.5387 (2)	0.0225 (11)	
C13	0.8204 (6)	0.6354 (3)	0.5341 (3)	0.0242 (11)	
H13	0.8699	0.6502	0.5775	0.029*	
C14	0.7839 (6)	0.7019 (3)	0.4651 (2)	0.0250 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H14	0.8077	0.7635	0.4604	0.030*
C15	0.7119 (7)	0.6780 (3)	0.4026 (3)	0.0284 (12)
H15	0.6839	0.7228	0.3547	0.034*
C16	0.6823 (7)	0.5882 (3)	0.4117 (3)	0.0267 (11)
H16	0.6345	0.5720	0.3685	0.032*
C17	0.8306 (6)	0.4777 (3)	0.6828 (2)	0.0197 (10)
C18	0.7407 (6)	0.5441 (3)	0.7125 (2)	0.0225 (11)
H18	0.6689	0.5906	0.6785	0.027*
C19	0.7548 (6)	0.5429 (3)	0.7910(2)	0.0234 (11)
H19	0.6954	0.5889	0.8105	0.028*
C20	0.8569 (6)	0.4734 (3)	0.8409 (2)	0.0232 (11)
C21	0.9467 (6)	0.4064 (3)	0.8133 (2)	0.0235 (11)
H21	1.0167	0.3594	0.8477	0.028*
C22	0.9327 (7)	0.4092 (3)	0.7348 (3)	0.0242 (11)
H22	0.9938	0.3634	0.7155	0.029*
C23	0.6090 (7)	0.7168 (3)	1.1698 (3)	0.0258 (11)
H23	0.5938	0.7324	1.2183	0.031*
C24	0.5600(7)	0.6317 (3)	1.1694 (3)	0.0270 (12)
H24	0.5098	0.5904	1.2154	0.032*
C25	0.5872 (7)	0.6088 (3)	1.0989 (2)	0.0259 (12)
H25	0.5581	0.5502	1.0963	0.031*
C26	0.6557 (7)	0.6702 (3)	1.0330(3)	0.0257 (11)
H26	0.6731	0.6554	0.9843	0.031*
C27	0.7002 (6)	0.7565 (3)	1.0396 (2)	0.0230 (11)
C28	0.7872 (6)	0.8202 (3)	0.8975 (2)	0.0179 (10)
C29	0.8870 (6)	0.7517 (3)	0.8758 (3)	0.0235 (11)
H29	0.9420	0.7036	0.9153	0.028*
C30	0.9073 (6)	0.7526 (3)	0.7969 (3)	0.0252 (11)
H30	0.9730	0.7047	0.7823	0.030*
C31	0.8304 (6)	0.8243 (3)	0.7398 (2)	0.0221 (11)
C32	0.7343 (6)	0.8940 (3)	0.7592 (2)	0.0212 (11)
H32	0.6846	0.9432	0.7190	0.025*
C33	0.7101 (6)	0.8919 (3)	0.8391 (2)	0.0203 (10)
H33	0.6414	0.9391	0.8535	0.024*
C34	0.8266 (7)	1.0766 (3)	0.9131 (3)	0.0280 (12)
H34	0.8587	1.0553	0.8684	0.034*
C35	0.8294 (7)	1.1685 (3)	0.9036 (3)	0.0276 (12)
H35	0.8688	1.2092	0.8550	0.033*
C36	0.7723 (7)	1.1994 (3)	0.9681 (3)	0.0307 (12)
H36	0.7666	1.2626	0.9637	0.037*
C37	0.7243 (6)	1.1380 (3)	1.0383 (3)	0.0251 (11)
H37	0.6846	1.1580	1.0829	0.030*
C38	0.7346 (7)	1.0458 (3)	1.0431 (2)	0.0239 (11)
C39	0.6953 (6)	0.9824 (3)	1.1897 (2)	0.0213 (10)
C40	0.7925 (7)	1.0447 (3)	1.2151 (2)	0.0240 (11)
H40	0.8622	1.0883	1.1778	0.029*
C41	0.7873 (6)	1.0427 (3)	1.2940 (3)	0.0248 (11)
H41	0.8508	1.0860	1.3107	0.030*

supporting information

C42	0.6890 (6)	0.9773 (3)	1.3491 (3)	0.0239 (11)
C43	0.5945 (7)	0.9148 (3)	1.3258 (2)	0.0234 (11)
H43	0.5293	0.8697	1.3637	0.028*
C44	0.5958 (6)	0.9185 (3)	1.2462 (2)	0.0230 (11)
H44	0.5275	0.8767	1.2298	0.028*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0369 (8)	0.0382 (7)	0.0208 (6)	0.0045 (6)	-0.0054 (5)	-0.0120 (5)
Cl2	0.0479 (9)	0.0381 (7)	0.0209 (6)	0.0003 (6)	-0.0111 (6)	-0.0113 (5)
Cl3	0.0375 (8)	0.0411 (7)	0.0217 (6)	-0.0116 (6)	0.0039 (5)	-0.0132 (5)
Cl4	0.0421 (9)	0.0412 (7)	0.0214 (6)	-0.0039 (6)	0.0045 (6)	-0.0114 (5)
N1	0.026 (2)	0.0204 (19)	0.022 (2)	-0.0022 (17)	-0.0010 (17)	-0.0023 (16)
N2	0.040 (3)	0.0166 (18)	0.0154 (19)	-0.0009 (18)	-0.0052 (17)	-0.0041 (15)
N3	0.038 (3)	0.022 (2)	0.020 (2)	0.0031 (19)	-0.0047 (18)	-0.0027 (16)
N4	0.043 (3)	0.0176 (19)	0.0169 (19)	0.0005 (19)	-0.0004 (18)	-0.0021 (15)
N5	0.028 (2)	0.0214 (19)	0.021 (2)	-0.0015 (18)	-0.0023 (17)	-0.0025 (16)
N6	0.034 (3)	0.0211 (19)	0.0137 (18)	-0.0044 (18)	0.0002 (17)	-0.0037 (15)
N7	0.039 (3)	0.023 (2)	0.017 (2)	-0.0059 (19)	-0.0035 (18)	-0.0050 (16)
N8	0.042 (3)	0.0178 (19)	0.0151 (19)	-0.0064 (18)	-0.0036 (17)	-0.0014 (15)
C1	0.021 (3)	0.021 (2)	0.017 (2)	-0.008(2)	-0.0024 (19)	-0.0021 (18)
C2	0.028 (3)	0.025 (2)	0.017 (2)	-0.004 (2)	0.000 (2)	-0.0063 (19)
C3	0.027 (3)	0.021 (2)	0.030 (3)	0.000 (2)	-0.001 (2)	-0.002 (2)
C4	0.030 (3)	0.023 (2)	0.021 (2)	-0.004 (2)	-0.005 (2)	0.0004 (19)
C5	0.032 (3)	0.021 (2)	0.017 (2)	-0.004 (2)	-0.006(2)	0.0001 (18)
C6	0.031 (3)	0.020 (2)	0.019 (2)	0.000(2)	-0.007(2)	-0.0049 (19)
C7	0.020 (3)	0.022 (2)	0.025 (2)	-0.002 (2)	-0.002 (2)	-0.0064 (19)
C8	0.024 (3)	0.020 (2)	0.032 (3)	0.004 (2)	-0.007 (2)	-0.012 (2)
C9	0.024 (3)	0.023 (2)	0.020 (2)	0.003 (2)	-0.005 (2)	-0.0074 (18)
C10	0.025 (3)	0.019 (2)	0.020 (2)	0.001 (2)	-0.002 (2)	-0.0016 (18)
C11	0.032 (3)	0.019 (2)	0.019 (2)	-0.003 (2)	-0.003 (2)	-0.0032 (18)
C12	0.026 (3)	0.025 (2)	0.016 (2)	-0.004 (2)	0.003 (2)	-0.0036 (18)
C13	0.028 (3)	0.022 (2)	0.021 (2)	0.000 (2)	0.000 (2)	-0.0029 (19)
C14	0.028 (3)	0.022 (2)	0.023 (2)	-0.004 (2)	-0.001 (2)	-0.0031 (19)
C15	0.038 (3)	0.024 (2)	0.018 (2)	0.007 (2)	-0.002 (2)	0.0020 (19)
C16	0.032 (3)	0.027 (3)	0.022 (2)	0.003 (2)	-0.007 (2)	-0.008(2)
C17	0.027 (3)	0.014 (2)	0.017 (2)	-0.003 (2)	0.002 (2)	-0.0027 (17)
C18	0.026 (3)	0.020 (2)	0.021 (2)	-0.003 (2)	-0.003 (2)	-0.0026 (18)
C19	0.023 (3)	0.022 (2)	0.025 (2)	-0.005 (2)	0.001 (2)	-0.0060 (19)
C20	0.024 (3)	0.025 (2)	0.019 (2)	-0.011 (2)	-0.001 (2)	-0.0030 (19)
C21	0.027 (3)	0.022 (2)	0.020 (2)	-0.003 (2)	-0.005 (2)	-0.0028 (19)
C22	0.032 (3)	0.013 (2)	0.025 (2)	-0.001 (2)	0.000 (2)	-0.0026 (18)
C23	0.037 (3)	0.020 (2)	0.018 (2)	0.000 (2)	0.000 (2)	-0.0022 (19)
C24	0.034 (3)	0.021 (2)	0.021 (2)	-0.003 (2)	0.001 (2)	0.0028 (19)
C25	0.031 (3)	0.021 (2)	0.025 (3)	-0.006 (2)	-0.008(2)	-0.0032 (19)
C26	0.033 (3)	0.020 (2)	0.022 (2)	0.001 (2)	-0.006 (2)	-0.0027 (19)
C27	0.026 (3)	0.023 (2)	0.018 (2)	-0.001 (2)	-0.007(2)	-0.0010 (19)

C28	0.020 (3)	0.019 (2)	0.016 (2)	-0.0062 (19)	0.0003 (19)	-0.0056 (17)
C29	0.024 (3)	0.019 (2)	0.027 (2)	-0.001 (2)	-0.003 (2)	-0.0050 (19)
C30	0.024 (3)	0.027 (2)	0.027 (3)	-0.003 (2)	0.004 (2)	-0.011 (2)
C31	0.027 (3)	0.025 (2)	0.015 (2)	-0.008(2)	0.004 (2)	-0.0062 (18)
C32	0.025 (3)	0.021 (2)	0.017 (2)	-0.005 (2)	-0.0010 (19)	-0.0025 (18)
C33	0.020 (3)	0.017 (2)	0.023 (2)	-0.0011 (19)	0.000 (2)	-0.0051 (18)
C34	0.040 (3)	0.024 (2)	0.019 (2)	-0.005 (2)	-0.004 (2)	-0.0048 (19)
C35	0.038 (3)	0.025 (2)	0.015 (2)	-0.004 (2)	-0.005 (2)	0.0011 (19)
C36	0.039 (3)	0.023 (2)	0.028 (3)	-0.003 (2)	-0.010 (2)	-0.001 (2)
C37	0.027 (3)	0.026 (2)	0.020 (2)	-0.001 (2)	-0.005 (2)	-0.0006 (19)
C38	0.029 (3)	0.023 (2)	0.017 (2)	-0.003 (2)	-0.004 (2)	-0.0005 (19)
C39	0.025 (3)	0.018 (2)	0.018 (2)	0.004 (2)	-0.003 (2)	-0.0002 (18)
C40	0.028 (3)	0.020 (2)	0.022 (2)	-0.003 (2)	-0.003 (2)	-0.0026 (19)
C41	0.021 (3)	0.025 (2)	0.025 (3)	-0.002 (2)	0.000 (2)	-0.002 (2)
C42	0.023 (3)	0.026 (2)	0.020 (2)	0.006 (2)	0.001 (2)	-0.0024 (19)
C43	0.028 (3)	0.020 (2)	0.020 (2)	-0.004 (2)	0.005 (2)	-0.0034 (19)
C44	0.027 (3)	0.019 (2)	0.022 (2)	-0.005 (2)	-0.004 (2)	-0.0028 (18)

Geometric parameters (Å, °)

Cl1—C9	1.747 (4)	C15—H15	0.9500
Cl2—C20	1.734 (4)	C16—H16	0.9500
Cl3—C31	1.751 (4)	C17—C18	1.397 (6)
Cl4—C42	1.744 (5)	C17—C22	1.400 (6)
N1C5	1.345 (5)	C18—C19	1.385 (6)
N1-C1	1.359 (5)	C18—H18	0.9500
N2-C1	1.380 (5)	C19—C20	1.391 (6)
N2-C6	1.406 (5)	C19—H19	0.9500
N2—H2N	0.8800	C20—C21	1.386 (7)
N3—C16	1.338 (5)	C21—C22	1.378 (6)
N3—C12	1.340 (6)	C21—H21	0.9500
N4—C12	1.381 (5)	C22—H22	0.9500
N4—C17	1.401 (5)	C23—C24	1.376 (6)
N4—H4N	0.8800	C23—H23	0.9500
N5-C27	1.334 (6)	C24—C25	1.385 (6)
N5-C23	1.335 (5)	C24—H24	0.9500
N6-C27	1.370 (5)	C25—C26	1.368 (6)
N6-C28	1.411 (5)	C25—H25	0.9500
N6—H6N	0.8800	C26—C27	1.419 (6)
N7—C34	1.336 (5)	C26—H26	0.9500
N7—C38	1.340 (6)	C28—C29	1.385 (6)
N8—C39	1.386 (5)	C28—C33	1.397 (6)
N8—C38	1.387 (5)	C29—C30	1.387 (6)
N8—H8N	0.8800	C29—H29	0.9500
C1—C2	1.405 (6)	C30—C31	1.385 (6)
C2—C3	1.382 (6)	C30—H30	0.9500
С2—Н2	0.9500	C31—C32	1.369 (6)
C3—C4	1.384 (6)	C32—C33	1.401 (6)

С3—Н3	0.9500	C32—H32	0.9500
C4—C5	1.378 (6)	С33—Н33	0.9500
C4—H4	0.9500	C34—C35	1.376 (6)
С5—Н5	0.9500	C34—H34	0.9500
C6—C11	1.387 (5)	C35—C36	1.389(7)
С6—С7	1.393 (6)	С35—Н35	0.9500
C7—C8	1.394 (6)	C36—C37	1.373 (6)
С7—Н7	0.9500	C36—H36	0.9500
C8—C9	1 377 (6)	C37 - C38	1 392 (6)
C8—H8	0.9500	C37—H37	0.9500
C9-C10	1 391 (6)	C39-C44	1 397 (6)
C10_C11	1.397 (6)	C_{39} C_{40}	1.397 (6)
C10_H10	0.9500	C_{40} C_{41}	1.381 (6)
C11 H11	0.9500	$C_{40} = C_{41}$	0.9500
C12 $C13$	0.9500	C_{40}	1 303 (6)
C12 - C13	1.400 (0)	C41 - C42	1.393 (0)
C13 - C14	1.577(0)	C41 - H41	0.9300
C13—H13	0.9500	C42 - C43	1.376 (6)
C14—C15	1.390 (6)	C43 - C44	1.386 (6)
C14—H14	0.9500	C43—H43	0.9500
C15—C16	1.3/1 (6)	C44—H44	0.9500
C5—N1—C1	117.0 (4)	C21—C20—Cl2	119.7 (3)
C1—N2—C6	126.6 (4)	C19—C20—Cl2	119.1 (4)
C1—N2—H2N	116.7	C22—C21—C20	118.7 (4)
C6—N2—H2N	116.7	C22—C21—H21	120.6
C16—N3—C12	117.9 (4)	C20—C21—H21	120.6
C12—N4—C17	127.2 (4)	C21—C22—C17	121.8 (5)
C12—N4—H4N	116.4	C21—C22—H22	119.1
C17—N4—H4N	116.4	C17—C22—H22	119.1
C27—N5—C23	117.4 (4)	N5—C23—C24	125.0 (4)
C27—N6—C28	126.6 (4)	N5—C23—H23	117.5
C27—N6—H6N	116.7	C24—C23—H23	117.5
C28—N6—H6N	116.7	C23—C24—C25	117.0 (4)
C34—N7—C38	117.1 (4)	C23—C24—H24	121.5
C39—N8—C38	128.7 (4)	C25—C24—H24	121.5
C39—N8—H8N	115.7	C26—C25—C24	120.4 (4)
C38—N8—H8N	115.7	C26—C25—H25	119.8
N1-C1-N2	1137(4)	C24—C25—H25	119.8
N1-C1-C2	122.1 (4)	C_{25} C_{26} C_{27}	118 2 (4)
N2-C1-C2	122.1(1) 124.2(4)	C25—C26—H26	120.9
$C_{3} - C_{2} - C_{1}$	12.1.2(1) 118.5(4)	C27—C26—H26	120.9
C3—C2—H2	120.7	N5-C27-N6	1151(4)
C1—C2—H2	120.7	N5-C27-C26	122.1(4)
$C_2 - C_3 - C_4$	120.2 (4)	N6-C27-C26	122.1(1) 122.7(4)
С2—С3—Н3	110 0	C_{29} C_{28} C_{33}	122.7(4) 1196(4)
C4—C3—H3	110.0	C29 - C28 - N6	173.2(4)
$C_{5} - C_{4} - C_{3}$	117.5 (4)	C_{33} C_{28} N6	123.2 (+) 117 2 (4)
C5-C4-H4	121.2	C_{28} C_{20} C_{30}	120 6 (4)
UU UT 11T	1 - 1	020 02) - 030	120.0(7)

C3—C4—H4	121.2	С28—С29—Н29	119.7
N1C5C4	124.7 (4)	С30—С29—Н29	119.7
N1—C5—H5	117.6	C31—C30—C29	119.0 (5)
С4—С5—Н5	117.6	С31—С30—Н30	120.5
C11—C6—C7	119.4 (4)	С29—С30—Н30	120.5
C11—C6—N2	118.3 (4)	C32—C31—C30	121.8 (4)
C7—C6—N2	122.1 (4)	C32—C31—Cl3	119.1 (3)
C6—C7—C8	119.5 (4)	C30—C31—Cl3	119.1 (4)
С6—С7—Н7	120.3	C31—C32—C33	119.2 (4)
С8—С7—Н7	120.3	С31—С32—Н32	120.4
C9—C8—C7	120.0 (4)	С33—С32—Н32	120.4
С9—С8—Н8	120.0	C28—C33—C32	119.9 (4)
С7—С8—Н8	120.0	С28—С33—Н33	120.1
C8—C9—C10	121.5 (4)	С32—С33—Н33	120.1
C8—C9—Cl1	119.9 (3)	N7—C34—C35	124.7 (5)
C10—C9—Cl1	118.6 (3)	N7—C34—H34	117.6
C11—C10—C9	117.9 (4)	C35—C34—H34	117.6
C11—C10—H10	121.0	C34—C35—C36	117.2 (4)
С9—С10—Н10	121.0	C34—C35—H35	121.4
C10—C11—C6	121.7 (4)	C36—C35—H35	121.4
C10—C11—H11	119.2	C37—C36—C35	119.5 (4)
C6-C11-H11	119.2	C37—C36—H36	120.2
N3—C12—N4	114.8 (4)	C35—C36—H36	120.2
N3-C12-C13	122.1 (4)	C36-C37-C38	119.0 (5)
N4-C12-C13	123.1 (4)	C36—C37—H37	120.5
C14-C13-C12	118 5 (4)	$C_{38} - C_{37} - H_{37}$	120.5
C14—C13—H13	120.7	N7-C38-N8	114 3 (4)
C12-C13-H13	120.7	N7-C38-C37	1224(4)
C13 - C14 - C15	119 3 (4)	N8-C38-C37	122.1(1) 123.2(4)
C_{13} C_{14} H_{14}	120.4	N8-C39-C44	1174(4)
C15 - C14 - H14	120.1	N8-C39-C40	1242(4)
C_{16} $-C_{15}$ $-C_{14}$	118 3 (4)	C44-C39-C40	121.2(1) 1183(4)
C_{16} $-C_{15}$ $-H_{15}$	120.8	C_{41} C_{40} C_{39}	120.2(4)
C14-C15-H15	120.8	C41-C40-H40	119.9
N3-C16-C15	123.8 (4)	C_{39} C_{40} H_{40}	119.9
N3-C16-H16	118.1	C40-C41-C42	120.0 (4)
C_{15} C_{16} H_{16}	118.1	C40-C41-H41	120.0
C18 - C17 - C22	118.2 (4)	C42 - C41 - H41	120.0
C18 - C17 - N4	110.2 (4) 123 1 (4)	$C_{42} = C_{41} = 1141$	120.0 120.8(4)
C_{22} C_{17} N_{4}	125.1(4) 118.6(4)	C_{43} C_{42} C_{41} C_{43} C_{42} C_{14}	120.0(4) 119.6(3)
C19 - C18 - C17	120 8 (4)	C41 - C42 - C14	119.6 (4)
C19 - C18 - H18	119.6	C_{42} C_{42} C_{43} C_{44}	119.0(4)
C17—C18—H18	119.6	C42—C43—H43	120 5
C18 - C19 - C20	119.2 (5)	C44-C43-H43	120.5
C18—C19—H19	120.4	C43 - C44 - C39	120.5
C20-C19-H19	120.4	C43 - C44 - H44	119.2
C_{21} C_{20} C_{19} C_{19} C_{19}	121.2 (4)	C39—C44—H44	119.2
			· · / · · ···

C5—N1—C1—N2	-178.5 (4)	C27—N5—C23—C24	-1.1 (7)
C5—N1—C1—C2	0.8 (6)	N5-C23-C24-C25	1.6 (8)
C6—N2—C1—N1	178.8 (4)	C23—C24—C25—C26	-1.5 (7)
C6—N2—C1—C2	-0.5 (7)	C24—C25—C26—C27	1.0 (7)
N1—C1—C2—C3	-0.9 (7)	C23—N5—C27—N6	178.0 (4)
N2—C1—C2—C3	178.3 (4)	C23—N5—C27—C26	0.4 (7)
C1—C2—C3—C4	0.8 (7)	C28—N6—C27—N5	-174.5 (4)
C2—C3—C4—C5	-0.6 (7)	C28—N6—C27—C26	3.1 (7)
C1—N1—C5—C4	-0.6 (7)	C25-C26-C27-N5	-0.4 (7)
C3—C4—C5—N1	0.5 (7)	C25—C26—C27—N6	-177.8 (4)
C1—N2—C6—C11	-136.0 (5)	C27—N6—C28—C29	-54.0 (6)
C1—N2—C6—C7	48.5 (7)	C27—N6—C28—C33	128.5 (5)
C11—C6—C7—C8	2.9 (7)	C33—C28—C29—C30	-1.5 (6)
N2—C6—C7—C8	178.4 (4)	N6-C28-C29-C30	-179.0 (4)
C6—C7—C8—C9	-2.6 (7)	C28—C29—C30—C31	1.7 (6)
C7—C8—C9—C10	0.8 (7)	C29—C30—C31—C32	-0.3 (7)
C7—C8—C9—Cl1	-179.3 (4)	C29—C30—C31—Cl3	179.4 (3)
C8—C9—C10—C11	0.6 (7)	C30—C31—C32—C33	-1.2 (7)
Cl1—C9—C10—C11	-179.2 (4)	Cl3—C31—C32—C33	179.1 (3)
C9—C10—C11—C6	-0.3 (7)	C29—C28—C33—C32	0.0 (6)
C7—C6—C11—C10	-1.5 (7)	N6-C28-C33-C32	177.6 (4)
N2-C6-C11-C10	-177.1 (4)	C31—C32—C33—C28	1.4 (6)
C16—N3—C12—N4	179.8 (4)	C38—N7—C34—C35	0.9 (7)
C16—N3—C12—C13	-1.8 (7)	N7—C34—C35—C36	-3.6 (8)
C17—N4—C12—N3	-159.7 (5)	C34—C35—C36—C37	2.9 (7)
C17—N4—C12—C13	21.9 (8)	C35—C36—C37—C38	0.2 (7)
N3—C12—C13—C14	1.6 (8)	C34—N7—C38—N8	-178.3 (4)
N4—C12—C13—C14	179.9 (5)	C34—N7—C38—C37	2.6 (7)
C12—C13—C14—C15	-0.2 (7)	C39—N8—C38—N7	158.5 (5)
C13—C14—C15—C16	-1.0 (8)	C39—N8—C38—C37	-22.4 (8)
C12—N3—C16—C15	0.6 (8)	C36—C37—C38—N7	-3.1 (7)
C14—C15—C16—N3	0.8 (8)	C36—C37—C38—N8	177.9 (5)
C12—N4—C17—C18	30.0 (7)	C38—N8—C39—C44	159.5 (5)
C12—N4—C17—C22	-153.9 (4)	C38—N8—C39—C40	-22.0 (8)
C22—C17—C18—C19	1.1 (6)	N8—C39—C40—C41	-179.1 (5)
N4—C17—C18—C19	177.1 (4)	C44—C39—C40—C41	-0.6 (7)
C17—C18—C19—C20	-1.4 (6)	C39—C40—C41—C42	1.6 (7)
C18—C19—C20—C21	1.0 (6)	C40—C41—C42—C43	-0.8 (7)
C18—C19—C20—Cl2	-178.3 (3)	C40—C41—C42—Cl4	178.5 (4)
C19—C20—C21—C22	-0.3 (6)	C41—C42—C43—C44	-1.0 (7)
Cl2—C20—C21—C22	179.0 (3)	Cl4—C42—C43—C44	179.7 (4)
C20—C21—C22—C17	0.0 (7)	C42—C43—C44—C39	2.1 (7)
C18—C17—C22—C21	-0.4 (6)	N8—C39—C44—C43	177.3 (4)
N4—C17—C22—C21	-176.6 (4)	C40—C39—C44—C43	-1.2 (7)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2n…N3	0.88	2.19	3.019 (5)	156
N4—H4n···N1	0.88	2.17	3.010 (5)	160
N6—H6n···N7	0.88	2.13	2.968 (5)	158
N8—H8n…N5	0.88	2.25	3.096 (5)	161

Hydrogen-bond geometry (Å, °)