Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

\{5,5'-Dihydroxy-2,2'-[o-phenylene-bis(nitrilomethylidyne)]diphenolato\}nickel(II) dihydrate

Hoong-Kun Fun, ${ }^{\text {a* }}$ Reza Kia, ${ }^{\text {a }} \ddagger$ Valiollah Mirkhani ${ }^{\text {b }}$ s and Hasan Zargoshi ${ }^{\text {b }}$
${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Chemistry Department, Isfahan University, Isfahan, 81746-73441, Iran
Correspondence e-mail: hkfun@usm.my

Received 8 August 2008; accepted 13 August 2008

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.049 ; w R$ factor $=0.121$; data-to-parameter ratio $=26.2$.

In the title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Ni}^{\text {II }}$ ion is in an essentially square-planar geometry involving an $\mathrm{N}_{2} \mathrm{O}_{2}$ atom set of the tetradentate Schiff base ligand. The Ni atom lies on a crystallographic twofold rotation axis. The asymmetric unit contains one half-molecule of the complex and a water molecule. An intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond forms a four-membered ring, producing an $R_{1}^{2}(4)$ ring motif involving a bifurcated hydrogen bond to the phenolate O atoms of the complex molecule. In the crystal structure, molecules are linked by $\pi-\pi$ stacking interactions, with centroid-centroid distances in the range 3.5750 (11)-3.7750 (11) \AA. As a result of the twofold symmetry, the central benzene ring makes the same dihedral angle of $15.75(9)^{\circ}$ with the two outer benzene rings. The dihedral angle between the two hydroxyphenyl rings is $13.16(5)^{\circ}$. In the crystal structure, molecules are linked into infinite one-dimensional chains by directed fourmembered $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}-\mathrm{H}$ interactions along the c axis and are further connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\pi-\pi$ stacking into a three-dimensional network. An interesting feature of the crystal structure is the short $\mathrm{Ni} \cdots \mathrm{O}, \mathrm{O} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{N}$ interactions which are shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and by $\pi-\pi$ stacking interactions.

Related literature

For bond-length data, see Allen et al. (1987). For hydrogenbond motifs, see: Bernstein et al. (1995). For related structures, see, for example: Clark et al. (1968, 1969, 1970); Hodgson 1975. For applications and bioactivities, see, for example: Elmali et
al. (2000); Blower (1998); Granovski et al. (1993); Li \& Chang (1991); Shahrokhian et al. (2000); Fun \& Kia (2008a,b).

$2 \mathrm{H}_{2} \mathrm{O}$

Experimental

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=441.07$
Monoclinic, C2/c
$a=10.9049$ (2) А
$b=17.6602$ (3) \AA
$c=9.0375$ (3) A
$\beta=101.150(1)^{\circ}$
$V=1707.61(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.18 \mathrm{~mm}^{-1}$
$T=100.0$ (1) K
$0.35 \times 0.12 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.683, T_{\text {max }}=0.881$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.120$
$S=1.12$
3566 reflections
136 parameters

14574 measured reflections 3566 independent reflections 2388 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.046$

Table 1
Selected interatomic distances (\AA).
$C g 1, C g 2, C g 3$, and $C g 4$ are the centroids of the $\mathrm{Ni} 1 / \mathrm{N} 1 / \mathrm{C} 8 / \mathrm{C} 8 A / \mathrm{N} 1 A, \mathrm{Ni} 1 / \mathrm{O} 1 /$ $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{N} 1, \mathrm{Ni} 1 / \mathrm{O} 1 A / \mathrm{C} 1 A / \mathrm{C} 6 A / \mathrm{C} 7 A / \mathrm{N} 1 A$ and $\mathrm{C} 1-\mathrm{C} 6$ rings, respectively.

$C g 1 \cdots C g 4^{\text {i }}$	3.7364 (11)	$C g 4 \cdots C g 4^{\text {iv }}$	3.7750 (11)
Cg2 \cdots Cg $2^{\text {i }}$	3.7380 (9)	Ni1 \cdots O1 W^{*}	3.7635 (13)
$C g 2 \cdots C g 3{ }^{\text {ii }}$	3.7381 (9)	$\mathrm{O} 1 \cdots \mathrm{O} 1^{\mathrm{v}}$	2.4319 (18)
$C g 3 \cdots C g 4{ }^{\text {iii }}$	3.5766 (10)	$\mathrm{N} 1 \cdots \mathrm{~N} 1^{v}$	2.525 (2)
Symmetry	$\frac{1}{2},-y$	+2; (ii)	$-\frac{1}{2} ;$ (iii)

$x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{3}{2}$; (iv) $-x, y,-z+\frac{5}{2} ;(\mathrm{v})-x, y,-z+\frac{3}{2}$.

Table 2
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 1$	0.88	2.40	3.0733 (18)	133
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O}^{\text {v }}$	0.88	1.97	2.8072 (19)	160
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O}^{\text {vi }}$	0.83	2.17	2.9985 (19)	173
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 2^{\text {vii }}$	0.93	2.60	3.394 (2)	144

Symmetry codes: (v) $-x, y,-z+\frac{3}{2}$; (vi) $x, y, z-1$; (vii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{5}{2}$.

metal-organic compounds

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2114).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Clark, G. R., Hall, D. \& Waters, T. N. (1968). J. Chem. Soc. A, pp. 223-226.
Clark, G. R., Hall, D. \& Waters, T. N. (1969). J. Chem. Soc. A, pp. 823-829. Clark, G. R., Hall, D. \& Waters, T. N. (1970). J. Chem. Soc. A, pp. 396-399.
Elmali, A., Elerman, Y. \& Svoboda, I. (2000). Acta Cryst. C56, 423-424.
Fun, H.-K. \& Kia, R. (2008a). Acta Cryst. E64, m1081-m1082.
Fun, H.-K. \& Kia, R. (2008b). Acta Cryst. E64, m1116-m1117.
Granovski, A. D., Nivorozhkin, A. L. \& Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.
Hodgson, D. J. (1975). Prog. Inorg. Chem. 19, 173-202.
Li, C. H. \& Chang, T. C. (1991). Eur. Polym. J. 27, 35-39.
Shahrokhian, S., Amini, M. K., Kia, R. \& Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, m1181-m1182 [doi:10.1107/S1600536808026093]

\{5,5'-Dihydroxy-2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato\}nickel(II) dihydrate

Hoong-Kun Fun, Reza Kia, Valiollah Mirkhani and Hasan Zargoshi

S1. Comment

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Many of the reported structural investigations of these complexes are discussed in some details in a review (Hodgson, 1975). Metal derivatives of Schiff bases have been studied extensively, and $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$ complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Fun \& Kia, 2008a, b; Granovski et al., 1993; Li \& Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).
In the title compound (Fig. 1), the $\mathrm{Ni}^{I I}$ ion, is in an essentially square-planar geometry involving a $\mathrm{N}_{2} \mathrm{O}_{2}$ atom set of the tetradentate Schiff base ligand. The Ni atom lies on a crystallographic twofold rotation axis. An intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond forms a four-membered ring, producing an $R_{1}{ }_{1}(4)$ ring motif (Bernstein et al., 1995). The bond lengths are within the normal ranges (Allen et al., 1987). The asymmetric unit contains one-half of the molecule of the complex and a water molecule. The latter shows a bifurcated hydrogen bond which is connected to the phenolato oxygen atoms of the complex. The molecule is nearly planar, with a maximum deviation from the mean plane of 0.370 (2) \AA for atom C9. As a result of the twofold symmetry, the central benzene ring makes the same dihedral angle of 15.75 (9) ${ }^{\circ}$ with the two outer benzene rings. The dihedral angle between the two hydroxy phenyl rings is 13.16 (5) ${ }^{\circ}$. In the crystal structure, (Fig. 2) molecules are linked into infinite one-dimensional chains by directed four-membered $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}-\mathrm{H}$ interactions along the c axis and are furthered connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\pi-\pi$ stacking into a three-dimensional network.
An interesting feature of the crystal structure is the short $\mathrm{Ni} \cdots \mathrm{O}, \mathrm{O} \cdots \mathrm{O}$, and $\mathrm{N} \cdots \mathrm{N}$ interactions (Table 1), which are shorter than the sum of the van der Waals radii of the relevant atoms. The short distances between the centroids of the five- and six-membered rings indicate the existence of the $\pi-\pi$ interactions (Table 1). The crystal structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and $\pi-\pi$ interactions.

S2. Experimental

A chloroform solution (40 ml) of the ligand ($1 \mathrm{mmol}, 354 \mathrm{mg}$) was added to a methanol solution (20 ml) of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(1.05 \mathrm{mmol}, 237 \mathrm{mg})$. The mixture was refluxed for 30 min and the resulting red precipitate was filtered, washed with cold ethanol and dried in air. Single crystals suitable for X-ray analysis were obtained from a THF solution at RT.

S3. Refinement

The water H -atoms were located in a difference Fourier map and refined as riding on the parent atom with an isotropic displacement parameter of 1.5 Ueq of the water oxygen. The hydroxyl H atoms were also located in a difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93 \AA$] and refined using
a riding model.

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Intermolecular hydrogen bonds are drawn as dashed lines.

Figure 2

The crystal packing viewed down the b axis, showing one-dimensional extended chains involving the directed four membered $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}-\mathrm{H}$ hydrogen bonds along the c axis. Intermolecular interactions are drawn as dashed lines.

\{5,5'-Dihydroxy-2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato\}nickel(II) dihydrate

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
M_{r}=441.07
$$

$$
\begin{aligned}
& a=10.9049(2) \AA \\
& b=17.6602(3) \AA \\
& c=9.0375(3) \AA \\
& \beta=101.150(1)^{\circ}
\end{aligned}
$$

Monoclinic, C2/c
Hall symbol: -C 2yc
$V=1707.61(7) \AA^{3}$
$Z=4$
$F(000)=912$
$D_{\mathrm{x}}=1.716 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3113 reflections

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.683, T_{\text {max }}=0.881$

$$
\begin{aligned}
& \theta=2.3-29.1^{\circ} \\
& \mu=1.18 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Block, red } \\
& 0.35 \times 0.12 \times 0.11 \mathrm{~mm} \\
& \\
& \\
& 14574 \text { measured reflections } \\
& 3566 \text { independent reflections } \\
& 2388 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.046 \\
& \theta_{\max }=34.3^{\circ}, \theta_{\min }=2.2^{\circ} \\
& h=-17 \rightarrow 17 \\
& k=-23 \rightarrow 27 \\
& l=-14 \rightarrow 14
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.121$
$S=1.12$
3566 reflections
136 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0492 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.61$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.74 \mathrm{e}^{-3}$

Special details

Experimental. The low-temperature data was collected with the Oxford Cryosystem Cobra low-temperature attachment Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Ni1	0.0000	$0.246535(17)$	0.7500	$0.01493(11)$
O1	$0.04391(12)$	$0.32501(7)$	$0.88434(14)$	$0.0174(3)$
O2	$0.18665(13)$	$0.44913(8)$	$1.35074(15)$	$0.0215(3)$
N1	$0.06039(14)$	$0.17016(8)$	$0.88409(17)$	$0.0152(3)$
C1	$0.09715(16)$	$0.32009(10)$	$1.0287(2)$	$0.0159(4)$
C2	$0.11546(17)$	$0.38691(10)$	$1.1132(2)$	$0.0175(4)$
H2A	0.0908	0.4329	1.0668	0.021^{*}
C3	$0.16965(17)$	$0.38546(10)$	$1.2647(2)$	$0.0161(4)$
C4	$0.21006(17)$	$0.31684(11)$	$1.3364(2)$	$0.0200(4)$

H4A	0.2474	0.3160	1.4380	0.024^{*}
C5	$0.1937(2)$	$0.25113(10)$	$1.2545(2)$	$0.0192(4)$
H5A	0.2218	0.2058	1.3015	0.023^{*}
C6	$0.13518(18)$	$0.25029(10)$	$1.1002(2)$	$0.0160(3)$
C7	$0.11768(17)$	$0.17979(10)$	$1.0251(2)$	$0.0172(4)$
H7A	0.1490	0.1369	1.0793	0.021^{*}
C8	$0.03852(17)$	$0.09645(10)$	$0.8211(2)$	$0.0181(4)$
C9	$0.08370(18)$	$0.02822(10)$	$0.8878(2)$	$0.0206(4)$
H9A	0.1404	0.0281	0.9790	0.025^{*}
C10	$0.04344(18)$	$-0.03919(11)$	$0.8171(2)$	$0.0232(4)$
H10A	0.0748	-0.0849	0.8598	0.028^{*}
O1W	$0.15531(13)$	$0.42836(7)$	$0.67062(15)$	$0.0240(3)$
H1W1	0.0971	0.3950	0.6774	0.036^{*}
H2W1	0.1630	0.4380	0.5829	0.036^{*}
H1O2	$0.170(2)$	$0.4836(15)$	$1.304(3)$	$0.047(9)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.01935(18)$	$0.01096(18)$	$0.01281(16)$	0.000	$-0.00102(12)$	0.000
O1	$0.0240(7)$	$0.0128(6)$	$0.0126(6)$	$0.0004(5)$	$-0.0033(5)$	$-0.0004(5)$
O2	$0.0320(8)$	$0.0146(7)$	$0.0156(6)$	$-0.0001(6)$	$-0.0007(6)$	$-0.0040(6)$
N1	$0.0177(7)$	$0.0109(7)$	$0.0161(7)$	$-0.0006(6)$	$0.0012(6)$	$-0.0003(6)$
C1	$0.0189(8)$	$0.0149(9)$	$0.0129(8)$	$0.0002(7)$	$0.0002(7)$	$0.0020(7)$
C2	$0.0201(9)$	$0.0156(9)$	$0.0148(8)$	$-0.0007(7)$	$-0.0012(7)$	$0.0009(7)$
C3	$0.0192(9)$	$0.0142(9)$	$0.0145(8)$	$-0.0009(7)$	$0.0020(7)$	$-0.0020(7)$
C4	$0.0260(10)$	$0.0209(10)$	$0.0111(8)$	$0.0015(8)$	$-0.0011(7)$	$0.0013(7)$
C5	$0.0256(10)$	$0.0168(9)$	$0.0139(8)$	$0.0010(7)$	$0.0006(7)$	$0.0047(7)$
C6	$0.0189(8)$	$0.0154(9)$	$0.0126(7)$	$-0.0004(7)$	$0.0004(6)$	$0.0010(7)$
C7	$0.0215(9)$	$0.0132(9)$	$0.0158(8)$	$0.0007(7)$	$0.0009(7)$	$0.0040(7)$
C8	$0.0192(9)$	$0.0151(9)$	$0.0188(9)$	$0.0006(7)$	$0.0011(7)$	$0.0016(7)$
C9	$0.0224(9)$	$0.0173(9)$	$0.0207(9)$	$0.0005(8)$	$0.0007(7)$	$0.0022(8)$
C10	$0.0293(11)$	$0.0153(9)$	$0.0252(10)$	$0.0014(8)$	$0.0055(8)$	$0.0039(8)$
O1W	$0.0312(8)$	$0.0175(7)$	$0.0232(7)$	$-0.0055(6)$	$0.0050(6)$	$0.0009(6)$

Geometric parameters ($A^{\prime},{ }^{\circ}$)

$\mathrm{Ni} 1-\mathrm{O} 1$	$1.8436(12)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.369(3)$
$\mathrm{Ni} 1-\mathrm{O} 1^{\mathrm{i}}$	$1.8436(12)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.8474(15)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.417(3)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$1.8474(15)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{O} 1-\mathrm{C} 1$	$1.324(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.414(2)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.359(2)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9300
$\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2$	$0.74(3)$	$\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	$1.392(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.317(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.394(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.422(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.382(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.399(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9300
$\mathrm{C} 1-\mathrm{C} 6$	$1.416(2)$	$\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}$	$1.387(4)$

C2-C3	1.383 (2)
C2-H2A	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	1.404 (3)
$\mathrm{Cg} 1 \cdots \mathrm{Cg} 4{ }^{\text {ii }}$	3.7364 (11)
$\mathrm{Cg} 2 \cdots \mathrm{Cg} 2{ }^{\text {ii }}$	3.7380 (9)
$\mathrm{Cg} 2 \cdots \mathrm{Cg} 3{ }^{\text {iii }}$	3.7381 (9)
$\mathrm{Cg} 3 \cdots \mathrm{Cg} 4{ }^{\text {iv }}$	3.5766 (10)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{Ol}^{\text {i }}$	82.53 (8)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\text {i }}$	174.29 (5)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1^{\text {i }}$	95.89 (7)
O1-Ni1-N1	95.89 (7)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	174.29 (6)
N1 ${ }^{\text {i}}$ - Ni 1 - N 1	86.21 (9)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ni} 1$	127.44 (11)
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2$	111 (2)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	121.12 (15)
C7-N1-Ni1	125.63 (13)
C8-N1-Ni1	113.24 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.13 (16)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	122.74 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	119.12 (17)
C3-C2-C1	120.89 (17)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.6
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	122.42 (17)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	117.00 (16)
C2-C3-C4	120.59 (17)
C5-C4-C3	119.06 (17)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{Cl}$	-176.47 (18)
N1- ${ }^{\text {i }}$ Ni1- $\mathrm{N} 1-\mathrm{C} 7$	-176.59 (19)
O1-Ni1-N1-C8	177.60 (12)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 8$	2.93 (9)
$\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	-176.01 (12)
Ni1-O1-C1-C6	3.6 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.49 (17)
C6-C1-C2-C3	-0.1 (3)
C1-C2-C3-O2	-178.73 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.4 (3)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	179.35 (17)
C2-C3-C4-C5	-0.8 (3)
C3-C4-C5-C6	-1.1 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	-1.2 (3)
C2-C1-C6-C7	178.37 (17)

C10-H10A	0.9300
O1W-H1W1	0.8771
O1W-H2W1	0.8309
$\mathrm{Cg} 4 \cdots \mathrm{Cg} 4^{\text {v }}$	3.7750 (11)
Ni1 \cdots O1W ${ }^{\text {i }}$	3.7635 (13)
O1..O1 $1^{\text {i }}$	2.4319 (18)
$\mathrm{N} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	2.525 (2)
C5-C4-H4A	120.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.5
C4-C5-C6	121.82 (17)
C4-C5-H5A	119.1
C6-C5-H5A	119.1
C7-C6-C1	123.15 (17)
C7-C6-C5	118.38 (16)
C1-C6-C5	118.47 (16)
N1-C7-C6	124.97 (17)
N1-C7-H7A	117.5
C6-C7-H7A	117.5
C8- $\mathbf{C}^{\text {- }}$ - C 9	119.92 (11)
C8i-C8-N1	113.20 (9)
C9-C8-N1	126.87 (17)
C10-C9-C8	119.37 (18)
C10-C9-H9A	120.3
C8-C9-H9A	120.3
C9-C10-C10	120.43 (11)
C9-C10-H10A	119.8
C10- $\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	119.8
H1W1-O1W-H2W1	114.3

$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5 \quad 178.70$ (17)
-1.7 (3)
-177.71 (18)
2.4 (3)
-175.09 (17)
4.4 (3)
-3.0 (3)
177.10 (18)
171.2 (2)
-8.3 (3)
-7.6(3)
172.86 (16)
-5.1 (3)
173.65 (18)
-1.6 (3)

Symmetry codes: (i) $-x, y,-z+3 / 2$; (ii) $-x+1 / 2,-y+1 / 2,-z+2$; (iii) $x+1 / 2,-y+1 / 2, z-1 / 2$; (iv) $x-1 / 2,-y+1 / 2, z-3 / 2$; (v) $-x, y,-z+5 / 2$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 1$	0.88	2.40	$3.0733(18)$	133
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	1.97	$2.8072(19)$	160
$\mathrm{O}^{\text {}} W — \mathrm{H} 2 W 1 \cdots \mathrm{O} 2^{\text {vi }}$	0.83	2.17	$2.9985(19)$	173
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots 2^{\text {vii }}$	0.93	2.60	$3.394(2)$	144

Symmetry codes: (i) $-x, y,-z+3 / 2$; (vi) $x, y, z-1$; (vii) $-x+1 / 2, y-1 / 2,-z+5 / 2$.

