

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(*µ*-biphenyl-2,2'-dicarboxylato)bis[(2,2'-bipyridine)copper(II)]

Hong-Xu Guo,* Min Liang, Bin Lin, Qing-Hua Wang and Xi-Zhong Li

Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China Correspondence e-mail: ghx919@yahoo.com.cn

Received 3 August 2008; accepted 11 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.118; data-to-parameter ratio = 16.0.

The title compound, $[Cu_2(C_{14}H_8O_4)_2(C_{10}H_8N_2)_2]$, is a centrosymmetric binuclear copper(II) complex, with a Cu···Cu separation of 6.136 (16) Å. The Cu atom displays a cis- CuN_2O_2 square-planar geometry, although two long (> 2.43 Å) $Cu \cdots O$ contacts complete a distorted *cis*-CuN₂O₄ octahedron. Extensive $C-H \cdots O$ hydrogen bonds link the molecules into a three-dimensional network.

Related literature

For related literature, see: Bu et al. (2004); He et al. (2007); Huang et al. (2004); Long et al. (2001); Ma et al. (2003); Rao et al. (2004); Yaghi et al. (2003); Yang et al. (2002); Zhang et al. (2004); Zhu et al. (2001); He & Zhu (2003).

Experimental

Crystal data

 $[Cu_2(C_{14}H_8O_4)_2(C_{10}H_8N_2)_2]$ $M_r = 1839.75$ Monoclinic, $P2_1/c$ a = 11.234 (2) Å b = 13.336 (3) Å c = 15.431 (6) Å $\beta = 122.16 \ (2)^{\circ}$

V = 1957.1 (9) Å³ Z = 2Mo Ka radiation $\mu = 1.15 \text{ mm}^{-1}$ T = 293 (2) K 0.40 \times 0.26 \times 0.23 mm $R_{\rm int} = 0.046$

18687 measured reflections

4472 independent reflections

3708 reflections with $I > 2\sigma(I)$

Data collection

```
Siemens SMART CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.708, T_{\max} = 0.771
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	280 parameters
$wR(F^2) = 0.118$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$
4472 reflections	$\Delta \rho_{\rm min} = -0.60 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.9640 (15)	Cu1-N1	1.9897 (19)
Cu1-O4 ⁱ	1.9725 (16)	Cu1-O2	2.434 (2)
Cu1-N2	1.9814 (19)	Cu1-O3 ⁱ	2.557 (2)
O1-Cu1-O4 ⁱ	93.92 (7)	O1-Cu1-N1	94.56 (7)
O1-Cu1-N2	162.77 (7)	O4 ⁱ -Cu1-N1	160.15 (7)
O4 ⁱ -Cu1-N2	95.38 (8)	N2-Cu1-N1	81.35 (8)

Symmetry code: (i) -x + 1, -y, -z.

Table 2			
Hydrogen-bond	geometry	(Å.	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1 - H1A \cdots O1$	0.93	2.58	3.081 (3)	114
$C4-H4A\cdots O4^{ii}$	0.93	2.59	3.378 (3)	143
$C5-H5A\cdots O4^{ii}$	0.93	2.51	3.304 (4)	144
C6−H6A···O3 ⁱⁱⁱ	0.93	2.25	3.162 (3)	166
$C16-H16A\cdots O2^{iv}$	0.93	2.48	3.192 (3)	133
C19−H19A···O4	0.93	2.45	2.761 (3)	100
Symmetry codes:	(ii) $-x + 1$,	$y - \frac{1}{2}, -z - \frac{1}{2};$	(iii) <i>x</i> , − <i>y</i> −	$\frac{1}{2}, z - \frac{1}{2};$ (iv)

 $-x+2, y+\frac{1}{2}, -z+\frac{1}{2}.$

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by a Project of Fujian Science and Technology Committee (grant No. 2006F5067), the Natural Science Foundation of Fujian Province (grant Nos. 2008J0172 and 2008J0237) and a Student Innovation Project of Zhangzhou Normal University (grant No. 08xscxxsyxm25).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2255).

References

- Bu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192-195
- He, H.-Y., Zhou, Y.-L. & Gao, J. (2007). Acta Cryst. E63, m2007.
- He, H.-Y. & Zhu, L.-G. (2003). Acta Cryst. E59, 0174-0176.
- Huang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. & Chen, X. M. (2004). Chem. Commun. pp. 1100-1101.
- Long, L. S., Chen, X. M., Tong, M. L., Sun, Z. G., Ren, Y. P., Huang, R. B. & Zheng, L. S. (2001). J. Chem. Soc. Dalton Trans. pp. 2888-2890.

Ma, B. Q., Sun, H. L. & Gao, S. (2003). Chem. Commun. pp. 2164-2165.

- Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1994). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). *Nature (London)*, **423**, 705–714.
- Yang, S. Y., Long, L. S., Jiang, Y. B., Huang, R. B. & Zheng, L. S. (2002). Chem. Mater. 14, 3229–3230.
- Zhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed. 43, 206–209.
- Zhu, H. L., Tong, Y. X. & Chen, X. M. (2001). Transition Met. Chem. 26, 528–531.

supporting information

Acta Cryst. (2008). E64, m1171-m1172 [doi:10.1107/S160053680802583X]

Bis(*µ*-biphenyl-2,2'-dicarboxylato)bis[(2,2'-bipyridine)copper(II)]

Hong-Xu Guo, Min Liang, Bin Lin, Qing-Hua Wang and Xi-Zhong Li

S1. Comment

Design and assembly of metal-involved supramolecular architectures are currently of great interest in the field of supramolecular chemistry and crystal engineering because they can provide novel topology and functional materials (Yaghi *et al.*,2003; Rao *et al.*,2004). During the past decades, extensive efforts have been focused on the design and assembly of such kinds of supramolecular architectures (Huang *et al.*,2004; Zhang *et al.*, 2004). By precisely selecting the modular building unit, chemists now have successfully synthesized a great variety of one-dimensional, two-dimensional, and three-dimensional supramolecular architectures (Bu *et al.*, 2004; Ma *et al.*, 2003; Yang *et al.*, 2002; Long *et al.*, 2001). Binuclear copper(II) complexes have been intensely investigated owing to their potential application as magnetic materials and catalysts (Zhu *et al.*, 2001).In this work, we employed H₂dpa (dpa = diphenyl-2,2'-dicarboxyl-ato dianion) and 2,2'-bipyridine(bipy) ligands for producing a binuclear complex, [Cu₂(Cl₄H₈O₄)₂(Cl₀H₈N₂)₂].

The compound contains a centrosymmetric binuclear complex. The copper(II) atom in the title compound adopts a distorted square geometry (Table 1, Fig. 1). The bipy ligand shows its classical bidentate coordination mode, with a similar Cu—N bond length to that the related complex $[Cu_2(C_{14}H_8O_4)_2(C_{10}H_8N_2)_2].4H_2O$ (He *et al.*, 2007). The dpa ligand adopts a μ -bridged coordination and the dihedral angle between its aromatic rings is 78.27°. As well as the short Cu—O bonds, two long Cu—O (Cu(1)—O(2): 2.434 (44) Å; Cu(1)—O(3):2.557 (31) Å) contacts that might be regarded as secondary bonds (He & Zhu, 2003) complete a distorted octahedron. The Cu—Cuⁱ (i = 1 - *x*, *-y*, *-z*) distance bridged by the dpa ligands is 6.136 (16) Å. Extensive C—H…O hydrogen bonds link molecules into a three-dimensional network. (Table 2, Fig.2).

S2. Experimental

A solution of $Cu(NO_3)_2.6H_2O(0.0705 \text{ g})$ in 5 ml of water was added dropwise under continuous stirring to an aqueous solution (5 ml) of diphenyl-2,2'-dicarboxylic acid (0.0734 g) and 2,2'-bipyridine (0.0312 g). The resulting mixture was then transferred into a 25 ml Teflon-lined stainless steel vessel, which was sealed and heated to 423 K for 72 h, then cooled to room temperature. The block blue single crystals were obtained.

S3. Refinement

The phenyl H atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

View of the structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms are shown as small spheres of arbitrary radius.

Figure 2

View of the 3D hydrogen-bonded network in the packing of the title compound. The packing is viewed along the b axis; C —H···O interactions are shown as dashed lines.

Bis(µ-biphenyl-2,2'-dicarboxylato)bis[(2,2'-bipyridine)copper(II)]

Crystal data

 $\begin{bmatrix} Cu_2(C_{14}H_8O_4)_2(C_{10}H_8N_2)_2 \end{bmatrix}$ $M_r = 1839.75$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.234 (2) Å b = 13.336 (3) Å c = 15.431 (6) Å $\beta = 122.16$ (2)° V = 1957.1 (9) Å³ Z = 2

Data collection

Siemens SMART CCD area-detector	18687 measured reflections
diffractometer	4472 independent reflections
Radiation source: fine-focus sealed tube	3708 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
ωscans	$\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$k = -17 \rightarrow 17$
$T_{\min} = 0.708, \ T_{\max} = 0.771$	$l = -18 \rightarrow 19$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.08P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 940

 $\theta = 3.1 - 27.4^{\circ}$ $\mu = 1.15 \text{ mm}^{-1}$

T = 293 K

Block, blue

 $D_{\rm x} = 1.561 {\rm Mg} {\rm m}^{-3}$

 $0.40 \times 0.26 \times 0.23 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 19150 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.63909 (3)	-0.160660 (19)	-0.059678 (18)	0.02914 (12)
01	0.70349 (16)	-0.04363 (11)	0.03157 (11)	0.0354 (4)
O2	0.8638 (2)	-0.16096 (12)	0.10287 (15)	0.0530 (5)
O3	0.62962 (19)	0.15631 (14)	0.16045 (14)	0.0480 (5)

04	0.47467 (16)	0.21452 (12)	0.00754 (11)	0.0374 (4)
N1	0.68794 (18)	-0.10223 (14)	-0.15551 (13)	0.0320 (4)
N2	0.63566 (18)	-0.28542 (14)	-0.13069 (14)	0.0331 (4)
C1	0.7186 (2)	-0.00573 (19)	-0.15928 (18)	0.0406 (5)
H1A	0.7227	0.0390	-0.1115	0.049*
C2	0.7441 (3)	0.0289 (2)	-0.2320(2)	0.0504 (7)
H2A	0.7664	0.0959	-0.2327	0.060*
C3	0.7361 (3)	-0.0368(2)	-0.3032(2)	0.0531 (7)
H3A	0.7514	-0.0145	-0.3536	0.064*
C4	0.7051 (3)	-0.1367 (2)	-0.29961 (19)	0.0462 (6)
H4A	0.7002	-0.1823	-0.3470	0.055*
C5	0.6486 (3)	-0.3529 (2)	-0.2682 (2)	0.0487 (7)
H5A	0.6566	-0.3429	-0.3246	0.058*
C6	0.6319 (3)	-0.4472 (2)	-0.2420 (3)	0.0585 (8)
H6A	0.6296	-0.5022	-0.2800	0.070*
C7	0.6184 (3)	-0.4608 (2)	-0.1591 (2)	0.0540 (7)
H7A	0.6097	-0.5248	-0.1392	0.065*
C8	0.6181 (3)	-0.37789 (19)	-0.1068 (2)	0.0444 (6)
H8A	0.6053	-0.3865	-0.0525	0.053*
C9	0.6815 (2)	-0.16746 (17)	-0.22479 (17)	0.0332 (5)
C10	0.6534 (2)	-0.27237 (17)	-0.20994 (17)	0.0337 (5)
C11	0.8922 (2)	0.08967 (16)	0.20040 (15)	0.0278 (4)
C12	0.8946 (2)	-0.01519 (16)	0.20175 (15)	0.0281 (4)
C13	0.9639 (2)	-0.06631 (17)	0.29523 (16)	0.0346 (5)
H13A	0.9681	-0.1360	0.2959	0.042*
C14	1.0260 (2)	-0.0142 (2)	0.38647 (16)	0.0405 (5)
H14A	1.0703	-0.0486	0.4484	0.049*
C15	1.0221 (2)	0.0895 (2)	0.38529 (17)	0.0419 (6)
H15A	1.0636	0.1249	0.4466	0.050*
C16	0.9568 (2)	0.14064 (17)	0.29350 (18)	0.0365 (5)
H16A	0.9559	0.2104	0.2937	0.044*
C17	0.8383 (2)	0.14901 (14)	0.10351 (17)	0.0282 (4)
C18	0.7102 (2)	0.19898 (15)	0.04996 (16)	0.0292 (4)
C19	0.6773 (2)	0.25507 (18)	-0.03716 (18)	0.0369 (5)
H19A	0.5920	0.2890	-0.0727	0.044*
C20	0.7682 (3)	0.26123 (18)	-0.07140 (19)	0.0412 (5)
H20A	0.7446	0.2991	-0.1290	0.049*
C21	0.8951 (2)	0.21017 (18)	-0.01881 (19)	0.0400 (5)
H21A	0.9573	0.2131	-0.0412	0.048*
C22	0.9287 (3)	0.15476 (17)	0.06719 (19)	0.0366 (5)
H22A	1.0137	0.1204	0.1018	0.044*
C23	0.8187 (2)	-0.07766 (15)	0.10614 (16)	0.0300 (4)
C24	0.5999 (2)	0.18908 (16)	0.07706 (17)	0.0309 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cu1	0.03431 (18)	0.02951 (18)	0.02666 (17)	-0.00125 (10)	0.01828 (13)	-0.00287 (9)

01	0.0386 (8)	0.0330 (8)	0.0287 (8)	0.0015 (7)	0.0138 (7)	-0.0053 (6)
O2	0.0586 (12)	0.0359 (10)	0.0433 (10)	0.0155 (8)	0.0128 (9)	-0.0077 (7)
03	0.0446 (10)	0.0630 (12)	0.0467 (11)	0.0160 (8)	0.0313 (9)	0.0260 (8)
O4	0.0328 (8)	0.0494 (10)	0.0328 (8)	0.0021 (7)	0.0193 (7)	0.0047 (7)
N1	0.0321 (9)	0.0371 (10)	0.0286 (9)	-0.0026 (8)	0.0174 (8)	-0.0026 (8)
N2	0.0323 (9)	0.0339 (10)	0.0325 (9)	0.0008 (8)	0.0168 (8)	-0.0031 (8)
C1	0.0441 (13)	0.0396 (13)	0.0410 (13)	-0.0049 (11)	0.0247 (11)	0.0004 (10)
C2	0.0523 (15)	0.0506 (16)	0.0521 (16)	-0.0115 (13)	0.0304 (13)	0.0044 (12)
C3	0.0485 (15)	0.075 (2)	0.0423 (14)	-0.0104 (14)	0.0288 (12)	0.0046 (13)
C4	0.0412 (13)	0.0684 (17)	0.0339 (12)	-0.0086 (12)	0.0233 (11)	-0.0095 (12)
C5	0.0477 (15)	0.0549 (17)	0.0515 (16)	-0.0021 (12)	0.0317 (13)	-0.0170 (12)
C6	0.0578 (17)	0.0476 (16)	0.074 (2)	-0.0064 (13)	0.0380 (16)	-0.0293 (15)
C7	0.0522 (16)	0.0322 (13)	0.076 (2)	-0.0053 (12)	0.0327 (15)	-0.0113 (12)
C8	0.0475 (14)	0.0354 (13)	0.0500 (15)	-0.0028 (11)	0.0259 (12)	-0.0028 (11)
C9	0.0253 (10)	0.0467 (13)	0.0273 (11)	-0.0003 (9)	0.0138 (9)	-0.0040 (9)
C10	0.0268 (10)	0.0414 (13)	0.0313 (11)	-0.0001 (9)	0.0144 (9)	-0.0076 (9)
C11	0.0261 (9)	0.0282 (10)	0.0298 (10)	0.0002 (8)	0.0154 (8)	-0.0003 (8)
C12	0.0282 (10)	0.0304 (11)	0.0269 (10)	0.0008 (8)	0.0154 (8)	0.0001 (8)
C13	0.0383 (12)	0.0330 (11)	0.0337 (11)	0.0039 (9)	0.0199 (10)	0.0056 (9)
C14	0.0416 (13)	0.0515 (14)	0.0261 (11)	0.0053 (11)	0.0166 (10)	0.0062 (10)
C15	0.0418 (12)	0.0521 (15)	0.0258 (11)	0.0020 (11)	0.0139 (10)	-0.0096 (10)
C16	0.0386 (12)	0.0322 (11)	0.0365 (12)	0.0003 (9)	0.0184 (10)	-0.0055 (9)
C17	0.0328 (11)	0.0243 (10)	0.0302 (11)	-0.0037 (8)	0.0186 (9)	-0.0015 (8)
C18	0.0345 (11)	0.0242 (10)	0.0320 (11)	-0.0024 (9)	0.0198 (9)	0.0004 (8)
C19	0.0403 (12)	0.0332 (12)	0.0382 (12)	0.0040 (10)	0.0215 (10)	0.0099 (10)
C20	0.0530 (14)	0.0362 (12)	0.0422 (13)	-0.0049 (11)	0.0305 (11)	0.0083 (10)
C21	0.0462 (13)	0.0398 (13)	0.0487 (14)	-0.0066 (11)	0.0352 (12)	0.0014 (11)
C22	0.0339 (12)	0.0389 (13)	0.0394 (13)	-0.0010 (9)	0.0211 (10)	0.0007 (9)
C23	0.0357 (11)	0.0280 (11)	0.0294 (10)	-0.0010 (9)	0.0194 (9)	-0.0010 (8)
C24	0.0346 (11)	0.0257 (10)	0.0360 (11)	0.0013 (9)	0.0211 (9)	0.0030 (9)

Geometric parameters (Å, °)

Cu1—O1	1.9640 (15)	С6—Н6А	0.9300
Cu1—O4 ⁱ	1.9725 (16)	С7—С8	1.370 (4)
Cu1—N2	1.9814 (19)	С7—Н7А	0.9300
Cu1—N1	1.9897 (19)	C8—H8A	0.9300
Cu1—O2	2.434 (2)	C9—C10	1.479 (3)
Cu1—C23	2.519 (2)	C11—C16	1.394 (3)
Cu1—O3 ⁱ	2.557 (2)	C11—C12	1.399 (3)
Cu1—C24 ⁱ	2.580 (2)	C11—C17	1.505 (3)
O1—C23	1.273 (2)	C12—C13	1.399 (3)
O2—C23	1.233 (3)	C12—C23	1.503 (3)
O3—C24	1.225 (3)	C13—C14	1.381 (3)
O3—Cu1 ⁱ	2.5567 (19)	C13—H13A	0.9300
O4—C24	1.280 (3)	C14—C15	1.383 (4)
O4—Cu1 ⁱ	1.9725 (16)	C14—H14A	0.9300
N1—C1	1.342 (3)	C15—C16	1.380 (3)

N1—C9	1.350 (3)	C15—H15A	0.9300
N2—C8	1.331 (3)	C16—H16A	0.9300
N2—C10	1.351 (3)	C17—C18	1.390 (3)
C1—C2	1.377 (3)	C17—C22	1.399 (3)
C1—H1A	0.9300	C18—C19	1.405 (3)
C2—C3	1.372 (4)	C18—C24	1.509 (3)
C2—H2A	0.9300	C19—C20	1.379 (3)
C3—C4	1.385 (4)	С19—Н19А	0.9300
C3—H3A	0.9300	C20—C21	1.387 (3)
C4—C9	1.377 (3)	C20—H20A	0.9300
C4—H4A	0.9300	C21—C22	1.384 (3)
C5-C6	1 365 (4)	C21—H21A	0.9300
C_{5} C_{10}	1.383(3)	C22—H22A	0.9300
C5—H5A	0.9300	$C24$ — $Cu1^i$	2,580 (2)
C6-C7	1 378 (5)	021 041	2.000 (2)
	1.570 (5)		
O1—Cu1—O4 ⁱ	93.92 (7)	С6—С7—Н7А	120.8
O1—Cu1—N2	162.77 (7)	N2—C8—C7	122.5 (3)
O4 ⁱ —Cu1—N2	95.38 (8)	N2—C8—H8A	118.8
01—Cu1—N1	94.56 (7)	С7—С8—Н8А	118.8
O4 ⁱ —Cu1—N1	160.15 (7)	N1—C9—C4	121.3 (2)
N2—Cu1—N1	81.35 (8)	N1—C9—C10	114.4 (2)
01—Cu1—O2	58.55 (6)	C4-C9-C10	124.3 (2)
$O4^{i}$ —Cu1—O2	96.94 (8)	N2-C10-C5	121.0(2)
N2—Cu1—O2	105.83 (7)	$N_2 - C_{10} - C_{9}$	114.12 (19)
N1—Cu1—O2	102.80 (8)	C5-C10-C9	124.9(2)
01-Cu1-C23	29.83 (6)	C16-C11-C12	11849(19)
$O4^{i}$ - Cu1 - C23	25.05 (0) 95.07 (7)	C16-C11-C17	118 75 (19)
N2-Cu1-C23	134 42 (7)	C12-C11-C17	122.34 (18)
N1-Cu1-C23	101.12(7)	C11-C12-C13	119.90(19)
Ω_{2}^{2} Ω_{2	28 76 (6)	C11-C12-C23	122 91 (18)
$01 - Cu1 - O3^{i}$	10645(7)	C13 - C12 - C23	117 11 (19)
04^{i} Cu1 03^{i}	56 28 (6)	C14 - C13 - C12	1205(2)
N_{2} C_{11} C_{23}	90.78 (7)	C14 - C13 - H13A	119.7
$N1$ — $Cu1$ — $O3^{i}$	$104\ 04\ (7)$	C12 - C13 - H13A	119.7
$\Omega^2 - Cu1 - \Omega^{3^i}$	150.22(7)	C13 - C14 - C15	119.7 119.7(2)
C^{23} C^{11} C^{3i}	130.22(7) 130.98(7)	C13— $C14$ — $H14A$	120.2
$01-Cu1-C24^{i}$	99.04 (7)	C15 - C14 - H14A	120.2
$O4^{i}$ $Cu1$ $C24^{i}$	28.92 (6)	C16-C15-C14	120.2 120.2(2)
N_{2} Cu_{1} $C_{24^{i}}$	26.92 (0) 96.11 (7)	C16— $C15$ — $H15A$	119.9
$N1$ — $Cu1$ — $C24^i$	131 58 (7)	C14— $C15$ — $H15A$	119.9
$\Omega^2 - Cu^2 - Cu^2 - Cu^2$	123.91 (8)	C15-C16-C11	121.2(2)
C_{23} C_{11} $C_{24^{i}}$	123.91(0) 113.37(7)	C15— $C16$ — $H16A$	119.4
$O3^{i}$ —Cu1—C24 ⁱ	27.59 (6)	C11—C16—H16A	119.4
C23—O1—Cu1	100.02 (13)	C18-C17-C22	118.57 (19)
C_{23} O_{2} C_{u1}	79.48 (13)	C18-C17-C11	125.76 (19)
$C24 - O3 - Cu1^{i}$	77.28 (13)	C22-C17-C11	115.66 (19)
C24—O4—Cu1 ⁱ	102.92 (13)	C17—C18—C19	119.05 (19)
	\ - /		

C1—N1—C9	119.4 (2)	C17—C18—C24	122.42 (19)
C1—N1—Cu1	125.93 (16)	C19—C18—C24	118.37 (19)
C9—N1—Cu1	114.61 (15)	C20—C19—C18	121.8 (2)
C8—N2—C10	119.0 (2)	С20—С19—Н19А	119.1
C8—N2—Cu1	125.93 (17)	C18—C19—H19A	119.1
C10—N2—Cu1	115.06 (15)	C19—C20—C21	119.1 (2)
N1—C1—C2	121.8 (2)	C19—C20—H20A	120.4
N1—C1—H1A	119.1	C21—C20—H20A	120.4
C2—C1—H1A	119.1	C22—C21—C20	119.6 (2)
C3—C2—C1	119.0 (3)	C22—C21—H21A	120.2
C3—C2—H2A	120.5	C20—C21—H21A	120.2
C1—C2—H2A	120.5	C21—C22—C17	121.9 (2)
C2—C3—C4	119.5 (2)	C21—C22—H22A	119.1
С2—С3—НЗА	120.2	C17—C22—H22A	119.1
С4—С3—НЗА	120.2	O2—C23—O1	121.8 (2)
C9—C4—C3	119.0 (2)	O2—C23—C12	120.6 (2)
C9—C4—H4A	120.5	O1—C23—C12	117.53 (18)
C3—C4—H4A	120.5	O2—C23—Cu1	71.76 (13)
C6—C5—C10	119.1 (3)	O1—C23—Cu1	50.14 (10)
С6—С5—Н5А	120.4	C12—C23—Cu1	165.85 (15)
С10—С5—Н5А	120.4	O3—C24—O4	122.5 (2)
C5—C6—C7	119.8 (2)	O3—C24—C18	121.2 (2)
С5—С6—Н6А	120.1	O4—C24—C18	116.28 (18)
С7—С6—Н6А	120.1	O3—C24—Cu1 ⁱ	75.13 (13)
C8—C7—C6	118.5 (3)	$O4$ — $C24$ — $Cu1^i$	48.16 (10)
С8—С7—Н7А	120.8	$C18$ — $C24$ — $Cu1^i$	161.10 (15)

Symmetry code: (i) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
C1—H1A…O1	0.93	2.58	3.081 (3)	114	
C4—H4A····O4 ⁱⁱ	0.93	2.59	3.378 (3)	143	
C5—H5A····O4 ⁱⁱ	0.93	2.51	3.304 (4)	144	
C6—H6A···O3 ⁱⁱⁱ	0.93	2.25	3.162 (3)	166	
C16—H16A····O2 ^{iv}	0.93	2.48	3.192 (3)	133	
С19—Н19А…О4	0.93	2.45	2.761 (3)	100	

Symmetry codes: (ii) -*x*+1, *y*-1/2, -*z*-1/2; (iii) *x*, -*y*-1/2, *z*-1/2; (iv) -*x*+2, *y*+1/2, -*z*+1/2.