Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[diaguacopper(II)]-bis[*µ*-1,1'-(butane-1,4-diyl)diimidazole- $\kappa^2 N^3 : N^{3'}$ 11 dinitrate

Xiao-Feng Wang, Jin-Feng Wang and Xiao-Yang Liu*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China Correspondence e-mail: wangxf103@mail.jlu.edu.cn

Received 22 July 2008; accepted 25 August 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.039; wR factor = 0.114; data-toparameter ratio = 16.1.

In the title compound, $\{[Cu(C_{10}H_{14}N_4)_2(H_2O)_2](NO_3)_2\}_n$, the Cu^{II} ion lies on an inversion center and is six-coordinated in an octahedral environment by four N atoms from four different 1,1'-butane-1,4-diyldiimidazole ligands and two O atoms from the two water molecules. Bridging by the ligands results in a ribbon structure. Adjacent ribbons are linked to the nitrate anions via O-H···O hydrogen bonds, forming layers. One nitrate O atom is disordered equally over two positions.

Related literature

For background and the synthesis of 1,1'-butane-1,4-diyldiimidazole, see: Ma et al. (2003). For the crystal structure of a metal adduct, see: Che et al. (2006).

Experimental

Crystal data

[Cu(C10H14N4)2(H2O)2](NO3)2 $M_r = 604.10$ Monoclinic, C2/c a = 22.161 (11) Åb = 10.334 (4) Å c = 14.366 (7) Å $\beta = 126.375 (18)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.673, \ \bar{T}_{\max} = 0.808$

Refinement

D-

O1

O5

$R[F^2 > 2\sigma(F^2)] = 0.039$	188 parameters
$wR(F^2) = 0.113$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$
3023 reflections	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$-H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} -H11 \cdots O4^{i} \\ -H12 \cdots O3^{ii} \end{array}$	0.85	1.96	2.801 (4)	170
	0.85	2.10	2.888 (8)	153

 $V = 2649 (2) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.89 \text{ mm}^{-3}$

 $0.48 \times 0.36 \times 0.25 \text{ mm}$

12704 measured reflections

3023 independent reflections

2753 reflections with $I > 2\sigma(I)$

T = 291 (2) K

 $R_{\rm int} = 0.024$

Z = 4

Symmetry codes: (i) -x + 1, y + 1, $-z + \frac{3}{2}$; (ii) -x + 1, y, $-z + \frac{3}{2}$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank Jilin University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2477).

References

Che, G.-B., Liu, H., Liu, C.-B. & Liu, B. (2006). Acta Cryst. E62, m286-m288. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1220 [doi:10.1107/S1600536808027281]

catena-Poly[[[diaquacopper(II)]-bis[μ -1,1'-(butane-1,4-diyl)diimidazole- $\kappa^2 N^3$: N^3']] dinitrate]

Xiao-Feng Wang, Jin-Feng Wang and Xiao-Yang Liu

S1. Comment

The 1,1'-butane-1,4-diyldiimidazole can be used as a flexible ligand to construct coordination polymeric compounds (Ma *et al.*, 2003; Che *et al.*, 2006). In this paper, we report the new title compound, (I), synthesized by the reaction of 1,1'-butane-1,4-diyldiimidazole ligands and copper dinitrate in methanol.

The Cu^{II} atom is located on an inversion centre and is hexacoordinated by four N atoms of four different 1,1'butane-1,4-diyldiimidazole ligands and two O atoms of two water molecules (Fig. 1). Adjacent Cu(II) ions are linked by pairs of 1,1'-butane-1,4- diyldiimidazole molecules, resulting in a ribbon motif (Fig. 2).

In the crystal structure, uncoordinated nitrate anions link these ribbons into a layer structure *via* O—H···O hydrogen bonds (Table 1, Figure 3).

S2. Experimental

1,1'-Butane-1,4-diyldiimidazole was prepared from imidazole and 1,4-dibromobutane in DMSO (Ma *et al.*, 2003). 1,1'-(1,4-Butanediyl)diimidazole (0.380 g, 2 mmol) and copper dinitrate (0.188 g, 2 mmol) were dissolved in hot methanol solution (15 ml) to give a clear solution was obtained. The resulting solution was allowed to stand in a desiccator at room temperature for several days. Blue crystals of (I) were obtained.

S3. Refinement

The O3 atom of the nitrate is refined with a split model over two positions, with occupancy of 0.5 for O3 and O3'. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (Caromatic); C—H = 0.97 Å (methylene) and with $U_{iso}(H) = 1.2U_{eq}(C)$. Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the hydrogen-bonding interactions [Symmetry code: (I) -x + 1, y, -z + 3/2; (II) -x + 1/2, -y + 3/2, -z - 1;(III) x + 1/2, -y + 3/2, z + 1/2].

Figure 2

A partial packing view, showing the ribbon chain structure.

Figure 3

A partial packing view, showing the two-dimensional network. Dashed lines indicate the hydrogen-bonding interactions and H atoms have been omitted.

catena-Poly[[[diaquacopper(II)]-bis[μ -1,1'-(butane-1,4- diyl)diimidazole- $\kappa^2 N^3$: N^3 ']] dinitrate]

Crystal data

 $[Cu(C_{10}H_{14}N_4)_2(H_2O)_2](NO_3)_2$ $M_r = 604.10$ Monoclinic, C2/c Hall symbol: -C 2yc a = 22.161 (11) Å b = 10.334 (4) Å c = 14.366 (7) Å $\beta = 126.375$ (18)° V = 2649 (2) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.673, T_{\max} = 0.808$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.113$ S = 1.073023 reflections 188 parameters 0 restraints F(000) = 1260 $D_x = 1.515 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11099 reflections $\theta = 3.3-27.5^{\circ}$ $\mu = 0.89 \text{ mm}^{-1}$ T = 291 KBlock, blue $0.48 \times 0.36 \times 0.25 \text{ mm}$

12704 measured reflections 3023 independent reflections 2753 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.3^{\circ}$ $h = -28 \rightarrow 28$ $k = -13 \rightarrow 12$ $l = -18 \rightarrow 18$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0644P)^{2} + 3.5066P] \qquad \Delta \rho_{max} = 0.82 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.43494 (12)	0.5667 (2)	0.87357 (19)	0.0360 (4)	
H1	0.4387	0.4802	0.8600	0.043*	
C2	0.40800 (13)	0.6108 (2)	0.9310(2)	0.0395 (5)	
H2	0.3901	0.5611	0.9638	0.047*	
C3	0.44106 (11)	0.7749 (2)	0.87476 (18)	0.0321 (4)	
H3	0.4495	0.8593	0.8627	0.038*	
C4	0.38590 (14)	0.8327 (3)	0.9787 (2)	0.0460 (6)	
H4A	0.4039	0.9190	0.9807	0.055*	
H4B	0.4069	0.8078	1.0576	0.055*	
C5	0.30100 (14)	0.8355 (3)	0.9086 (2)	0.0514 (7)	
H5A	0.2872	0.8926	0.9467	0.062*	
H5B	0.2836	0.7493	0.9084	0.062*	
C6	0.26042 (14)	0.8803 (3)	0.7830(2)	0.0473 (6)	
H6A	0.2128	0.9186	0.7569	0.057*	
H6B	0.2902	0.9470	0.7804	0.057*	
C7	0.24623 (12)	0.7730 (2)	0.70083 (18)	0.0394 (5)	
H7A	0.2938	0.7405	0.7214	0.047*	
H7B	0.2205	0.7023	0.7082	0.047*	
C8	0.22282 (12)	0.9038 (3)	0.5330(2)	0.0427 (5)	
H8	0.2696	0.9427	0.5699	0.051*	
С9	0.16308 (12)	0.9201 (3)	0.42203 (19)	0.0402 (5)	
H9	0.1619	0.9731	0.3687	0.048*	
C10	0.12939 (11)	0.7874 (2)	0.49805 (18)	0.0325 (4)	
H10	0.1010	0.7315	0.5086	0.039*	
Cu1	0.5000	0.66433 (3)	0.7500	0.02769 (13)	
N1	0.45588 (9)	0.67011 (16)	0.83845 (14)	0.0293 (4)	
N2	0.41221 (9)	0.74259 (19)	0.93120 (14)	0.0328 (4)	
N3	0.20075 (10)	0.81828 (18)	0.58036 (16)	0.0342 (4)	
N4	0.10424 (9)	0.84658 (17)	0.39970 (15)	0.0317 (4)	
N5	0.59796 (14)	0.1501 (2)	0.7259 (3)	0.0516 (6)	
01	0.5000	0.9027 (3)	0.7500	0.0740 (10)	
H11	0.4628	0.9523	0.7254	0.111*	

supporting information

O2	0.5825 (2)	0.0978 (4)	0.6366 (3)	0.1229 (13)	
O3	0.5894 (5)	0.2662 (7)	0.7011 (8)	0.089 (2)	0.50
O4	0.61485 (19)	0.0723 (3)	0.8025 (3)	0.0997 (10)	
O5	0.5000	0.4120 (3)	0.7500	0.0640 (8)	
H12	0.4690	0.3573	0.7433	0.082 (13)*	
O3′	0.6140 (5)	0.2592 (7)	0.7753 (9)	0.099 (3)	0.50

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0384 (11)	0.0388 (11)	0.0349 (10)	0.0060 (9)	0.0239 (9)	0.0065 (9)
C2	0.0400 (11)	0.0502 (13)	0.0353 (11)	0.0056 (10)	0.0263 (10)	0.0109 (10)
C3	0.0270 (9)	0.0405 (11)	0.0284 (9)	-0.0014 (8)	0.0162 (8)	-0.0031 (8)
C4	0.0390 (12)	0.0706 (17)	0.0274 (11)	0.0129 (11)	0.0191 (10)	-0.0063 (10)
C5	0.0388 (12)	0.089 (2)	0.0311 (12)	0.0203 (12)	0.0233 (11)	0.0022 (11)
C6	0.0419 (12)	0.0596 (14)	0.0324 (11)	0.0185 (11)	0.0178 (10)	0.0020 (11)
C7	0.0314 (10)	0.0485 (13)	0.0256 (10)	0.0068 (9)	0.0099 (9)	0.0054 (9)
C8	0.0284 (10)	0.0633 (15)	0.0339 (11)	-0.0104 (10)	0.0170 (9)	-0.0013 (10)
C9	0.0313 (10)	0.0588 (14)	0.0309 (10)	-0.0083 (10)	0.0187 (9)	0.0017 (10)
C10	0.0263 (9)	0.0397 (10)	0.0281 (10)	-0.0016 (8)	0.0144 (8)	0.0021 (8)
Cu1	0.02036 (18)	0.0421 (2)	0.02152 (19)	0.000	0.01289 (15)	0.000
N1	0.0239 (8)	0.0408 (9)	0.0241 (8)	0.0015 (6)	0.0147 (7)	-0.0004 (6)
N2	0.0254 (8)	0.0509 (10)	0.0216 (8)	0.0055 (7)	0.0135 (7)	-0.0009(7)
N3	0.0252 (8)	0.0453 (10)	0.0258 (9)	0.0011 (7)	0.0116 (7)	0.0020 (7)
N4	0.0249 (8)	0.0436 (9)	0.0260 (8)	-0.0019 (7)	0.0147 (7)	0.0002 (7)
N5	0.0477 (12)	0.0460 (12)	0.0739 (17)	0.0010 (9)	0.0430 (13)	0.0065 (11)
01	0.098 (2)	0.0383 (14)	0.134 (3)	0.000	0.095 (3)	0.000
O2	0.162 (3)	0.137 (3)	0.090 (2)	-0.032 (3)	0.086 (3)	-0.006 (2)
O3	0.112 (6)	0.045 (3)	0.150 (7)	0.023 (4)	0.098 (6)	0.024 (5)
O4	0.109 (2)	0.108 (2)	0.0686 (16)	-0.0290 (19)	0.0449 (16)	0.0012 (16)
O5	0.086 (2)	0.0417 (14)	0.097 (2)	0.000	0.072 (2)	0.000
O3′	0.085 (5)	0.043 (3)	0.158 (8)	0.002 (3)	0.066 (6)	0.001 (5)

Geometric parameters (Å, °)

C1—C2	1.352 (3)	C8—C9	1.349 (3)
C1—N1	1.374 (3)	C8—N3	1.370 (3)
C1—H1	0.9300	C8—H8	0.9300
C2—N2	1.365 (3)	C9—N4	1.372 (3)
С2—Н2	0.9300	С9—Н9	0.9300
C3—N1	1.325 (3)	C10—N4	1.322 (3)
C3—N2	1.339 (3)	C10—N3	1.335 (3)
С3—Н3	0.9300	C10—H10	0.9300
C4—N2	1.465 (3)	Cu1—N1	2.0120 (18)
C4—C5	1.519 (4)	Cu1—N1 ⁱ	2.0120 (18)
C4—H4A	0.9700	Cu1—N4 ⁱⁱ	2.020 (2)
C4—H4B	0.9700	Cu1—N4 ⁱⁱⁱ	2.020 (2)
C5—C6	1.535 (3)	Cu1—O1	2.463 (3)

С5—Н5А	0.9700	Cul—O5	2.608 (3)
C5—H5B	0.9700	N4—Cu1 ⁱⁱ	2.0203 (19)
C6—C7	1.510 (3)	N5—O4	1.228 (4)
С6—Н6А	0.9700	N5—O3	1.234 (7)
С6—Н6В	0.9700	N5—O2	1.239 (4)
C7—N3	1.470 (3)	O1—H11	0.8500
С7—Н7А	0.9700	O5—H12	0.8500
С7—Н7В	0.9700		
C2—C1—N1	109.2 (2)	С8—С9—Н9	125.1
C2—C1—H1	125.4	N4—C9—H9	125.1
N1-C1-H1	125.4	N4—C10—N3	111.30 (19)
C1—C2—N2	106.46 (19)	N4—C10—H10	124.3
C1—C2—H2	126.8	N3-C10-H10	124.3
N2-C2-H2	126.8	N1—Cu1—N1 ⁱ	176.60 (10)
N1-C3-N2	110.72 (19)	N1—Cu1—N4 ⁱⁱ	89.82 (8)
N1-C3-H3	124.6	$N1^{i}$ —Cu1—N4 ⁱⁱ	90.37 (8)
N2-C3-H3	124.6	N1—Cu1—N4 ⁱⁱⁱ	90.37 (8)
N2-C4-C5	112.4 (2)	$N1^{i}$ —Cu1—N4 ⁱⁱⁱ	89.82 (8)
N2—C4—H4A	109.1	$N4^{ii}$ —Cu1—N4 ⁱⁱⁱ	173.60 (10)
C5—C4—H4A	109.1	N1—Cu1—O1	88.30 (5)
N2—C4—H4B	109.1	N1 ⁱ —Cu1—O1	88.30 (5)
C5—C4—H4B	109.1	N4 ⁱⁱ —Cu1—O1	93.20 (5)
H4A—C4—H4B	107.8	N4 ⁱⁱⁱ —Cu1—O1	93.20 (5)
C4—C5—C6	114.7 (2)	N1—Cu1—O5	91.70 (5)
С4—С5—Н5А	108.6	N1 ⁱ —Cu1—O5	91.70 (5)
С6—С5—Н5А	108.6	N4 ⁱⁱ —Cu1—O5	86.80 (5)
C4—C5—H5B	108.6	N4 ⁱⁱⁱ —Cu1—O5	86.80 (5)
С6—С5—Н5В	108.6	O1—Cu1—O5	180.000(1)
H5A—C5—H5B	107.6	C3—N1—C1	105.91 (18)
C7—C6—C5	113.8 (2)	C3—N1—Cu1	126.85 (14)
С7—С6—Н6А	108.8	C1—N1—Cu1	127.24 (14)
С5—С6—Н6А	108.8	C3—N2—C2	107.66 (18)
С7—С6—Н6В	108.8	C3—N2—C4	126.1 (2)
С5—С6—Н6В	108.8	C2—N2—C4	126.2 (2)
H6A—C6—H6B	107.7	C10—N3—C8	107.36 (18)
N3—C7—C6	111.5 (2)	C10—N3—C7	126.27 (19)
N3—C7—H7A	109.3	C8—N3—C7	126.33 (19)
С6—С7—Н7А	109.3	C10—N4—C9	105.44 (18)
N3—C7—H7B	109.3	C10—N4—Cu1 ⁱⁱ	127.10 (15)
С6—С7—Н7В	109.3	C9—N4—Cu1 ⁱⁱ	127.43 (15)
H7A—C7—H7B	108.0	O4—N5—O3	144.0 (5)
C9—C8—N3	106.16 (19)	O4—N5—O2	113.1 (3)
С9—С8—Н8	126.9	O3—N5—O2	103.0 (5)
N3—C8—H8	126.9	Cu1—O1—H11	127.1
C8—C9—N4	109.7 (2)	Cu1—O5—H12	131.6

Symmetry codes: (i) -x+1, y, -z+3/2; (ii) -x+1/2, -y+3/2, -z+1; (iii) x+1/2, -y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H11…O4 ^{iv}	0.85	1.96	2.801 (4)	170
O5—H12…O3 ⁱ	0.85	2.10	2.888 (8)	153

Symmetry codes: (i) -x+1, y, -z+3/2; (iv) -x+1, y+1, -z+3/2.