

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(1,3,4,6,7,8-hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidin-9-ido- $\kappa^2 N^1, N^9$)niobium(V) hexafluorido-phosphate

F. Albert Cotton,^a Carlos A. Murillo,^a* Pavel V. Poplaukhin,^a Nattamai Bhuvanesh^b and Edward R. T. Tiekink^c

^aLaboratory for Molecular Structure and Bonding, Department of Chemistry, Texas A&M University, PO Box 30012 College Station, Texas 77842-3012, USA, ^bX-ray Diffraction Laboratory, Department of Chemistry, Texas A & M University, PO Box 30012 College Station, Texas 77842-3012, USA, and ^cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA

Correspondence e-mail: murillo@tamu.edu

Received 11 August 2008; accepted 18 August 2008

Key indicators: single-crystal X-ray study; T = 213 K; mean σ (C–C) = 0.008 Å; R factor = 0.050; wR factor = 0.145; data-to-parameter ratio = 14.9.

The title complex, $[Nb(C_7H_{12}N_3)_4]PF_6$, features chelating hpp anions (hpp is 1,3,4,6,7,8-hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidine) that define a distorted dodecahedral coordination geometry based on an N₈ donor set. The Nb atom is situated on a site of symmetry $\overline{4}$, and the PF_6^- anion has crystallographic fourfold symmetry.

Related literature

For background literature, see: Cotton *et al.* (1998, 2005). For related structures, see: Cotton *et al.* (2000); Coles & Hitchcock (2001).

Z = 2

Experimental

Crystal data

[Nb(C ₇ H ₁₂ N ₃) ₄]PF ₆	
$M_r = 790.66$	
Tetragonal, P4/n	
$a = 13.531 (6) \text{\AA}$	
c = 9.159 (4) Å	
$V = 1676.9 (13) \text{ Å}^3$	

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{min} = 0.910, T_{max} = 0.953$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.144$ S = 1.051655 reflections Mo $K\alpha$ radiation $\mu = 0.48 \text{ mm}^{-1}$ T = 213 (2) K $0.20 \times 0.15 \times 0.10 \text{ mm}$

10356 measured reflections 1655 independent reflections 1381 reflections with $I > 2\sigma(I)$

 $\begin{array}{l} 111 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} = 0.69 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{\text{min}} = -0.39 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the Robert A. Welch Foundation and Texas A&M University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2067).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Coles, M. P. & Hitchcock, P. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1169-1171.
- Cotton, F. A., Matonic, J. H. & Murillo, C. A. (1998). J. Am. Chem. Soc. 120, 6047–6052.
- Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). *Multiple Bonds between Metal Atoms*, 3rd ed. New York: Springer Science and Business Media.
- Cotton, F. A., Murillo, C. A. & Wang, X. (2000). *Inorg. Chim. Acta*, **300**, 1–6. Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1197 [doi:10.1107/S1600536808026627]

Tetrakis(1,3,4,6,7,8-hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidin-9-ido- $\kappa^2 N^1$, N^9)niobium(V) hexafluoridophosphate

F. Albert Cotton, Carlos A. Murillo, Pavel V. Poplaukhin, Nattamai Bhuvanesh and Edward R. T. Tiekink

S1. Comment

The title complex, $[Nb(hpp)_4][PF_6]$ (I), feaures a $[Nb(hpp)_4]^+$ cation, with the Nb atom located on a site of symmetry $\overline{4}$, and a $[PF_6]^-$ anion, with fourfold symmetry; where hpp is 1,3,4,6,7,8-hexahydro-2*H*-pyrimido(1,2 - a)pyrimidine. The Nb atom is chelated four hpp ligands and the N₈ donor set defines an approximate dodecahedral coordination environment (Fig. 1).

The conformations of the N1- and N-2 containing six-membered rings is twisted chair. Such a binding mode as observed in (I) is uncommon for the hpp ligand, which normally acts as a bridging group in various paddlewheel complexes (Cotton *et al.*, 2005). A related example of hpp acting as a chelating ligand is $[Ta(hpp)_4][Ta(CO)_6]$ (Cotton *et al.*, 2000). Both complexes were obtained by oxidizing the precursors Nb₂(hpp)₄ and $[Et_4N][Ta(CO)_6]$, respectively. The chelating mode of hpp is also found in some Ti complexes (Coles & Hitchcok, 2001).

S2. Experimental

The title complex (I) was obtained unintentionally in an attempt to oxidize the paddlewheel complex $Nb_2(hpp)_4$ with $[Cp_2Fe][PF_6]$ in CH_2Cl_2 . X-ray quality crystals were obtained by slow diffusion of hexanes into a CH_2Cl_2 solution of (I) at room temperature.

S3. Refinement

The H atoms were geometrically placed (C—H = 0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Molecular structure of the cation in (I) showing the crystallographic numbering scheme. Displacement ellipsoids are shown at the 35% probability level. The Nb atom is located on a site of symmetry $\overline{4}$.

$Tetrakis (1,3,4,6,7,8-hexahydro-2H-pyrimido [1,2-a] pyrimidin-9-ido- \kappa^2 N^1, N^9) niobium (V) hexafluoridophosphate$

Crystal data	
$[Nb(C_7H_{12}N_3)_4]PF_6$	$D_{\rm x} = 1.566 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 790.66$	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
Tetragonal, P4/n	Cell parameters from 10356 reflections
Hall symbol: -P 4a	$\theta = 2.1 - 27.5^{\circ}$
a = 13.531 (6) Å	$\mu=0.48~\mathrm{mm^{-1}}$
c = 9.159 (4) Å	T = 213 K
$V = 1676.9 (13) \text{ Å}^3$	Block, yellow
Z = 2	$0.20 \times 0.15 \times 0.10 \text{ mm}$
F(000) = 820	

Data collection

Bruker SMART 1K CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10 pixels mm ⁻¹ ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{\min} = 0.910, T_{\max} = 0.953$	10356 measured reflections 1655 independent reflections 1381 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -17 \rightarrow 12$ $k = -17 \rightarrow 16$ $l = -10 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.144$ S = 1.05 1655 reflections 111 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.067P)^2 + 3.4248P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.69$ e Å ⁻³ $\Delta\rho_{min} = -0.39$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nb	0.7500	0.2500	0.5000	0.0388 (2)	
N1	0.6548 (3)	0.1964 (3)	0.3195 (4)	0.0670 (11)	
N2	0.6131 (3)	0.1782 (3)	0.5468 (4)	0.0677 (11)	
N3	0.4885 (3)	0.1508 (3)	0.3731 (4)	0.0598 (9)	
C1	0.6352 (4)	0.1994 (4)	0.1664 (5)	0.0730 (14)	
H1A	0.6931	0.1747	0.1137	0.088*	
H1B	0.6245	0.2682	0.1370	0.088*	
C2	0.5483 (5)	0.1405 (7)	0.1244 (6)	0.116 (3)	
H2A	0.5295	0.1587	0.0247	0.139*	
H2B	0.5675	0.0706	0.1231	0.139*	
C3	0.4618 (4)	0.1511 (4)	0.2179 (6)	0.0783 (15)	
H3A	0.4158	0.0967	0.1985	0.094*	
H3B	0.4281	0.2132	0.1945	0.094*	
C4	0.4136 (3)	0.1333 (4)	0.4827 (6)	0.0694 (14)	
H4A	0.3720	0.0777	0.4523	0.083*	
H4B	0.3713	0.1919	0.4909	0.083*	

C5	0.4580 (4)	0.1111 (4)	0.6279 (6)	0.0839 (18)	
H5A	0.4830	0.0431	0.6279	0.101*	
H5B	0.4067	0.1159	0.7032	0.101*	
C6	0.5406 (4)	0.1802 (4)	0.6648 (5)	0.0745 (14)	
H6A	0.5149	0.2474	0.6772	0.089*	
H6B	0.5718	0.1599	0.7566	0.089*	
C7	0.5805 (3)	0.1735 (3)	0.4103 (5)	0.0549 (10)	
P1	0.2500	0.2500	0.9214 (2)	0.0475 (5)	
F1	0.13862 (19)	0.2132 (2)	0.9219 (3)	0.0772 (9)	
F2	0.2500	0.2500	0.7468 (5)	0.0695 (14)	
F3	0.2500	0.2500	1.0963 (5)	0.0562 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>U</i> ²³
Nh	0.0438 (3)	0.0438 (3)	0.0288 (4)	0.000	0.000	0.000
N1	0.0438(3)	0.0438(3) 0.107(3)	0.0286(4)	-0.013(2)	-0.0009(16)	-0.000
N2	0.050(2)	0.107(3)	0.0300(10) 0.0472(19)	-0.019(2)	0.0009(10)	-0.0025(1)
N3	0.001(2)	0.095(3)	0.0472(1))	0.019(2) 0.0073(17)	-0.0030(17)	0.003(2)
C1	0.031(2) 0.077(3)	0.007(2) 0.099(4)	0.002(2)	-0.014(3)	-0.009(2)	0.0021(1))
C2	0.084 (4)	0.217 (8)	0.047 (3)	-0.053(5)	-0.014(3)	0.001 (4)
C3	0.061 (3)	0.096 (4)	0.078 (3)	-0.001(3)	-0.023(3)	0.010 (3)
C4	0.048 (2)	0.055 (3)	0.105 (4)	-0.0021 (19)	0.012 (3)	-0.006 (3)
C5	0.090 (4)	0.072 (3)	0.089 (4)	-0.004 (3)	0.054 (3)	0.000 (3)
C6	0.076 (3)	0.101 (4)	0.047 (2)	-0.013 (3)	0.018 (2)	0.000 (3)
C7	0.055 (2)	0.065 (3)	0.045 (2)	-0.005 (2)	0.0064 (18)	0.0035 (19)
P1	0.0530 (7)	0.0530 (7)	0.0365 (10)	0.000	0.000	0.000
F1	0.0582 (15)	0.112 (2)	0.0619 (17)	-0.0192 (15)	0.0028 (13)	-0.0233 (16)
F2	0.087 (2)	0.087 (2)	0.035 (2)	0.000	0.000	0.000
F3	0.0660 (18)	0.0660 (18)	0.036 (2)	0.000	0.000	0.000

Geometric parameters (Å, °)

Nb—N2	2.135 (4)	C2—H2B	0.9800	
Nb-N2 ⁱ	2.135 (4)	C3—H3A	0.9800	
Nb—N1	2.218 (4)	C3—H3B	0.9800	
Nb—N1 ⁱ	2.218 (4)	C4—C5	1.490 (8)	
Nb—C7	2.648 (4)	C4—H4A	0.9800	
Nb-C7 ⁱ	2.648 (4)	C4—H4B	0.9800	
N1—C7	1.341 (5)	C5—C6	1.496 (8)	
N1-C1	1.428 (5)	C5—H5A	0.9800	
N2C7	1.328 (6)	C5—H5B	0.9800	
N2—C6	1.460 (6)	C6—H6A	0.9800	
N3—C7	1.326 (5)	C6—H6B	0.9800	
N3—C4	1.447 (6)	P1—F1	1.587 (3)	
N3—C3	1.466 (6)	P1—F1 ⁱⁱ	1.587 (3)	
C1—C2	1.472 (7)	P1—F1 ⁱⁱⁱ	1.587 (3)	
C1—H1A	0.9800	P1—F1 ^{iv}	1.587 (3)	

C1—H1B	0.9800	P1—F2	1.600 (5)
C2—C3	1.457 (8)	P1—F3	1.602 (5)
C2—H2A	0.9800		
		~	
$N2-Nb-N2^{1}$	156.8 (2)	C7—N1—C1	118.4 (4)
N2—Nb—N2 ^v	92.31 (4)	C7—N1—Nb	92.8 (3)
$N2^{i}$ —Nb— $N2^{v}$	92.31 (4)	C1—N1—Nb	146.2 (3)
$N2-Nb-N2^{v_1}$	92.31 (4)	C7—N2—C6	118.3 (4)
$N2^{i}$ —Nb—N2 ^{vi}	92.31 (4)	C7—N2—Nb	97.0 (3)
N2 ^v —Nb—N2 ^{vi}	156.8 (2)	C6—N2—Nb	136.4 (3)
N2—Nb—N1	59.80 (14)	C7—N3—C4	121.1 (4)
N2 ⁱ —Nb—N1	143.38 (14)	C7—N3—C3	118.7 (4)
$N2^{v}$ — Nb — $N1$	80.23 (16)	C4—N3—C3	120.0 (4)
N2 ^{vi} —Nb—N1	82.54 (17)	N1—C1—C2	112.9 (4)
N2—Nb—N1 ^v	82.54 (17)	N1—C1—H1A	109.0
N2 ⁱ —Nb—N1 ^v	80.23 (16)	C2—C1—H1A	109.0
$N2^{v}$ — Nb — $N1^{v}$	59.80 (14)	N1—C1—H1B	109.0
$N2^{vi}$ — Nb — $N1^{v}$	143.38 (14)	C2—C1—H1B	109.0
N1—Nb—N1 ^v	123.75 (12)	H1A—C1—H1B	107.8
N2—Nb—N1 ^{vi}	80.23 (16)	C3—C2—C1	115.7 (6)
N2 ⁱ —Nb—N1 ^{vi}	82.54 (17)	C3—C2—H2A	108.3
$N2^{v}$ — Nb — $N1^{vi}$	143.38 (14)	C1—C2—H2A	108.3
$N2^{vi}$ Nb $N1^{vi}$	59.80 (14)	C3—C2—H2B	108.3
$N1 - Nb - N1^{vi}$	123.75(12)	C1 - C2 - H2B	108.3
$N1^{v}$ Nb $N1^{vi}$	83.6 (2)	$H^2A - C^2 - H^2B$	107.4
$N2$ — Nb — $N1^{i}$	143 38 (14)	C_{2} C_{3} N_{3}	111 8 (4)
$N2^{i}$ Nb $N1^{i}$	59 80 (14)	$C_2 = C_3 = H_3 \Delta$	100 3
N2V Nb N1 ⁱ	37.00(14) 82.54(17)	$N_2 C_2 H_3 \Lambda$	109.5
$N2^{vi}$ Nb $N1^{i}$	80.23 (16)	$C_2 C_3 H_3 P$	109.5
N1 Nb N1i	80.23(10)	N2 C2 H2P	109.5
INI-INO-INI NIV NIL NII	03.0(2)	N_{3} C_{3} $H_{3}D$	109.5
	123.73(12) 122.75(12)	$H_{A} = C_{A} = C_{A}$	107.9
	123.75(12)	$N_{3} = C_{4} = C_{3}$	111.7 (4)
N2—Nb—C7	29.86 (14)	N3-C4-H4A	109.3
N2 ⁴ —Nb—C/	1/2./3 (14)	C5—C4—H4A	109.3
$N2^{v}$ —Nb—C/	89.57 (16)	N3—C4—H4B	109.3
N2 ^{vi} —Nb—C/	83.26 (16)	C5—C4—H4B	109.3
N1—Nb—C7	30.39 (13)	H4A—C4—H4B	107.9
N1 ^v —Nb—C7	106.74 (15)	C4—C5—C6	112.1 (4)
N1 ^{vi} —Nb—C7	100.07 (15)	C4—C5—H5A	109.2
N1 ⁱ —Nb—C7	113.57 (13)	С6—С5—Н5А	109.2
N2—Nb—C7 ^{vi}	89.57 (15)	C4—C5—H5B	109.2
$N2^{i}$ — Nb — $C7^{vi}$	83.26 (16)	C6—C5—H5B	109.2
$N2^v$ — Nb — $C7^{vi}$	172.73 (14)	H5A—C5—H5B	107.9
$N2^{vi}$ — Nb — $C7^{vi}$	29.86 (14)	N2—C6—C5	108.9 (4)
N1—Nb—C7 ^{vi}	106.74 (15)	N2—C6—H6A	109.9
$N1^v$ — Nb — $C7^{vi}$	113.57 (13)	С5—С6—Н6А	109.9
$N1^{vi}$ — Nb — $C7^{vi}$	30.39 (13)	N2—C6—H6B	109.9
N1 ⁱ —Nb—C7 ^{vi}	100.07 (15)	С5—С6—Н6В	109.9

C7—Nb—C7 ^{vi}	95.53 (5)	H6A—C6—H6B	108.3
N2—Nb—C7 ^v	83.26 (16)	N3—C7—N2	124.4 (4)
N2 ⁱ —Nb—C7 ^v	89.57 (15)	N3—C7—N1	126.7 (4)
$N2^{v}$ — Nb — $C7^{v}$	29.86 (14)	N2—C7—N1	108.8 (4)
$N2^{vi}$ — Nb — $C7^{v}$	172.73 (14)	N3—C7—Nb	169.6 (3)
N1—Nb—C7 ^v	100.07 (15)	N2—C7—Nb	53.2 (2)
$N1^v$ — Nb — $C7^v$	30.39 (13)	N1—C7—Nb	56.8 (2)
N1 ^{vi} —Nb—C7 ^v	113.57 (13)	F1—P1—F1 ⁱⁱ	90.000 (2)
$N1^{i}$ — Nb — $C7^{v}$	106.74 (15)	F1—P1—F1 ⁱⁱⁱ	179.7 (2)
C7—Nb—C7 ^v	95.53 (5)	F1 ⁱⁱ —P1—F1 ⁱⁱⁱ	90.000 (2)
C7 ^{vi} —Nb—C7 ^v	143.83 (18)	$F1$ — $P1$ — $F1^{iv}$	90.000 (1)
N2—Nb—C7 ⁱ	172.73 (14)	$F1^{ii}$ — $P1$ — $F1^{iv}$	179.7 (2)
$N2^{i}$ —Nb—C7 ⁱ	29.86 (14)	$F1^{iii}$ — $P1$ — $F1^{iv}$	90.000 (2)
$N2^v$ — Nb — $C7^i$	83.26 (16)	F1—P1—F2	90.16 (12)
$N2^{vi}$ — Nb — $C7^{i}$	89.57 (16)	F1 ⁱⁱ —P1—F2	90.16 (12)
N1—Nb—C7 ⁱ	113.57 (13)	F1 ⁱⁱⁱ —P1—F2	90.16 (12)
$N1^v$ — Nb — $C7^i$	100.07 (15)	$F1^{iv}$ — $P1$ — $F2$	90.16 (12)
$N1^{vi}$ — Nb — $C7^{i}$	106.74 (15)	F1—P1—F3	89.84 (12)
N1 ⁱ —Nb—C7 ⁱ	30.39 (13)	F1 ⁱⁱ —P1—F3	89.84 (12)
C7—Nb—C7 ⁱ	143.83 (18)	F1 ⁱⁱⁱ —P1—F3	89.84 (12)
C7 ^{vi} —Nb—C7 ⁱ	95.53 (5)	F1 ^{iv} —P1—F3	89.84 (12)
$C7^{v}$ —Nb— $C7^{i}$	95.53 (5)	F2—P1—F3	180.000 (2)
			(_)
N2—Nb—N1—C7	7.7 (3)	N3—C4—C5—C6	45.0 (6)
N2 ⁱ —Nb—N1—C7	-173.2 (3)	C7—N2—C6—C5	39.2 (7)
N2 ^v —Nb—N1—C7	106.2 (3)	Nb-N2-C6-C5	179.1 (4)
N2 ^{vi} —Nb—N1—C7	-89.4 (3)	C4—C5—C6—N2	-54.6 (6)
N1 ^v —Nb—N1—C7	63.0 (4)	C4—N3—C7—N2	3.0 (7)
N1 ^{vi} —Nb—N1—C7	-43.6 (4)	C3—N3—C7—N2	178.2 (5)
N1 ⁱ —Nb—N1—C7	-170.3 (4)	C4—N3—C7—N1	-176.2 (5)
C7 ^{vi} —Nb—N1—C7	-71.7 (3)	C3—N3—C7—N1	-1.0 (7)
C7 ^v —Nb—N1—C7	83.7 (2)	C4—N3—C7—Nb	-70.1 (19)
C7 ⁱ —Nb—N1—C7	-175.65 (18)	C3—N3—C7—Nb	105.1 (17)
N2—Nb—N1—C1	165.9 (7)	C6—N2—C7—N3	-14.1 (7)
N2 ⁱ —Nb—N1—C1	-15.0 (8)	Nb-N2-C7-N3	-167.5 (4)
N2 ^v —Nb—N1—C1	-95.6 (7)	C6—N2—C7—N1	165.2 (5)
N2 ^{vi} —Nb—N1—C1	68.8 (7)	Nb—N2—C7—N1	11.8 (4)
N1 ^v —Nb—N1—C1	-138.8 (6)	C6—N2—C7—Nb	153.4 (5)
N1 ^{vi} —Nb—N1—C1	114.6 (6)	C1—N1—C7—N3	1.6 (8)
N1 ⁱ —Nb—N1—C1	-12.1 (6)	Nb—N1—C7—N3	168.0 (4)
C7—Nb—N1—C1	158.2 (9)	C1—N1—C7—N2	-177.7 (5)
C7 ^{vi} —Nb—N1—C1	86.5 (7)	Nb—N1—C7—N2	-11.3 (4)
C7 ^v —Nb—N1—C1	-118.0(7)	C1—N1—C7—Nb	-166.4 (5)
$C7^{i}$ —Nb—N1—C1	-17.4 (7)	N2—Nb—C7—N3	80.4 (17)
N2 ⁱ —Nb—N2—C7	173.5 (3)	N2 ^v —Nb—C7—N3	175.8 (17)
N2 ^v —Nb—N2—C7	-85.1 (3)	N2 ^{vi} —Nb—C7—N3	-26.3 (17)
N2 ^{vi} —Nb—N2—C7	72.2 (3)	N1—Nb—C7—N3	-113.0 (18)
N1—Nb—N2—C7	-7.8 (3)	N1 ^v —Nb—C7—N3	117.6 (17)
	· · · · · · ·		(-,)

N1 ^v —Nb—N2—C7	-144.2 (3)	N1 ^{vi} —Nb—C7—N3	31.3 (18)
N1 ^{vi} —Nb—N2—C7	131.0 (3)	N1 ⁱ —Nb—C7—N3	-102.5 (17)
N1 ⁱ —Nb—N2—C7	-4.5 (5)	C7 ^{vi} —Nb—C7—N3	1.0 (17)
C7 ^{vi} —Nb—N2—C7	101.9 (3)	C7 ^v —Nb—C7—N3	146.5 (18)
C7 ^v —Nb—N2—C7	-113.6 (3)	C7 ⁱ —Nb—C7—N3	-106.3 (18)
N2 ⁱ —Nb—N2—C6	28.4 (5)	N2 ^v —Nb—C7—N2	95.4 (3)
N2 ^v —Nb—N2—C6	129.7 (6)	N2 ^{vi} —Nb—C7—N2	-106.7 (3)
N2 ^{vi} —Nb—N2—C6	-73.0 (5)	N1—Nb—C7—N2	166.6 (5)
N1—Nb—N2—C6	-153.0 (6)	N1 ^v —Nb—C7—N2	37.2 (3)
N1 ^v —Nb—N2—C6	70.6 (5)	N1 ^{vi} —Nb—C7—N2	-49.1 (3)
N1 ^{vi} —Nb—N2—C6	-14.2 (5)	N1 ⁱ —Nb—C7—N2	177.1 (3)
N1 ⁱ —Nb—N2—C6	-149.7 (5)	C7 ^v —Nb—C7—N2	66.1 (3)
C7—Nb—N2—C6	-145.2 (7)	C7 ⁱ —Nb—C7—N2	173.3 (3)
C7 ^{vi} —Nb—N2—C6	-43.3 (5)	N2—Nb—C7—N1	-166.6 (5)
C7 ^v —Nb—N2—C6	101.2 (5)	N2 ^v —Nb—C7—N1	-71.2 (3)
C7—N1—C1—C2	-22.7 (8)	N2 ^{vi} —Nb—C7—N1	86.7 (3)
Nb-N1-C1-C2	-177.8 (5)	N1 ^v —Nb—C7—N1	-129.3 (3)
N1—C1—C2—C3	44.3 (9)	N1 ^{vi} —Nb—C7—N1	144.4 (3)
C1—C2—C3—N3	-43.2 (8)	N1 ⁱ —Nb—C7—N1	10.5 (4)
C7—N3—C3—C2	21.6 (8)	C7 ^{vi} —Nb—C7—N1	114.0 (3)
C4—N3—C3—C2	-163.1 (5)	C7 ^v —Nb—C7—N1	-100.5 (3)
C7—N3—C4—C5	-19.0 (6)	C7 ⁱ —Nb—C7—N1	6.8 (3)
C3—N3—C4—C5	165.8 (5)		

Symmetry codes: (i) -x+3/2, -y+1/2, z; (ii) -y+1/2, x, z; (iii) -x+1/2, -y+1/2, z; (iv) y, -x+1/2, z; (v) -y+1, x-1/2, -z+1; (vi) y+1/2, -x+1, -z+1.