organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(2-Hydroxyphenyl)-4-nitrophthalimide

Shahirah Mansor, Norzalida Zakaria, Azhar Ariffin and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 11 August 2008; accepted 11 August 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.050; wR factor = 0.142; data-to-parameter ratio = 8.1.

Molecules of the title compound, $C_{14}H_8N_2O_5$, are linked by a hydroxy-amide O-H···O hydrogen bond into a linear chain. The hydroxy group is disordered over two positions of the benzene ring in an approximate 0.57:0.43 ratio.

Related literature

For literature on the hydrolysis of *N*-substituted phthalimides, see: Sim *et al.* (2006; 2007).

Experimental

Crystal data

$C_{14}H_8N_2O_5$	
$M_r = 284.22$	
Orthorhombic, P2 ₁ 2 ₁ 2 ₁	

a = 7.1114 (2) Å
b = 11.7646 (3) Å
c = 14.5304 (4) Å

```
V = 1215.65 (6) \text{ Å}^3Z = 4Mo K\alpha radiation
```

Data collection

Bruker SMART APEX diffractometer Absorption correction: none 13791 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.142$ S = 1.041618 reflections 199 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H1 \cdots O3^{i}$	0.84	1.99	2.747 (4)	149
$D1' - H1' \cdots O2^{ii}$	0.84	2.23	2.779 (4)	123

Symmetry codes: (i) x - 1, y, z; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 2.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank MOSTI (grant No. 14–02-03–4014) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2681).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sim, Y. L., Ariffin, A. & Khan, M. N. (2006). Int. J. Chem. Kinet. 38, 746–758.
 Sim, Y. L., Ariffin, A. & Khan, M. N. (2007). J. Org. Chem. 72, 2392–2401.
 Westrip, S. P. (2008). publCIF. In preparation.

Cros

 $\mu = 0.12 \text{ mm}^{-1}$

T = 100 (2) K

 $R_{\rm int} = 0.087$

2 restraints

 $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

 $0.32 \times 0.06 \times 0.06 \text{ mm}$

1618 independent reflections

1356 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

supporting information

Acta Cryst. (2008). E64, o1770 [doi:10.1107/S1600536808025920]

N-(2-Hydroxyphenyl)-4-nitrophthalimide

Shahirah Mansor, Norzalida Zakaria, Azhar Ariffin and Seik Weng Ng

S1. Comment

The title compound (Fig. 1) was synthesized for studies on intramolecular general base (IGB) and intramolecular general acid (IGA) catalysis in the hydrolysis of *N*-substitutedphthalimide (Sim *et al.*, 2006; 2007).

S2. Experimental

4-Nitrophthalic anhydride (5.0 g, 26 mmol) and *o*-hydroxyaniline (3.4 g, 31 mmol) were heated in glacial acetic acid (15 mol) for 4 h at 393–401 K. The reaction was shown to be complete by thin layer chromatography. The mixture was poured into water. The yellow solid was collected in 90% yield; purification was effected by recrystallization from chloroform.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The hydroxy group is disordered over two positions on the phenylene ring; the disorder refined to a 0.571 (1):429 (1) ratio.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of O–H···O hydrogen-bonded structure of $C_{14}H_8N_2O_3$ at the 70% probability level. Dashed lines denote the intermolecular hydrogen bonds. Hydrogen atoms are drawn as spheres of arbitrary radius. Only the major component of disorder is shown.

N-(2-Hydroxyphenyl)-4-nitrophthalimide

Crystal data

 $C_{14}H_8N_2O_5$ $M_r = 284.22$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.1114 (2) Å b = 11.7646 (3) Å c = 14.5304 (4) Å V = 1215.65 (6) Å³ Z = 4

Data collection

Dura concerión	
Bruker SMART APEX	1356 reflections with $I > 2\sigma(I)$
diffractometer	$R_{ m int}=0.087$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.2^\circ$
Graphite monochromator	$h = -9 \rightarrow 9$
ω scans	$k = -15 \rightarrow 15$
13791 measured reflections	$l = -18 \rightarrow 18$
1618 independent reflections	

F(000) = 584

 $\theta = 2.8 - 23.8^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$

Prism, yellow

 $0.32 \times 0.06 \times 0.06$ mm

T = 100 K

 $D_x = 1.553 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2147 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.142$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
1618 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0803P)^2 + 0.3691P]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.36 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.28 \ { m e} \ { m \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.3544 (4)	0.2939 (3)	0.8037 (3)	0.0308 (10)	0.571 (3)
H1	0.2490	0.3065	0.7797	0.046*	0.571 (3)
01′	0.8498 (5)	0.4876 (3)	0.9237 (4)	0.0287 (13)	0.429 (3)
H1′	0.9140	0.4284	0.9162	0.043*	0.429 (3)
02	0.4761 (4)	0.1944 (2)	0.97117 (17)	0.0362 (6)	
03	0.9695 (3)	0.3018 (2)	0.78879 (18)	0.0347 (6)	
O4	1.3585 (4)	-0.0916 (2)	0.8641 (2)	0.0455 (8)	
05	1.1873 (5)	-0.2264 (2)	0.9238 (2)	0.0533 (9)	
N1	0.7000 (4)	0.2751 (2)	0.87514 (18)	0.0217 (6)	
N2	1.2106 (5)	-0.1285 (3)	0.8959 (2)	0.0383 (8)	
C1	0.4328 (5)	0.3850 (3)	0.8206 (2)	0.0307 (8)	
H1A	0.3676	0.3163	0.8080	0.037*	0.429 (3)
C2	0.3486 (7)	0.4888 (4)	0.8022 (3)	0.0493 (12)	
H2	0.2230	0.4915	0.7800	0.059*	
C3	0.4465 (8)	0.5871 (4)	0.8161 (3)	0.0537 (13)	

Н3	0.3904	0.6578	0.8006	0.064*	
C4	0.6260 (9)	0.5852 (3)	0.8525 (3)	0.0543 (14)	
H4	0.6931	0.6542	0.8616	0.065*	
C5	0.7071 (6)	0.4825 (3)	0.8755 (3)	0.0390 (9)	
H5A	0.8276	0.4806	0.9037	0.047*	0.571 (3)
C6	0.6120 (5)	0.3820 (3)	0.8574 (2)	0.0271 (7)	
C7	0.6224 (5)	0.1884 (3)	0.9290 (2)	0.0237 (7)	
C8	0.7584 (5)	0.0922 (3)	0.9252 (2)	0.0236 (7)	
C9	0.7433 (5)	-0.0146 (3)	0.9637 (2)	0.0287 (7)	
H9	0.6348	-0.0371	0.9972	0.034*	
C10	0.8946 (5)	-0.0877 (3)	0.9510 (2)	0.0305 (8)	
H10	0.8915	-0.1625	0.9756	0.037*	
C11	1.0478 (5)	-0.0508 (3)	0.9029 (2)	0.0270 (7)	
C12	1.0651 (5)	0.0568 (3)	0.8618 (2)	0.0276 (7)	
H12	1.1733	0.0793	0.8281	0.033*	
C13	0.9122 (4)	0.1269 (3)	0.8746 (2)	0.0244 (7)	
C14	0.8758 (4)	0.2439 (3)	0.8398 (2)	0.0226 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
01	0.021 (2)	0.032 (2)	0.039 (2)	0.0014 (18)	-0.0039 (18)	0.000 (2)
O1′	0.025 (3)	0.023 (2)	0.039 (3)	-0.003(2)	-0.014 (2)	0.000 (2)
O2	0.0371 (14)	0.0391 (13)	0.0322 (14)	0.0103 (12)	0.0161 (11)	0.0066 (11)
O3	0.0246 (12)	0.0454 (15)	0.0341 (13)	0.0017 (12)	0.0003 (11)	0.0114 (12)
O4	0.0307 (14)	0.0623 (19)	0.0435 (15)	0.0172 (13)	0.0023 (13)	-0.0015 (14)
O5	0.070 (2)	0.0364 (14)	0.0534 (18)	0.0275 (15)	0.0170 (17)	0.0133 (14)
N1	0.0209 (12)	0.0235 (13)	0.0206 (13)	0.0047 (10)	-0.0020 (11)	0.0006 (11)
N2	0.0418 (17)	0.0448 (18)	0.0285 (16)	0.0170 (15)	0.0059 (14)	-0.0016 (15)
C1	0.0310 (17)	0.0420 (19)	0.0191 (15)	0.0149 (16)	0.0059 (13)	0.0048 (15)
C2	0.053 (3)	0.058 (3)	0.036 (2)	0.035 (2)	0.017 (2)	0.025 (2)
C3	0.081 (3)	0.048 (3)	0.032 (2)	0.042 (3)	0.021 (2)	0.0186 (19)
C4	0.109 (4)	0.0286 (19)	0.0250 (19)	0.013 (2)	0.011 (3)	0.0013 (16)
C5	0.066 (3)	0.0290 (17)	0.0217 (18)	0.0023 (18)	-0.0074 (19)	0.0015 (15)
C6	0.0371 (17)	0.0255 (15)	0.0186 (15)	0.0124 (14)	0.0028 (14)	0.0026 (13)
C7	0.0313 (16)	0.0246 (14)	0.0152 (14)	0.0044 (13)	-0.0018 (13)	-0.0005 (12)
C8	0.0268 (15)	0.0257 (15)	0.0184 (15)	0.0057 (12)	0.0005 (13)	-0.0024 (13)
C9	0.0309 (16)	0.0302 (16)	0.0250 (17)	0.0010 (14)	0.0018 (14)	-0.0009 (14)
C10	0.0351 (17)	0.0284 (17)	0.0280 (17)	0.0038 (14)	-0.0024 (15)	-0.0038 (14)
C11	0.0324 (16)	0.0288 (16)	0.0198 (15)	0.0129 (14)	-0.0041 (13)	-0.0051 (14)
C12	0.0255 (15)	0.0382 (18)	0.0191 (15)	0.0056 (14)	-0.0033 (13)	-0.0003 (14)
C13	0.0229 (14)	0.0288 (16)	0.0214 (14)	0.0054 (12)	-0.0057 (13)	-0.0038 (14)
C14	0.0206 (14)	0.0279 (15)	0.0194 (15)	0.0014 (12)	-0.0040 (12)	0.0012 (13)

Geometric parameters (Å, °)

01—C1	1.233 (5)	C3—C4	1.382 (8)
01—H1	0.8400	С3—Н3	0.9500

O1′—C5	1.234 (5)	C4—C5	1.380(6)
O1'—H1'	0.8400	C4—H4	0.9500
O2—C7	1.210 (4)	C5—C6	1.388 (5)
O3—C14	1.207 (4)	C5—H5A	0.9500
O4—N2	1.228 (4)	С7—С8	1.490 (4)
05—N2	1.232 (4)	C8—C9	1.380 (5)
N1-C14	1401(4)	C8-C13	1 379 (4)
N1—C7	1 399 (4)	C9-C10	1 389 (5)
N1—C6	1.399(1) 1.428(4)	C9H9	0.9500
N2 C11	1.428(4) 1.478(4)	C_{10} C_{11}	1 366 (5)
$C_1 = C_1$	1.470(4) 1.282(5)	C10_U10	0.0500
C1 = C0	1.362(3)	C10—H10 C11_C12	0.9300
CI = C2	1.380 (5)		1.405 (5)
CI—HIA	0.9500		1.3//(4)
C2—C3	1.365 (8)	C12—H12	0.9500
С2—Н2	0.9500	C13—C14	1.490 (5)
C1—01—H1	109.5	C1—C6—C5	120.1 (3)
C5—O1′—H1′	109.5	C1—C6—N1	119.8 (3)
C14—N1—C7	111.5 (3)	C5—C6—N1	120.1 (3)
C14—N1—C6	123.7 (3)	O2—C7—N1	125.5 (3)
C7—N1—C6	124.8 (3)	O2—C7—C8	128.4 (3)
04—N2—05	124.7 (3)	N1—C7—C8	106.1 (3)
$04-N^2-C^{11}$	118.6 (3)	C9 - C8 - C13	123.1(3)
05-N2-C11	116.7(3)	C9 - C8 - C7	128.1(3) 128.8(3)
01 - C1 - C6	110.7(3) 118.1(3)	$C_{13} = C_{8} = C_{7}$	120.0(3) 108.1(3)
01 C1 C2	1221(4)	C_{8} C_{9} C_{10}	116.8(3)
$C_{1} = C_{1} = C_{2}$	122.1(4)	C_{3} C_{2} C_{10}	121.6
C_{0}	119.7 (4)	$C_{0} = C_{0} = H_{0}$	121.0
C_{0} C_{1} H_{1}	120.1	C10 - C9 - H9	121.0
$C_2 = C_1 = HIA$	120.1	C11 = C10 = U10	119.2 (5)
$C_3 = C_2 = C_1$	119.8 (4)		120.4
C3—C2—H2	120.1	C9—C10—H10	120.4
С1—С2—Н2	120.1	C10—C11—C12	125.0 (3)
C2—C3—C4	121.0 (4)	C10—C11—N2	117.6 (3)
С2—С3—Н3	119.5	C12—C11—N2	117.3 (3)
С4—С3—Н3	119.5	C13—C12—C11	114.4 (3)
C5—C4—C3	119.5 (5)	C13—C12—H12	122.8
C5—C4—H4	120.2	C11—C12—H12	122.8
C3—C4—H4	120.2	C12—C13—C8	121.4 (3)
O1′—C5—C4	116.1 (4)	C12—C13—C14	130.2 (3)
O1′—C5—C6	123.4 (3)	C8—C13—C14	108.4 (3)
C4—C5—C6	119.7 (4)	O3—C14—N1	124.8 (3)
C4—C5—H5A	120.1	O3—C14—C13	129.3 (3)
С6—С5—Н5А	120.1	N1—C14—C13	105.8 (3)
$O_1 = C_1 = C_2 = C_2$	175 2 (4)	C12 C2 C1 C10	1 2 (5)
$C_1 - C_1 - C_2 - C_3$	-1/3.5(4)	C13 - C8 - C9 - C10	1.3 (3)
$C_0 - C_1 - C_2 - C_3$	5.5 (5)	U = U = U = U = U = U = U = U = U = U =	-1/8.6(3)
C1 - C2 - C3 - C4	-3.1 (6)		0.5 (5)
C2—C3—C4—C5	-0.3 (6)	C9—C10—C11—C12	-1.6(5)

C3—C4—C5—O1' C3—C4—C5—C6	-166.2(4)	C9—C10—C11—N2 O4—N2—C11—C10	176.2 (3) -170 1 (3)
01-C1-C6-C5	178.5 (4)	O5—N2—C11—C10	9.1 (5)
C2-C1-C6-C5	-0.1 (5)	O4—N2—C11—C12	7.9 (5)
O1-C1-C6-N1	-0.4 (5)	O5—N2—C11—C12	-172.9 (3)
C2-C1-C6-N1	-179.1 (3)	C10-C11-C12-C13	0.9 (5)
O1'-C5-C6-C1	165.7 (4)	N2-C11-C12-C13	-177.0 (3)
C4—C5—C6—C1	-3.2 (5)	C11—C12—C13—C8	1.0 (5)
O1'-C5-C6-N1	-15.3 (6)	C11—C12—C13—C14	-177.8 (3)
C4—C5—C6—N1	175.7 (3)	C9—C8—C13—C12	-2.1 (5)
C14—N1—C6—C1	124.8 (3)	C7—C8—C13—C12	177.8 (3)
C7—N1—C6—C1	-54.7 (4)	C9—C8—C13—C14	176.9 (3)
C14—N1—C6—C5	-54.1 (4)	C7—C8—C13—C14	-3.2 (3)
C7—N1—C6—C5	126.3 (4)	C7—N1—C14—O3	177.4 (3)
C14—N1—C7—O2	176.5 (3)	C6—N1—C14—O3	-2.1 (5)
C6—N1—C7—O2	-3.9 (5)	C7—N1—C14—C13	0.0 (3)
C14—N1—C7—C8	-1.8 (3)	C6—N1—C14—C13	-179.6 (3)
C6—N1—C7—C8	177.8 (3)	C12—C13—C14—O3	3.7 (6)
O2—C7—C8—C9	4.8 (6)	C8—C13—C14—O3	-175.3 (3)
N1—C7—C8—C9	-177.0 (3)	C12—C13—C14—N1	-179.0 (3)
O2—C7—C8—C13	-175.1 (3)	C8—C13—C14—N1	2.1 (3)
N1—C7—C8—C13	3.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O3 ⁱ	0.84	1.99	2.747 (4)	149
O1′—H1′····O2 ⁱⁱ	0.84	2.23	2.779 (4)	123

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1/2, -*y*+1/2, -*z*+2.