

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1-Deoxy-L-mannitol (6-deoxy-L-mannitol or L-rhamnitol)

### Sarah F. Jenkinson,<sup>a</sup> K. Victoria Booth,<sup>a</sup>\* Pushpakiran Gullapalli,<sup>b</sup> Kenji Morimoto,<sup>b</sup> Ken Izumori,<sup>b</sup> George W. J. Fleet<sup>a</sup> and David J. Watkin<sup>c</sup>

<sup>a</sup>Department of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, <sup>b</sup>Rare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and <sup>c</sup>Department of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England Correspondence e-mail: victoria.booth@chem.ox.ac.uk

Received 25 July 2008; accepted 31 July 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.072; data-to-parameter ratio = 10.3.

The crystalline form of 1-deoxy-L-mannitol,  $C_6H_{14}O_5$ , exists as an extensively hydrogen-bonded structure with each molecule acting as a donor and acceptor for five hydrogen bonds. There are no unusual crystal-packing features; the absolute configuration was determined from the use of 6-deoxy-L-mannose (L-rhamnose) as the starting material.

#### **Related literature**

For related literature see: Jenkinson *et al.* (2008); Gullapalli *et al.* (2007); Izumori (2002, 2006); Granstrom *et al.* (2004); Beadle *et al.* (1992); Skytte (2002); Sui *et al.* (2005); Levin (2002); Howling & Callagan (2000); Bertelsen *et al.* (1999); Takata *et al.* (2005); Menavuvu *et al.* (2006); Hossain *et al.* (2006); Donner *et al.* (1999).



#### Experimental

| Crystal data               |                   |
|----------------------------|-------------------|
| $C_{6}H_{14}O_{5}$         | a = 7.3650 (3) Å  |
| $M_r = 166.17$             | b = 7.6272 (3) Å  |
| Orthorhombic, $P2_12_12_1$ | c = 13.7676 (5) Å |

```
V = 773.39 (5) Å<sup>3</sup>
Z = 4
Mo K\alpha radiation
```

#### Data collection

| Nonius KappaCCD diffractometer           |
|------------------------------------------|
| Absorption correction: multi-scan        |
| (DENZO/SCALEPACK;                        |
| Otwinowski & Minor, 1997)                |
| $T_{\rm min} = 0.89, T_{\rm max} = 0.99$ |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ 100 parameters $wR(F^2) = 0.072$ H-atom parameters constrainedS = 0.97 $\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$ 1033 reflections $\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$ 

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$         | D-H                       | $H \cdot \cdot \cdot A$ | $D \cdots A$                             | $D - \mathbf{H} \cdots \mathbf{A}$ |
|--------------------------|---------------------------|-------------------------|------------------------------------------|------------------------------------|
| O10−H1···O1 <sup>i</sup> | 0.85                      | 1.98                    | 2.782 (2)                                | 158                                |
| O4−H2···O6 <sup>ii</sup> | 0.87                      | 1.92                    | 2.779 (2)                                | 168                                |
| O8−H3···O4 <sup>ii</sup> | 0.84                      | 1.97                    | 2.742 (2)                                | 152                                |
| $O6-H4\cdots O10^{iii}$  | 0.87                      | 1.92                    | 2.772 (2)                                | 165                                |
| $O1 - H5 \cdots O8^{i}$  | 0.87                      | 1.84                    | 2.704 (2)                                | 173                                |
| Symmetry codes:          | (i) $x + \frac{1}{2}, -y$ | $+\frac{3}{2}, -z+1;$   | (ii) $x - \frac{1}{2}, -y + \frac{1}{2}$ | -z + 1; (iii                       |

Symmetry codes: (i)  $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$  (ii)  $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$  (iii)  $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}.$ 

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN). We also thank the Oxford University Chemical Crystallography service for use of the instruments.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2670).

#### References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436.

Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent No. 5 078 796. Bertelsen, H., Jensen, B. B. & Buemann, B. (1999). World Rev. Nutr. Diet. 85, 98–109.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Donner, T. W., Wilber, J. F. & Ostrowski, D. (1999). Diab. Obes. Metab. 1, 285–291.

- Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.
- Gullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). *Tetrahedron Asymmetry*, 18, 1995–2000.

Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369–371.

Howling, D. & Callagan, J. L. (2000). PCT Int. App. WO 2 000 042 865.

Izumori, K. (2002). Naturwissenschaften, 89, 120-124.

Izumori, K. (2006). J. Biotech. 124, 717-722.

 $\mu = 0.12 \text{ mm}^{-1}$ 

 $0.40 \times 0.40 \times 0.10$  mm

5170 measured reflections 1033 independent reflections

974 reflections with  $I > 2\sigma(I)$ 

T = 150 K

 $R_{\rm int} = 0.024$ 

- Jenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, 01429.
- Levin, G. V. (2002). J. Med. Food, 5, 23-36.
- Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340–345.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Skytte, U. P. (2002). Cereal Foods World, 47, 224-224.
- Sui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Intl. J. Ocol. 27, 907–912.
- Takata, M. K., Yamaguchi, F., Nakanose, Y., Watanabe, Y., Hatano, N., Tsukamoto, I., Nagata, M., Izumori, K. & Tokuda, M. (2005). J. Biosci. Bioeng. 100, 511–516.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

# supporting information

Acta Cryst. (2008). E64, o1705-o1706 [doi:10.1107/S1600536808024586]

## 1-Deoxy-L-mannitol (6-deoxy-L-mannitol or L-rhamnitol)

# Sarah F. Jenkinson, K. Victoria Booth, Pushpakiran Gullapalli, Kenji Morimoto, Ken Izumori, George W. J. Fleet and David J. Watkin

### S1. Comment

The properties of 1-deoxy ketohexose sugars have been little studied. The crystal structure of 6-deoxy-L-galactitol has recently been published (Jenkinson *et al.*, 2008) and herein we report the crystal structure of a similar deoxy polyol, 1-de-oxy-L-mannitol an intermediate in the synthesis of 1-deoxy-L-fructose, **3** (Fig. 1) (Gullapalli *et al.*, 2007).

The demand for the large scale production of rare sugars by biotechnological (Izumori, 2006; Izumori, 2002; Granstrom *et al.*, 2004) and chemical (Beadle *et al.*, 1992) methods is driven by the demand for alternative foodstuffs (Skytte, 2002) and D-tagatose itself is used as a low calorie sweetener (Levin, 2002; Howling & Callagan, 2000; Bertelsen *et al.* 1999). Rare monosaccharides themselves, however, have been found to demonstrate interesting pharmaceutical properties, for example, D-psicose (Takata *et al.*, 2005; Menavuvu *et al.*, 2006) and D-allose (Sui *et al.*, 2005; Hossain *et al.*, 2006) have significant chemotherapeutic properties and D-tagatose has been found to be an anti-hyperglycemic agent (Donner *et al.*, 1999) and therefore potentially useful in the treatment of diabetes.

1-Deoxy-L-mannitol **2** (Fig. 2) was prepared from the reduction by catalytic hydrogenation of 6-deoxy-L-mannose **1** (L-rhamnose). The X-ray structure shows that the crystal exists as an extensively hydrogen bonded lattice with each molecule acting as a donor and an acceptor for 5 hydrogen bonds (Fig.3).

### **S2.** Experimental

1-Deoxy-L-mannitol was recrystallized from methanol: m.p. 390K,  $[\alpha]_D^{20}$  +1.4 (*c*, 1.4 in H<sub>2</sub>O).

### **S3. Refinement**

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was determined from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and  $U_{iso}$ (H) (in the range 1.2–1.5 times  $U_{eq}$  of the parent atom), after which the positions were refined with riding constraints.



### Figure 2

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.



### Figure 3

Packing diagram for the title compound projected along the b axis. Hydrogen bonds are shown as dotted lines.

#### 1-Deoxy-L-mannitol

Crystal data C<sub>6</sub>H<sub>14</sub>O<sub>5</sub>  $M_r = 166.17$ Orthorhombic,  $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.3650 (3) Å b = 7.6272 (3) Å c = 13.7676 (5) Å V = 773.39 (5) Å<sup>3</sup> Z = 4

F(000) = 360  $D_x = 1.427 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1002 reflections  $\theta = 5-27^{\circ}$   $\mu = 0.12 \text{ mm}^{-1}$  T = 150 KPlate, colourless  $0.40 \times 0.40 \times 0.10 \text{ mm}$  Data collection

| Nonius KappaCCD<br>diffractometer<br>Graphite monochromator<br>$\omega$ scans<br>Absorption correction: multi-scan<br>( <i>DENZO/SCALEPACK</i> ; Otwinowski & Minor,<br>1997)<br>$T_{\min} = 0.89, T_{\max} = 0.99$ | 5170 measured reflections<br>1033 independent reflections<br>974 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.024$<br>$\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 5.2^{\circ}$<br>$h = -9 \rightarrow 9$<br>$k = -9 \rightarrow 9$<br>$l = -17 \rightarrow 17$                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$<br>Least-squares matrix: full                                                                                                                                                                   | Primary atom site location: structure-invariant direct methods                                                                                                                                                                                                                                                               |
| $R[F^2 > 2\sigma(F^2)] = 0.027$<br>$wR(F^2) = 0.072$<br>S = 0.97<br>1033 reflections<br>100 parameters<br>0 restraints                                                                                              | Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F^2) + (0.04P)^2 + 0.19P],$<br>where $P = [\max(F_o^2, 0) + 2F_c^2]/3$<br>$(\Delta/\sigma)_{max} = 0.000327$<br>$\Delta\rho_{max} = 0.24$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.19$ e Å <sup>-3</sup> |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| 01   | 0.45760 (15) | 0.66827 (14) | 0.58528 (7)  | 0.0158                      |  |
| C2   | 0.5038 (2)   | 0.53406 (18) | 0.51734 (10) | 0.0121                      |  |
| C3   | 0.4654 (2)   | 0.35710 (19) | 0.56608 (11) | 0.0129                      |  |
| O4   | 0.51432 (16) | 0.21669 (13) | 0.50177 (8)  | 0.0180                      |  |
| C5   | 0.5694 (2)   | 0.3334 (2)   | 0.65961 (11) | 0.0160                      |  |
| 06   | 0.76010 (15) | 0.34756 (16) | 0.64310 (8)  | 0.0190                      |  |
| C7   | 0.3954 (2)   | 0.55797 (19) | 0.42326 (11) | 0.0125                      |  |
| 08   | 0.20579 (15) | 0.57629 (14) | 0.44513 (8)  | 0.0163                      |  |
| C9   | 0.4543 (2)   | 0.7196 (2)   | 0.36498 (10) | 0.0140                      |  |
| O10  | 0.63971 (16) | 0.69611 (16) | 0.33563 (8)  | 0.0188                      |  |
| C11  | 0.3428 (3)   | 0.7388 (2)   | 0.27300 (11) | 0.0195                      |  |
| H21  | 0.6338       | 0.5422       | 0.5017       | 0.0146*                     |  |
| H31  | 0.3366       | 0.3507       | 0.5836       | 0.0149*                     |  |
| H51  | 0.5258       | 0.4239       | 0.7048       | 0.0180*                     |  |
| H52  | 0.5424       | 0.2171       | 0.6890       | 0.0191*                     |  |
| H71  | 0.4147       | 0.4569       | 0.3816       | 0.0137*                     |  |
| H91  | 0.4402       | 0.8236       | 0.4059       | 0.0171*                     |  |
| H111 | 0.3791       | 0.8390       | 0.2343       | 0.0290*                     |  |
| H112 | 0.2112       | 0.7500       | 0.2863       | 0.0299*                     |  |
| H113 | 0.3580       | 0.6334       | 0.2330       | 0.0284*                     |  |
| H1   | 0.7159       | 0.7532       | 0.3689       | 0.0319*                     |  |
| H2   | 0.4249       | 0.1898       | 0.4627       | 0.0307*                     |  |
| Н3   | 0.1795       | 0.4708       | 0.4542       | 0.0290*                     |  |
| H4   | 0.8002       | 0.3523       | 0.7025       | 0.0312*                     |  |
| Н5   | 0.5310       | 0.7560       | 0.5771       | 0.0285*                     |  |
|      |              |              |              |                             |  |

# supporting information

|     | 1 1        |                 |            |             |             |             |
|-----|------------|-----------------|------------|-------------|-------------|-------------|
|     | $U^{11}$   | U <sup>22</sup> | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
| 01  | 0.0168 (6) | 0.0130 (5)      | 0.0175 (5) | -0.0022 (4) | 0.0027 (5)  | -0.0036 (4) |
| C2  | 0.0103 (7) | 0.0137 (6)      | 0.0122 (6) | 0.0004 (6)  | 0.0007 (6)  | -0.0009 (5) |
| C3  | 0.0118 (7) | 0.0125 (6)      | 0.0145 (7) | 0.0011 (6)  | 0.0000 (6)  | 0.0014 (5)  |
| 04  | 0.0207 (6) | 0.0137 (5)      | 0.0198 (5) | 0.0040 (5)  | -0.0064 (5) | -0.0030 (4) |
| C5  | 0.0146 (8) | 0.0191 (7)      | 0.0144 (7) | 0.0011 (6)  | 0.0020 (6)  | 0.0022 (6)  |
| 06  | 0.0144 (6) | 0.0283 (6)      | 0.0142 (5) | 0.0026 (5)  | -0.0015 (4) | -0.0002 (4) |
| C7  | 0.0103 (7) | 0.0127 (7)      | 0.0146 (7) | 0.0004 (5)  | 0.0003 (6)  | -0.0003 (6) |
| 08  | 0.0102 (5) | 0.0128 (5)      | 0.0259 (6) | 0.0000 (4)  | -0.0005 (4) | 0.0033 (4)  |
| С9  | 0.0130 (7) | 0.0143 (6)      | 0.0148 (7) | -0.0010 (6) | 0.0003 (6)  | 0.0017 (6)  |
| O10 | 0.0120 (6) | 0.0284 (6)      | 0.0160 (5) | -0.0049(5)  | 0.0009 (4)  | -0.0020 (5) |
| C11 | 0.0173 (8) | 0.0250 (8)      | 0.0163 (7) | 0.0002 (7)  | -0.0017 (6) | 0.0065 (6)  |
|     |            |                 |            |             |             |             |

Atomic displacement parameters  $(Å^2)$ 

Geometric parameters (Å, °)

| 01-C2     | 1.4277 (17) | O6—H4         | 0.870       |
|-----------|-------------|---------------|-------------|
| O1—H5     | 0.868       | C7—O8         | 1.4354 (18) |
| C2—C3     | 1.5335 (19) | С7—С9         | 1.533 (2)   |
| C2—C7     | 1.5323 (19) | С7—Н71        | 0.971       |
| C2—H21    | 0.983       | O8—H3         | 0.837       |
| C3—O4     | 1.4354 (18) | C9—O10        | 1.4352 (19) |
| C3—C5     | 1.509 (2)   | C9—C11        | 1.516 (2)   |
| C3—H31    | 0.980       | С9—Н91        | 0.979       |
| O4—H2     | 0.875       | O10—H1        | 0.845       |
| C5—O6     | 1.4269 (18) | C11—H111      | 0.969       |
| C5—H51    | 0.983       | C11—H112      | 0.991       |
| C5—H52    | 0.995       | C11—H113      | 0.981       |
|           |             |               |             |
| C2—O1—H5  | 108.6       | C2—C7—O8      | 109.94 (12) |
| O1—C2—C3  | 107.49 (11) | C2—C7—C9      | 112.99 (12) |
| O1—C2—C7  | 110.15 (12) | O8—C7—C9      | 107.87 (12) |
| C3—C2—C7  | 112.26 (12) | C2—C7—H71     | 109.2       |
| O1—C2—H21 | 109.3       | O8—C7—H71     | 110.1       |
| C3—C2—H21 | 109.3       | С9—С7—Н71     | 106.7       |
| C7—C2—H21 | 108.4       | С7—О8—Н3      | 99.4        |
| C2—C3—O4  | 109.91 (11) | C7—C9—O10     | 108.44 (13) |
| C2—C3—C5  | 112.67 (12) | C7—C9—C11     | 111.20 (12) |
| O4—C3—C5  | 108.04 (12) | O10-C9-C11    | 106.98 (12) |
| C2—C3—H31 | 109.3       | С7—С9—Н91     | 108.7       |
| O4—C3—H31 | 111.0       | O10—C9—H91    | 111.4       |
| C5—C3—H31 | 105.9       | С11—С9—Н91    | 110.2       |
| C3—O4—H2  | 111.5       | C9—O10—H1     | 114.5       |
| C3—C5—O6  | 110.76 (12) | C9—C11—H111   | 112.7       |
| C3—C5—H51 | 106.9       | C9—C11—H112   | 112.6       |
| O6—C5—H51 | 111.7       | H111—C11—H112 | 107.7       |
| C3—C5—H52 | 110.6       | C9—C11—H113   | 109.2       |
|           |             |               |             |

# supporting information

| O6—C5—H52  | 109.2 | H111—C11—H113 | 107.8 |
|------------|-------|---------------|-------|
| H51—C5—H52 | 107.6 | H112—C11—H113 | 106.6 |
| С5—О6—Н4   | 100.8 |               |       |

## Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | H···A | D···A     | D—H··· $A$ |  |
|----------------------------|-------------|-------|-----------|------------|--|
| 010—H1…O1 <sup>i</sup>     | 0.85        | 1.98  | 2.782 (2) | 158        |  |
| O4—H2···O6 <sup>ii</sup>   | 0.87        | 1.92  | 2.779 (2) | 168        |  |
| 08—H3…O4 <sup>ii</sup>     | 0.84        | 1.97  | 2.742 (2) | 152        |  |
| O6—H4···O10 <sup>iii</sup> | 0.87        | 1.92  | 2.772 (2) | 165        |  |
| O1—H5…O8 <sup>i</sup>      | 0.87        | 1.84  | 2.704 (2) | 173        |  |

Symmetry codes: (i) x+1/2, -y+3/2, -z+1; (ii) x-1/2, -y+1/2, -z+1; (iii) -x+3/2, -y+1, z+1/2.