metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hexaaquazinc(II) dichloride bis(hexamethylenetetramine) tetrahydrate

Xin Jian Yao, Ya Wen Xuan* and Wen Wu

Department of Chemistry, Zhokou Normal University, Henan 466001, People's Republic of China

Correspondence e-mail: bookw@126.com

Received 19 July 2008; accepted 1 August 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (N–C) = 0.004 Å; R factor = 0.038; wR factor = 0.113; data-to-parameter ratio = 17.1.

The title compound, $[Zn(H_2O)_6]Cl_2 \cdot 2C_6H_{12}N_4 \cdot 4H_2O$, has been prepared under mild hydrothermal conditions. The Zn^{II} atom, located on a centre of symmetry, is coordinated by six water molecules in a distorted octahedral coordination geometry. The hexamethylenetetramine molecule is not coordinated to Zn^{II} but links the Zn complexes *via* three $O-H \cdots N$ hydrogen bonds. The remaining N atom of the hexamethylenetetramine molecule is hydrogen-bonded to a solvent water molecule. In the crystal structure, intermolecular $O-H \cdots O$, $O-H \cdots N$ and $O-H \cdots Cl$ hydrogen bonds link the components into a three-dimensional network.

Related literature

For related compounds, see: Zhang et al. (2000).

Experimental

Crystal data

$Zn(H_2O)_6]Cl_2 \cdot 2C_6H_{12}N_4 \cdot 4H_2O$	c = 9.4535 (15) Å
$M_r = 596.84$	$\alpha = 119.521 \ (1)^{\circ}$
Triclinic, P1	$\beta = 94.218 \ (2)^{\circ}$
a = 9.345 (3) Å	$\gamma = 100.969 \ (2)^{\circ}$
o = 9.4176 (15) Å	V = 697.0 (3) Å ³

Z = 1Mo *K* α radiation

$\mu = 1.13 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.690, \ T_{\max} = 0.849$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.038 & 151 \text{ parameters} \\ wR(F^2) &= 0.113 & H\text{-atom parameters constrained} \\ S &= 1.05 & \Delta\rho_{\text{max}} = 0.51 \text{ e } \text{\AA}^{-3} \\ 2576 \text{ reflections} & \Delta\rho_{\text{min}} = -0.68 \text{ e } \text{\AA}^{-3} \end{split}$$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1W \cdots N3 01 - H2W \cdots O5^{i} 02 - H3W \cdots N2^{ii} 02 - H4W \cdots O4^{ii} 03 - H5W \cdots C11 03 - M5W \cdots V11 04 - 100 - 1$	0.82	2.05	2.827 (3)	158
	0.83	1.94	2.743 (3)	162
	0.83	1.99	2.804 (3)	167
	0.84	1.90	2.711 (3)	165
	0.82	2.55	3.197 (2)	137
$O3 - H6W \cdots N1^{m}$	0.83	2.01	2.813 (3)	165
$O4 - H7W \cdots Cl1$	0.83	2.36	3.175 (2)	168
$O4 - H8W \cdots N4^{iv}$	0.84	2.00	2.835 (3)	174
$O5 - H9W \cdots Cl1$	0.83	2.43	3.255 (3)	168
$O5 - H10W \cdots Cl1^{v}$	0.83	2.38	3.213 (3)	175

Symmetry codes: (i) x, y, z - 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) -x, -y + 1, -z + 1; (v) -x, -y, -z + 1.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Natural Science Foundation of Henan Province and the Key Discipline Foundation of Zhoukou Normal University for financial support of this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2186).

References

- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, Y., Li, J., Nishiura, M. & Imamoto, T. (2000). J. Mol. Struct. 523, 257–260.

 $0.36 \times 0.29 \times 0.15 \text{ mm}$

5184 measured reflections 2576 independent reflections

2466 reflections with $I > 2\sigma(I)$

T = 291 (2) K

 $R_{\rm int} = 0.018$

supporting information

Acta Cryst. (2008). E64, m1132 [doi:10.1107/S1600536808024793]

Hexaaquazinc(II) dichloride bis(hexamethylenetetramine) tetrahydrate

Xin Jian Yao, Ya Wen Xuan and Wen Wu

S1. Comment

The asymmetric unit (Fig.1) consists of one half of hexaaua Zn^{II} octahedron, one chloride ion, one uncoordinated neutral hexamethylenetetramine and two molecules of water of crystallization. The hexamethylenetetramine molecule is linked to the $[Zn(H_2O)_6]^{2+}$ via three O—H···N hydrogen bonds, while atom N3 of hexamethylenetetramine is hydrogen-bonded to O5 of the solvent water molecule. The Cl⁻ anions link to the $[Zn(H_2O)_6]^{2+}$ and water of crystallization via O—H···Cl hydrogen bonding, Hydrogen bonding of these anionic and cationic frameworks results in the formation of a three-dimensional network (Table 1, Fig. 2).

S2. Experimental

All the reagents were of AR grade and used without further purification. $C_6H_{12}N_4$ (1.401 g, 10 mmol) were dissolved in 50 mL H₂O solution, then the resultant solution was added in 10 mL double-distilled water containing ZnCl₂ (0.273 g, 2 mmol). The resulting solution was heated at 423 K for 96 h. After cooling to room temperature, block crystals were obtained in a yield up to 21.1%.

S3. Refinement

H atoms bonded to O atoms were located in a difference map and included in their 'as found' positions with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were positioned geometrically with C—H = 0.97 Å and with $U_{iso}(H)=1.2U_{eq}(C)$. All H atoms were treated as riding.

Figure 1

Plot of an asymmetric unit with the 30% probability ellipsoids.

Figure 2

Three-dimensional network of hydrogen-bonding pattern with the motif $R_4^4(16)$ linking the cationic moieties with hexamine which are in turn interwoven with anionic moieties via water molecules.

Hexaaquazinc(II) dichloride bis(hexamethylenetetramine) tetrahydrate

Crystal data	
$[Zn(H_2O)_6]Cl_2 \cdot 2C_6H_{12}N_4 \cdot 4H_2O$	Z = 1
$M_r = 596.84$	F(000) = 316
Triclinic, P1	$D_{\rm x} = 1.422 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.345 (3) Å	Cell parameters from 2143 reflections
b = 9.4176 (15) Å	$\theta = 2.5 - 25.5^{\circ}$
c = 9.4535 (15) Å	$\mu = 1.13 \text{ mm}^{-1}$
$\alpha = 119.521 \ (1)^{\circ}$	T = 291 K
$\beta = 94.218 \ (2)^{\circ}$	Block, colorless
$\gamma = 100.969 \ (2)^{\circ}$	$0.36 \times 0.29 \times 0.15 \text{ mm}$
$V = 697.0 (3) \text{ Å}^3$	
Data collection	
Bruker SMART CCD area-detector	5184 measured reflections
diffractometer	2576 independent reflections
Radiation source: fine-focus sealed tube	2466 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.018$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$l = -11 \rightarrow 11$
$T_{\min} = 0.690, \ T_{\max} = 0.849$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.05	H-atom parameters constrained
2576 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0645P)^2 + 0.6988P]$
151 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.51 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.5000	0.0000	0.0000	0.02942 (16)	
C11	0.18939 (10)	0.17479 (10)	0.43496 (10)	0.0530 (2)	
01	0.3835 (2)	0.1347 (2)	-0.0573 (2)	0.0385 (5)	
H1W	0.3888	0.2257	0.0269	0.058*	
H2W	0.3035	0.0961	-0.1235	0.058*	
02	0.6192 (2)	0.2238 (2)	0.1987 (2)	0.0445 (5)	
H3W	0.6176	0.2521	0.2964	0.067*	
H4W	0.6833	0.2949	0.1930	0.067*	
03	0.3580 (2)	-0.0281 (3)	0.1463 (3)	0.0449 (5)	
H5W	0.3405	0.0629	0.2078	0.067*	
H6W	0.3658	-0.0839	0.1907	0.067*	
04	0.1961 (2)	0.5028 (3)	0.7778 (3)	0.0453 (5)	
H7W	0.2082	0.4201	0.6931	0.068*	
H8W	0.1053	0.4939	0.7784	0.068*	
05	0.1487 (3)	0.0521 (4)	0.7002 (4)	0.0734 (8)	
H9W	0.1699	0.0950	0.6431	0.110*	
H10W	0.0600	-0.0024	0.6715	0.110*	
N1	0.3345 (3)	0.7407 (3)	0.2554 (3)	0.0330 (5)	
N2	0.3362 (3)	0.6543 (3)	0.4602 (3)	0.0333 (5)	
N3	0.3418 (3)	0.4524 (3)	0.1728 (3)	0.0321 (5)	
N4	0.1152 (2)	0.5427 (3)	0.2441 (3)	0.0340 (5)	
C1	0.3865 (3)	0.7935 (3)	0.4289 (3)	0.0356 (6)	
H1A	0.3492	0.8886	0.5010	0.043*	
H1B	0.4942	0.8302	0.4552	0.043*	
C2	0.3944 (3)	0.5116 (3)	0.3488 (3)	0.0342 (6)	

H2A	0.3628	0.4191	0.3677	0.041*
H2B	0.5022	0.5466	0.3743	0.041*
C3	0.1782 (3)	0.4021 (3)	0.1376 (3)	0.0381 (6)
H3A	0.1440	0.3088	0.1546	0.046*
H3B	0.1422	0.3632	0.0223	0.046*
C4	0.1706 (3)	0.6838 (4)	0.2176 (4)	0.0375 (6)
H4A	0.1348	0.6480	0.1032	0.045*
H4B	0.1311	0.7778	0.2876	0.045*
C5	0.3925 (3)	0.5955 (4)	0.1482 (3)	0.0353 (6)
H5A	0.3595	0.5592	0.0331	0.042*
H5B	0.5003	0.6306	0.1729	0.042*
C6	0.1728 (3)	0.5995 (4)	0.4186 (3)	0.0369 (6)
H6A	0.1333	0.6925	0.4910	0.044*
H6B	0.1386	0.5076	0.4377	0.044*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0395 (3)	0.0233 (2)	0.0250 (2)	0.00991 (17)	0.00711 (17)	0.01148 (18)
Cl1	0.0591 (5)	0.0399 (4)	0.0534 (5)	0.0135 (3)	0.0246 (4)	0.0173 (4)
01	0.0604 (11)	0.0278 (9)	0.0329 (10)	0.0192 (8)	-0.0009 (8)	0.0105 (8)
O2	0.0710 (13)	0.0280 (10)	0.0220 (9)	-0.0076 (9)	0.0009 (9)	0.0081 (8)
O3	0.0675 (14)	0.0422 (11)	0.0548 (12)	0.0327 (10)	0.0401 (11)	0.0367 (10)
O4	0.0398 (11)	0.0386 (11)	0.0417 (11)	0.0003 (9)	0.0055 (9)	0.0130 (9)
O5	0.0604 (16)	0.086 (2)	0.0720 (18)	0.0027 (14)	-0.0156 (13)	0.0485 (16)
N1	0.0423 (12)	0.0298 (11)	0.0371 (12)	0.0160 (10)	0.0161 (10)	0.0214 (10)
N2	0.0426 (12)	0.0285 (11)	0.0242 (10)	0.0036 (9)	0.0050 (9)	0.0125 (9)
N3	0.0407 (12)	0.0255 (11)	0.0275 (11)	0.0144 (9)	0.0046 (9)	0.0102 (9)
N4	0.0345 (11)	0.0289 (11)	0.0335 (11)	0.0088 (9)	0.0063 (9)	0.0124 (9)
C1	0.0433 (15)	0.0221 (12)	0.0348 (14)	0.0048 (10)	0.0100 (11)	0.0110 (11)
C2	0.0432 (15)	0.0284 (13)	0.0326 (13)	0.0090 (11)	0.0007 (11)	0.0178 (11)
C3	0.0417 (15)	0.0264 (13)	0.0327 (14)	0.0086 (11)	-0.0005 (11)	0.0066 (11)
C4	0.0443 (15)	0.0376 (15)	0.0404 (15)	0.0219 (12)	0.0136 (12)	0.0226 (12)
C5	0.0452 (15)	0.0399 (15)	0.0314 (13)	0.0217 (12)	0.0167 (11)	0.0214 (12)
C6	0.0427 (15)	0.0337 (14)	0.0326 (14)	0.0055 (11)	0.0128 (11)	0.0167 (11)

Geometric parameters (Å, °)

Zn1—O2 ⁱ	2.0269 (18)	N2—C2	1.476 (3)	
Zn1—O2	2.0269 (18)	N2—C1	1.481 (3)	
Zn1—01	2.0507 (17)	N3—C3	1.472 (4)	
Zn1—O1 ⁱ	2.0507 (17)	N3—C5	1.476 (3)	
Zn1—O3 ⁱ	2.0595 (18)	N3—C2	1.477 (3)	
Zn1—O3	2.0595 (18)	N4—C4	1.477 (4)	
O1—H1W	0.8223	N4—C3	1.478 (3)	
O1—H2W	0.8281	N4—C6	1.479 (4)	
O2—H3W	0.8279	C1—H1A	0.9700	
O2—H4W	0.8360	C1—H1B	0.9700	

O3—H5W	0.8221	C2—H2A	0.9700
O3—H6W	0.8267	C2—H2B	0.9700
O4—H7W	0.8326	С3—НЗА	0.9700
O4—H8W	0.8374	С3—Н3В	0.9700
05—H9W	0.8338	C4—H4A	0.9700
05 H10W	0.8316		0.9700
N1 C1	1.470(4)		0.9700
	1.470(4)	C5 USD	0.9700
NI	1.476 (4)	С5—Н5В	0.9700
NI-C5	1.479 (3)	С6—Н6А	0.9700
N2—C6	1.471 (4)	С6—Н6В	0.9700
O2 ⁱ —Zn1—O2	180.00 (11)	C3—N4—C6	107.8 (2)
$O2^{i}$ —Zn1—O1	92.66 (8)	N1—C1—N2	111.7 (2)
02-Zn1-01	87.34 (8)	N1—C1—H1A	109.3
$02^{i} - 7n1 - 01^{i}$	87 34 (8)	N2—C1—H1A	109.3
$02 - 7n1 - 01^{i}$	92 66 (8)	N1_C1_H1B	109.3
02 - 2n1 - 01	92.00(0)	N2 C1 H1P	109.5
$O_1 = Z_1 = O_1$	100.00(12)		109.5
$02 - 2 = 03^{2}$	89.39 (9)		107.9
$02 - 2n1 - 03^{1}$	90.41 (9)	N2-C2-N3	111.6 (2)
$OI - ZnI - O3^{1}$	86.57 (8)	N2—C2—H2A	109.3
$O1^{1}$ —Zn1—O3 ¹	93.43 (8)	N3—C2—H2A	109.3
$O2^{i}$ —Zn1—O3	90.41 (9)	N2—C2—H2B	109.3
O2—Zn1—O3	89.59 (9)	N3—C2—H2B	109.3
O1—Zn1—O3	93.43 (8)	H2A—C2—H2B	108.0
$O1^{i}$ —Zn1—O3	86.57 (8)	N3—C3—N4	112.2 (2)
O3 ⁱ —Zn1—O3	180.00 (19)	N3—C3—H3A	109.2
Zn1—O1—H1W	109.5	N4—C3—H3A	109.2
Zn1—O1—H2W	126.6	N3—C3—H3B	109.2
H1W—O1—H2W	113.2	N4—C3—H3B	109.2
Zn1—O2—H3W	124.5	НЗА—СЗ—НЗВ	107.9
Zn1-O2-H4W	124.2	N1—C4—N4	112.2 (2)
$H_3W = 0^2 = H_4W$	111.0	N1—C4—H4A	109.2
7n1 - 03 - H5W	109.6	N4-C4-H4A	109.2
7n1 O3 H6W	103.0	N1 C4 H4B	109.2
$H_{5W} = 0.5 - 110 W$	112.5	NA CA HAP	109.2
115 W = 05 = 110 W	110.1	$\mathbf{N} = \mathbf{C} + \mathbf{I} + \mathbf{D}$	109.2
H/W = 04 = H8W	110.1	$\mathbf{M}_{\mathbf{A}} = \mathbf{M}_{\mathbf{A}} = \mathbf{M}_{\mathbf{A}} = \mathbf{M}_{\mathbf{A}}$	107.9 111.7(2)
H9w—O5—H10w	111.5	N3—C5—N1	111.7 (2)
CI—NI—C4	108.4 (2)	N3—C5—H5A	109.3
CI—NI—C5	108.2 (2)	NI—C5—H5A	109.3
C4—N1—C5	108.3 (2)	N3—C5—H5B	109.3
C6—N2—C2	108.5 (2)	N1—C5—H5B	109.3
C6—N2—C1	108.5 (2)	H5A—C5—H5B	108.0
C2—N2—C1	108.0 (2)	N2—C6—N4	112.0 (2)
C3—N3—C5	108.7 (2)	N2—C6—H6A	109.2
C3—N3—C2	108.4 (2)	N4—C6—H6A	109.2
C5—N3—C2	107.9 (2)	N2—C6—H6B	109.2
C4—N4—C3	108.0 (2)	N4—C6—H6B	109.2
C4—N4—C6	108.1 (2)	H6A—C6—H6B	107.9

C4—N1—C1—N2	58.4 (3)	C1—N1—C4—N4	-58.6 (3)	
C5—N1—C1—N2	-58.8 (3)	C5—N1—C4—N4	58.6 (3)	
C6-N2-C1-N1	-58.6 (3)	C3—N4—C4—N1	-58.3 (3)	
C2-N2-C1-N1	58.9 (3)	C6—N4—C4—N1	58.1 (3)	
C6—N2—C2—N3	58.3 (3)	C3—N3—C5—N1	58.1 (3)	
C1—N2—C2—N3	-59.1 (3)	C2—N3—C5—N1	-59.2 (3)	
C3—N3—C2—N2	-58.2 (3)	C1—N1—C5—N3	59.2 (3)	
C5—N3—C2—N2	59.4 (3)	C4—N1—C5—N3	-58.1 (3)	
C5—N3—C3—N4	-58.3 (3)	C2—N2—C6—N4	-58.8 (3)	
C2—N3—C3—N4	58.7 (3)	C1—N2—C6—N4	58.4 (3)	
C4—N4—C3—N3	58.0 (3)	C4—N4—C6—N2	-58.0 (3)	
C6—N4—C3—N3	-58.6 (3)	C3—N4—C6—N2	58.5 (3)	

Symmetry code: (i) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
01—H1 <i>W</i> ···N3	0.82	2.05	2.827 (3)	158
O1—H2 <i>W</i> ···O5 ⁱⁱ	0.83	1.94	2.743 (3)	162
O2—H3 <i>W</i> ···N2 ⁱⁱⁱ	0.83	1.99	2.804 (3)	167
O2—H4 <i>W</i> ···O4 ⁱⁱⁱ	0.84	1.90	2.711 (3)	165
O3—H5 <i>W</i> …Cl1	0.82	2.55	3.197 (2)	137
O3—H6W···N1 ^{iv}	0.83	2.01	2.813 (3)	165
O4—H7 <i>W</i> …Cl1	0.83	2.36	3.175 (2)	168
O4—H8 <i>W</i> ···N4 ^v	0.84	2.00	2.835 (3)	174
O5—H9 <i>W</i> …Cl1	0.83	2.43	3.255 (3)	168
O5—H10W····Cl1 ^{vi}	0.83	2.38	3.213 (3)	175

Symmetry codes: (ii) *x*, *y*, *z*-1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*, *y*-1, *z*; (v) -*x*, -*y*+1, -*z*+1; (vi) -*x*, -*y*, -*z*+1.