organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-{[2,5-Dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]aminocarbonyl}-2,6-difluorobenzamide

Yin-hong Liu, Fang-shi Li* and Yi Li

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China Correspondence e-mail: fangshi.li@njut.edu.cn

Received 6 August 2008; accepted 8 August 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.009 Å; R factor = 0.086; wR factor = 0.248; data-to-parameter ratio = 12.8.

In the molecule of the title compound, $C_{17}H_8Cl_2F_8N_2O_3$, the two aromatic rings are oriented at a dihedral angle of 50.12 (3)°. Intramolecular N-H···O, C-H···O and N-H···Cl hydrogen bonds result in the formation of two six- and one five-membered rings. The six-membered rings have flattened-boat conformations, while the five-membered ring adopts an envelope conformation. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules into centrosymmetric dimers.

Related literature

For related literature, see: Drabek & Boeger (1986). For bondlength data, see: Allen *et al.* (1987). For ring conformation puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{17}H_8Cl_2F_8N_2O_3$ $M_r = 511.15$

Monoclinic, $P2_1/n$ a = 9.2300 (18) Å b = 16.404 (3) Å c = 14.074 (3) Å $\beta = 108.77 (3)^{\circ}$ $V = 2017.6 (8) \text{ Å}^{3}$ Z = 4

Data collection

Enraf–Nonius CAD-4	
diffractometer	
Absorption correction: ψ scan	
(North et al., 1968)	
$T_{\min} = 0.851, T_{\max} = 0.921$	
3609 measured reflections	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.086$ 96 restraints $wR(F^2) = 0.247$ H-atom parameters constrainedS = 1.09 $\Delta \rho_{max} = 0.42$ e Å⁻³3609 reflections $\Delta \rho_{min} = -0.34$ e Å⁻³283 parameters $\Delta \rho_{min} = -0.34$ e Å⁻³

Mo $K\alpha$ radiation

 $0.40 \times 0.30 \times 0.20$ mm

3 standard reflections every 200 reflections

intensity decay: none

3609 independent reflections 1922 reflections with $I > 2\sigma(I)$

 $\mu = 0.42 \text{ mm}^{-1}$

T = 294 (2) K

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2A \cdots Cl2$ $N2 - H2A \cdots O1$	0.86	2.43	2.892 (4)	115
	0.86	1.98	2.664 (6)	135
$N1 - H1A \cdots O2^{i}$ $C10 - H10A \cdots O2$	0.86	1.98	2.814 (6)	163
	0.93	2.28	2.851 (6)	119

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2510).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Drabek, J. & Boeger, M. (1986). European Patent No. 179022.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1756 [doi:10.1107/S1600536808025506]

N-{[2,5-Dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]aminocarbonyl}-2,6-difluorobenzamide

Yin-hong Liu, Fang-shi Li and Yi Li

S1. Comment

The title compound is considered to belong to the fourth generation of insectides with properties such as high selectivity, low acute toxicity for mammals and high biological activity. It is generally recognized as a chitin-synthesis inhibitor that interrupts chitin-synthesis during the development and reproduction of the insectide. As part of our studies in this area, we report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1) the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C9-C14) are, of course, planar, and the dihedral angle between them is A/B = 50.12 (3)°. The intramolecular N-H···O, C-H···O and N-H···Cl hydrogen bonds (Table 1) result in the formation of two six- and one five-membered non-planar rings: C (O1/N1/N2/C7/C8/H2A), D (O2/N2/C8-C10/H10A) and E (Cl2/N2/C9/C14/H2A). Rings C and D adopt twisted [φ = -169.19 (2)°, θ = 21.09 (3)° (for ring C) and φ = 178.48 (3)°, θ = 127.74 (3)° (for ring D)] conformations, having total puckering amplitudes, Q_T, of 0.113 (3) and 0.201 (3) Å, respectively (Cremer & Pople, 1975). Ring E adopts envelope conformation, with H2A atom displaced by 0.190 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

S2. Experimental

The title compound was prepared according to the literature method (Drabek & Boeger, 1986). The crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.3 g) in acetonitrile (25 ml) and evaporating the solvent slowly at room temperature for about 8 d.

S3. Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

N-{[2,5-Dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]aminocarbonyl}- 2,6-difluorobenzamide

Crystal data	
$C_{17}H_8Cl_2F_8N_2O_3$	F(000) = 1016
$M_r = 511.15$	$D_{\rm x} = 1.683 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 25 reflections
a = 9.2300 (18) Å	$\theta = 9 - 12^{\circ}$
b = 16.404 (3) Å	$\mu = 0.42 \text{ mm}^{-1}$
c = 14.074 (3) Å	T = 294 K
$\beta = 108.77 \ (3)^{\circ}$	Block, colorless
V = 2017.6 (8) Å ³	$0.40 \times 0.30 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	3609 independent reflections 1922 reflections with $L > 2\sigma(L)$
Radiation source: fine-focus sealed tube	$R_{\rm rel} = 0.000$
Graphite monochromator	$\theta_{\text{max}} = 25.2^{\circ}$ $\theta_{\text{max}} = 2.0^{\circ}$
$\omega/2\theta$ scans	$h = -11 \rightarrow 10$
Absorption correction: <i>w</i> scan	$k = 0 \rightarrow 19$
(North <i>et al.</i> , 1968)	$l = 0 \rightarrow 16$
$T_{\min} = 0.851, T_{\max} = 0.921$	3 standard reflections every 200 reflections
3609 measured reflections	intensity decay: none
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.086$	Hydrogen site location: inferred from
$wR(F^2) = 0.248$	neighbouring sites
S = 1.09	H-atom parameters constrained
3609 reflections	$w = 1/[\sigma^2(F_0^2) + (0.1258P)^2 + 1.1819P]$
283 parameters	where $P = (F_0^2 + 2F_c^2)/3$
96 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.42 \ m e \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
1.21022 (15)	1.15534 (9)	0.61828 (12)	0.0527 (5)	
1.06547 (19)	0.83402 (11)	0.80001 (17)	0.0914 (8)	
0.4001 (5)	0.7889 (3)	0.7184 (3)	0.0975 (16)	
0.4224 (4)	0.8023 (3)	0.3906 (3)	0.0810 (13)	
1.5260 (5)	1.0359 (3)	0.6887 (5)	0.1116 (18)	
1.5722 (4)	0.9618 (3)	0.8001 (4)	0.1039 (17)	
1.8146 (6)	1.0579 (3)	0.7942 (5)	0.145 (3)	
1.8127 (6)	1.0156 (3)	0.9703 (4)	0.1121 (18)	
1.9281 (6)	1.1152 (3)	0.9350 (4)	0.119 (2)	
1.6616 (6)	1.1347 (3)	0.9601 (4)	0.1029 (15)	
0.6850 (4)	0.7921 (2)	0.6546 (4)	0.0703 (15)	
0.6981 (4)	1.0216 (3)	0.5376 (3)	0.0505 (11)	
1.4248 (4)	1.0694 (3)	0.7916 (4)	0.0758 (16)	
0.5870 (4)	0.9045 (2)	0.5577 (3)	0.0359 (11)	
0.5033	0.9242	0.5175	0.043*	
	x 1.21022 (15) 1.06547 (19) 0.4001 (5) 0.4224 (4) 1.5260 (5) 1.5722 (4) 1.8146 (6) 1.8127 (6) 1.9281 (6) 1.6616 (6) 0.6850 (4) 0.6981 (4) 1.4248 (4) 0.5870 (4) 0.5033	xy $1.21022 (15)$ $1.15534 (9)$ $1.06547 (19)$ $0.83402 (11)$ $0.4001 (5)$ $0.7889 (3)$ $0.4224 (4)$ $0.8023 (3)$ $1.5260 (5)$ $1.0359 (3)$ $1.5722 (4)$ $0.9618 (3)$ $1.8146 (6)$ $1.0579 (3)$ $1.8127 (6)$ $1.0156 (3)$ $1.9281 (6)$ $1.1152 (3)$ $1.6616 (6)$ $1.1347 (3)$ $0.6850 (4)$ $0.7921 (2)$ $0.6981 (4)$ $1.0216 (3)$ $1.4248 (4)$ $1.0694 (3)$ $0.5870 (4)$ 0.9242	xyz $1.21022 (15)$ $1.15534 (9)$ $0.61828 (12)$ $1.06547 (19)$ $0.83402 (11)$ $0.80001 (17)$ $0.4001 (5)$ $0.7889 (3)$ $0.7184 (3)$ $0.4224 (4)$ $0.8023 (3)$ $0.3906 (3)$ $1.5260 (5)$ $1.0359 (3)$ $0.6887 (5)$ $1.5722 (4)$ $0.9618 (3)$ $0.8001 (4)$ $1.8146 (6)$ $1.0579 (3)$ $0.7942 (5)$ $1.8127 (6)$ $1.0156 (3)$ $0.9703 (4)$ $1.9281 (6)$ $1.1152 (3)$ $0.9350 (4)$ $1.6616 (6)$ $0.7921 (2)$ $0.6546 (4)$ $0.6981 (4)$ $1.0216 (3)$ $0.7916 (4)$ $0.5870 (4)$ $0.9045 (2)$ $0.5577 (3)$ 0.5033 0.9242 0.5175	xyz U_{iso}^*/U_{eq} 1.21022 (15)1.15534 (9)0.61828 (12)0.0527 (5)1.06547 (19)0.83402 (11)0.80001 (17)0.0914 (8)0.4001 (5)0.7889 (3)0.7184 (3)0.0975 (16)0.4224 (4)0.8023 (3)0.3906 (3)0.0810 (13)1.5260 (5)1.0359 (3)0.6887 (5)0.1116 (18)1.5722 (4)0.9618 (3)0.8001 (4)0.1039 (17)1.8146 (6)1.0579 (3)0.7942 (5)0.145 (3)1.8127 (6)1.0156 (3)0.9703 (4)0.1121 (18)1.9281 (6)1.1152 (3)0.9350 (4)0.119 (2)1.6616 (6)1.1347 (3)0.9601 (4)0.1029 (15)0.6850 (4)0.7921 (2)0.6546 (4)0.0703 (15)0.6981 (4)1.0216 (3)0.5376 (3)0.0505 (11)1.4248 (4)1.0694 (3)0.7916 (4)0.0758 (16)0.5870 (4)0.9045 (2)0.5577 (3)0.0359 (11)0.50330.92420.51750.043*

N2	0.8483 (4)	0.9219 (2)	0.6377 (3)	0.0327 (10)
H2A	0.8468	0.8724	0.6576	0.039*
C1	0.1954 (8)	0.7296 (5)	0.5816 (6)	0.074 (2)
H1B	0.1414	0.7140	0.6242	0.089*
C2	0.1405 (7)	0.7183 (4)	0.4832 (5)	0.0588 (17)
H2B	0.0444	0.6945	0.4569	0.071*
C3	0.2142 (7)	0.7389 (4)	0.4199 (5)	0.0607 (17)
H3A	0.1704	0.7275	0.3519	0.073*
C4	0.3505 (6)	0.7758 (4)	0.4526 (4)	0.0450 (14)
C5	0.4228 (6)	0.7893 (3)	0.5551 (4)	0.0435 (14)
C6	0.3397 (7)	0.7666 (4)	0.6175 (5)	0.0568 (16)
C7	0.5790 (6)	0.8247 (3)	0.5960 (4)	0.0437 (14)
C8	0.7151 (6)	0.9534 (3)	0.5785 (4)	0.0407 (14)
С9	0.9852 (5)	0.9614 (3)	0.6689 (4)	0.0330 (12)
C10	1.0214 (5)	1.0332 (3)	0.6291 (4)	0.0368 (12)
H10A	0.9477	1.0595	0.5770	0.044*
C11	1.1661 (5)	1.0655 (3)	0.6667 (4)	0.0355 (12)
C12	1.2807 (6)	1.0310 (4)	0.7494 (5)	0.0518 (16)
C13	1.2445 (7)	0.9591 (4)	0.7901 (5)	0.0572 (17)
H13A	1.3159	0.9350	0.8453	0.069*
C14	1.1065 (5)	0.9252 (3)	0.7492 (4)	0.0391 (13)
C15	1.5460 (7)	1.0386 (4)	0.8024 (7)	0.079 (3)
C16	1.6854 (8)	1.0845 (5)	0.8271 (9)	0.107 (4)
H16A	1.6576	1.1394	0.7999	0.129*
C17	1.7772 (11)	1.0946 (6)	0.9319 (7)	0.089

Atomic displacement parameters (\mathring{A}^2)

U^{11}	1 722	T 722			
-	0	U^{ss}	U^{12}	U^{13}	U^{23}
0.0401 (8)	0.0436 (9)	0.0782 (11)	-0.0152 (6)	0.0242 (7)	-0.0007 (7)
0.0513 (10)	0.0599 (12)	0.1330 (18)	-0.0100 (8)	-0.0123 (10)	0.0497 (12)
0.097 (3)	0.135 (4)	0.051 (3)	-0.054 (3)	0.010 (2)	0.026 (2)
0.086 (3)	0.103 (3)	0.059 (3)	-0.045 (3)	0.030 (2)	-0.034 (2)
0.099 (4)	0.106 (4)	0.133 (5)	-0.034 (3)	0.041 (3)	-0.032 (3)
0.054 (2)	0.072 (3)	0.172 (5)	-0.010 (2)	0.019 (3)	-0.015 (3)
0.092 (3)	0.141 (5)	0.225 (7)	-0.023 (3)	0.082 (4)	-0.111 (5)
0.127 (4)	0.104 (4)	0.095 (4)	-0.017 (3)	0.021 (3)	0.052 (3)
0.099 (3)	0.083 (3)	0.116 (4)	-0.024 (3)	-0.048 (3)	0.006 (3)
0.097 (3)	0.111 (4)	0.103 (4)	-0.001 (3)	0.034 (3)	-0.012 (3)
0.029 (2)	0.047 (3)	0.107 (4)	0.0006 (18)	-0.017 (2)	0.037 (2)
0.046 (2)	0.047 (3)	0.057 (3)	-0.0033 (19)	0.013 (2)	-0.005 (2)
0.035 (2)	0.043 (3)	0.129 (5)	-0.009 (2)	-0.001 (2)	0.009 (3)
0.028 (2)	0.019 (2)	0.058 (3)	0.0007 (17)	0.009 (2)	0.0093 (19)
0.028 (2)	0.025 (2)	0.043 (3)	-0.0005 (17)	0.0085 (19)	-0.0044 (19)
0.070 (4)	0.082 (5)	0.076 (4)	-0.028 (4)	0.032 (4)	0.017 (4)
0.046 (3)	0.051 (4)	0.071 (4)	-0.016 (3)	0.007 (3)	0.003 (3)
0.059 (4)	0.061 (4)	0.051 (4)	-0.023 (3)	0.002 (3)	-0.014 (3)
0.045 (3)	0.046 (3)	0.042 (3)	-0.003 (3)	0.011 (3)	-0.004 (3)
	0.0401 (8) 0.0513 (10) 0.097 (3) 0.086 (3) 0.099 (4) 0.054 (2) 0.092 (3) 0.127 (4) 0.099 (3) 0.029 (2) 0.046 (2) 0.028 (2) 0.028 (2) 0.028 (2) 0.028 (2) 0.070 (4) 0.046 (3) 0.059 (4) 0.045 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C5	0.039 (3)	0.042 (3)	0.047 (3)	-0.006 (2)	0.011 (2)	0.010 (3)
C6	0.044 (3)	0.067 (4)	0.053 (4)	-0.009 (3)	0.007 (3)	0.014 (3)
C7	0.045 (3)	0.039 (3)	0.047 (4)	-0.010 (3)	0.016 (3)	0.004 (3)
C8	0.037 (3)	0.027 (3)	0.051 (4)	0.000(2)	0.005 (3)	0.009 (3)
C9	0.026 (2)	0.036 (3)	0.036 (3)	0.000(2)	0.009 (2)	-0.005 (2)
C10	0.032 (2)	0.040 (3)	0.042 (3)	-0.007(2)	0.016 (2)	-0.003(2)
C11	0.033 (3)	0.035 (3)	0.044 (3)	-0.009 (2)	0.020 (2)	0.008 (2)
C12	0.030 (3)	0.053 (4)	0.065 (4)	-0.003 (2)	0.006 (3)	0.004 (3)
C13	0.042 (3)	0.051 (4)	0.071 (4)	0.013 (3)	0.007 (3)	0.017 (3)
C14	0.022 (2)	0.042 (3)	0.049 (3)	0.012 (2)	0.005 (2)	0.009 (2)
C15	0.029 (3)	0.050 (5)	0.142 (8)	0.006 (3)	0.007 (4)	-0.014 (4)
C16	0.041 (4)	0.046 (4)	0.219 (11)	-0.009(3)	0.021 (5)	0.007 (6)
C17	0.080	0.089	0.096	-0.006	0.026	0.004

Geometric parameters (Å, °)

Cl1—C11	1.727 (5)	C2—C3	1.326 (9)	
Cl2—C14	1.751 (6)	C2—H2B	0.9300	
F1—C6	1.398 (7)	O3—C15	1.191 (7)	
F2—C4	1.327 (7)	O3—C12	1.418 (6)	
F3—C15	1.552 (10)	C3—C4	1.338 (8)	
F4—C15	1.284 (8)	С3—НЗА	0.9300	
F5—C16	1.477 (9)	C4—C5	1.399 (8)	
F6—C17	1.403 (10)	C5—C6	1.389 (8)	
F7—C17	1.420 (10)	С5—С7	1.488 (7)	
F8—C17	1.415 (10)	C9—C10	1.390 (7)	
O1—C7	1.186 (6)	C9—C14	1.439 (7)	
N1-C8	1.380 (6)	C10—C11	1.374 (7)	
N1—C7	1.427 (7)	C10—H10A	0.9300	
N1—H1A	0.8600	C11—C12	1.414 (7)	
C1—C2	1.327 (10)	C12—C13	1.398 (8)	
C1—C6	1.401 (9)	C13—C14	1.338 (8)	
C1—H1B	0.9300	C13—H13A	0.9300	
N2—C8	1.347 (6)	C15—C16	1.434 (9)	
N2—C9	1.361 (6)	C16—C17	1.455 (13)	
N2—H2A	0.8600	C16—H16A	0.9800	
O2—C8	1.245 (6)			
C8—N1—C7	126.7 (4)	C11—C10—C9	120.1 (5)	
C8—N1—H1A	116.6	C11-C10-H10A	120.0	
C7—N1—H1A	116.6	C9—C10—H10A	120.0	
C2-C1-C6	115.8 (6)	C10-C11-C12	122.7 (5)	
C2-C1-H1B	122.1	C10-C11-Cl1	120.0 (4)	
C6-C1-H1B	122.1	C12—C11—Cl1	117.2 (4)	
C8—N2—C9	125.8 (4)	C13—C12—C11	117.4 (5)	
C8—N2—H2A	117.1	C13—C12—O3	121.2 (5)	
C9—N2—H2A	117.1	C11—C12—O3	121.4 (5)	
C1—C2—C3	124.0 (6)	C14—C13—C12	119.7 (5)	

C1—C2—H2B	118.0	C14—C13—H13A	120.2
C3—C2—H2B	118.0	C12—C13—H13A	120.2
C15—O3—C12	125.5 (6)	C13—C14—C9	123.9 (5)
C2—C3—C4	120.9 (6)	C13—C14—Cl2	118.8 (4)
С2—С3—НЗА	119.6	C9—C14—Cl2	117.2 (4)
С4—С3—Н3А	119.6	O3—C15—F4	126.1 (6)
F2—C4—C3	122.4 (6)	O3—C15—C16	122.7 (7)
F2—C4—C5	117.0 (5)	F4—C15—C16	111.1 (6)
C3—C4—C5	120.7 (6)	O3—C15—F3	94.9 (6)
C6—C5—C4	115.6 (5)	F4—C15—F3	84.7 (6)
C6—C5—C7	121.6 (5)	C16—C15—F3	93.7 (7)
C4—C5—C7	122.8 (5)	C15—C16—C17	119.4 (9)
C5C6F1	116.8 (5)	C15—C16—F5	121.4 (7)
C5—C6—C1	122.9 (6)	C17—C16—F5	94.9 (6)
F1	120.1 (6)	C15—C16—H16A	106.6
O1—C7—N1	123.1 (5)	C17—C16—H16A	106.6
O1—C7—C5	125.0 (5)	F5—C16—H16A	106.6
N1—C7—C5	111.9 (5)	F6	115.2 (7)
O2—C8—N2	125.8 (5)	F6—C17—F7	95.9 (6)
O2—C8—N1	116.9 (4)	F8—C17—F7	134.6 (8)
N2—C8—N1	117.2 (5)	F6—C17—C16	105.8 (7)
N2-C9-C10	126.3 (5)	F8—C17—C16	95.3 (7)
N2—C9—C14	117.6 (5)	F7—C17—C16	107.7 (7)
C10—C9—C14	116.0 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2A····Cl2	0.86	2.43	2.892 (4)	115
N2—H2A…O1	0.86	1.98	2.664 (6)	135
N1—H1A····O2 ⁱ	0.86	1.98	2.814 (6)	163
C10—H10A…O2	0.93	2.28	2.851 (6)	119

Symmetry code: (i) -x+1, -y+2, -z+1.