metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido(4,7-diphenyl-1,10phenanthroline- $\kappa^2 N, N'$)gold(III) tetrachloridoaurate(III)

Roya Ahmadi,^a Vahid Amani^a* and Hamid Reza Khavasi^b

^aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and ^bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran Correspondence e-mail: v_amani2002@yahoo.com

Received 5 August 2008; accepted 7 August 2008

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.012 Å; *R* factor = 0.069; w*R* factor = 0.174; data-to-parameter ratio = 22.3.

In the cation of the title compound, $[AuCl_2(C_{24}H_{16}N_2)]$ -[AuCl₄], the Au^{III} atom is four-coordinated in a distorted square-planar configuration by two N atoms from a 4,7diphenyl-1,10-phenanthroline ligand and two terminal Cl atoms. In the anion, the Au^{III} atom has a square-planar coordination. In the crystal structure, intra- and intermolecular C-H···Cl hydrogen bonds are found.

Related literature

For related literature, see: Hojjat Kashani *et al.* (2008); McInnes *et al.* (1995); Bjernemose *et al.* (2004); Hayoun *et al.* (2006); Abbate *et al.* (2000); Adams & Strahle (1982).

Experimental

Crystal data

 $[AuCl_2(C_{24}H_{16}N_2)][AuCl_4]$ $M_r = 939.03$ Monoclinic, C2/c a = 26.2625 (16) Å b = 13.7608 (6) Å c = 14.4292 (9) Å $\beta = 101.207$ (5)° $V = 5115.2 (5) Å^{3}$ Z = 8Mo Ka radiation $\mu = 12.10 \text{ mm}^{-1}$ T = 120 (2) K $0.43 \times 0.35 \times 0.30 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2005) $T_{\rm min} = 0.580, T_{\rm max} = 0.640$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.068 & 308 \text{ parameters} \\ wR(F^2) &= 0.173 & H\text{-atom parameters constrained} \\ S &= 1.16 & \Delta\rho_{\text{max}} = 1.07 \text{ e } \text{ Å}^{-3} \\ 6864 \text{ reflections} & \Delta\rho_{\text{min}} = -1.02 \text{ e } \text{ Å}^{-3} \end{split}$$

18667 measured reflections

 $R_{\rm int} = 0.090$

6864 independent reflections

6404 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Au1-N2	2.032 (6)	Au2-Cl4	2.281 (2)
Au1-N1	2.039 (7)	Au2-Cl5	2.281 (2)
Au1-Cl2	2.2546 (19)	Au2-Cl6	2.284 (2)
Au1-Cl1	2.257 (2)	Au2-Cl3	2.285 (2)
N2-Au1-N1	81.1 (3)	Cl4-Au2-Cl5	90.26 (10)
N2-Au1-Cl2	175.42 (19)	Cl4-Au2-Cl6	178.77 (8)
N1-Au1-Cl2	94.3 (2)	Cl5-Au2-Cl6	89.67 (9)
N2-Au1-Cl1	94.92 (19)	Cl4-Au2-Cl3	89.96 (10)
N1-Au1-Cl1	175.95 (19)	Cl5-Au2-Cl3	178.75 (7)
Cl2-Au1-Cl1	89.62 (8)	Cl6-Au2-Cl3	90.14 (9)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C1-H1···Cl2	0.93	2.68	3.244 (9)	120
$C1 - H1 \cdot \cdot \cdot Cl6^{i}$	0.93	2.79	3.668 (8)	159
C18-H18···Cl2 ⁱⁱ	0.93	2.79	3.653 (8)	155
C22-H22···Cl1	0.93	2.66	3.239 (8)	121
$C22-H22\cdots Cl4^{iii}$	0.93	2.76	3.555 (9)	143
Symmetry codes:	(i) — <i>x</i> , –	-y + 1, -z + 1;	(ii) $x + \frac{1}{2}$,	$y + \frac{1}{2}, z;$ (iii)

 $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2509).

References

- Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). *Inorg. Chim.* Acta, 311, 1–5.
- Adams, H. N. & Strahle, J. (1982). Z. Anorg. Allg. Chem. 485, 65-80.
- Bjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719-m1721.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120–6122.
- Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840-m841.
- McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany

supporting information

Acta Cryst. (2008). E64, m1156-m1157 [doi:10.1107/S1600536808025476]

Dichlorido(4,7-diphenyl-1,10-phenanthroline- $\kappa^2 N, N'$)gold(III) tetrachloridoaurate(III)

Roya Ahmadi, Vahid Amani and Hamid Reza Khavasi

S1. Comment

Recently, we reported the synthesis and crystal structure of [H₂DA18C6]- [AuCl₄].2H₂O, (II) (Hojjat Kashani *et al.*, 2008) [where H₂DA18C6 is 1,10-Diazonia-18-crown-6]. There are several Au^{III} complexes, with formula, [AuCl₂(N—N)], such as [AuCl₂(bipy)][BF₄], (III) (McInnes *et al.*, 1995), [AuCl₂(bipy)](NO₃), (IV) (Bjernemose *et al.*, 2004), [AuCl₂(bipy)]- [AuBr₄], (V) (Hayoun *et al.*, 2006) and [AuCl₂(phen)]Cl.H₂O, (VI) (Abbate *et al.*, 2000) [where bipy is 2,2'-bipyridine and phen is 1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods. There are also two Au^{III} complexes, with formula, [AuCl₂L₂], such as [AuCl₂(py)₂][AuCl₄], (VII) and [AuCl₂(py)₂]Cl.H₂O, (VIII) (Adams & Strahle, 1982) [where py is pyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1) contains one cation and one anion. In the cation, the Au^{III} atom is four-coordinated in a distorted square-planar configuration by two N atoms from 4,7-diphenyl-1,10-phenanthroline ligand and two terminal Cl atoms. In the anion, the Au ion has a square-planar coordination. In the cation, the Au-Cl and Au-N bond lengths and angles (Table 1) are in good agreement with the corresponding values in (III) and (IV). In the anion, the Au-Cl bond lengths and angles (Table 1) are within normal ranges.

In the crystal structure, intra- and intermolecular C-H···Cl hydrogen bonds (Table 2) link the molecules, in which they may be effective in the stabilization of the structure.

S2. Experimental

For the preparation of the title compound, a solution of 4,7-diphenyl-1,10- phenanthroline (0.21 g, 0.63 mmol) in EtOH (30 ml) was added to a solution of HAuCl₄.3H₂O, (0.25 g, 0.63 mmol) in acetonitrile (40 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals were isolated (yield; 0.45 g, 75.8%, m.p. < 573 K).

S3. Refinement

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Dichlorido(4,7-diphenyl-1,10-phenanthroline- $\kappa^2 N$,N')gold(III) tetrachloridoaurate(III)

Crystal data	
$[AuCl_2(C_{24}H_{16}N_2)][AuCl_4]$	V = 5115.2 (5) Å ³
$M_r = 939.03$	Z = 8
Monoclinic, $C2/c$	F(000) = 3472
Hall symbol: -C 2yc	$D_{\rm x} = 2.439 {\rm ~Mg} {\rm ~m}^{-3}$
a = 26.2625 (16) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 13.7608 (6) Å	Cell parameters from 2231 reflections
c = 14.4292 (9) Å	$\theta = 1.7 - 29.2^{\circ}$
$\beta = 101.207 \ (5)^{\circ}$	$\mu = 12.10 \ { m mm^{-1}}$

T = 120 KPrism, yellow

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: numerical
shape of crystal determined optically
(PROGRAM? Reference?)
$T_{\min} = 0.580, \ T_{\max} = 0.640$

Refinement

5	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H-atom parameters constrained
$wR(F^2) = 0.173$	$w = 1/[\sigma^2(F_o^2) + (0.0977P)^2 + 20.7667P]$
S = 1.16	where $P = (F_0^2 + 2F_c^2)/3$
6864 reflections	$(\Delta/\sigma)_{\rm max} = 0.048$
308 parameters	$\Delta \rho_{\rm max} = 1.07 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta ho_{\min} = -1.02 \text{ e} \mathrm{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXTL (Sheldrick,
direct methods	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.00055 (6)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.43 \times 0.35 \times 0.30 \text{ mm}$

 $R_{\rm int} = 0.090$

 $h = -35 \rightarrow 35$ $k = -18 \rightarrow 18$ $l = -19 \rightarrow 13$

18667 measured reflections 6864 independent reflections 6404 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 29.2^{\circ}, \ \theta_{\rm min} = 1.7^{\circ}$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Aul	0.097267 (11)	-0.152249 (19)	0.112685 (18)	0.01435 (13)	
Au2	0.165438 (12)	0.96986 (2)	0.854512 (18)	0.01739 (13)	
Cl1	0.12293 (8)	-0.30783 (14)	0.10295 (15)	0.0240 (4)	
Cl2	0.01813 (8)	-0.20496 (16)	0.12856 (16)	0.0259 (4)	
C13	0.21356 (9)	1.10394 (18)	0.83479 (15)	0.0280 (4)	
Cl4	0.23388 (10)	0.87252 (19)	0.84084 (16)	0.0320 (5)	
C15	0.11779 (10)	0.83657 (16)	0.87768 (15)	0.0284 (5)	
C16	0.09622 (8)	1.06689 (16)	0.86481 (15)	0.0257 (4)	
N1	0.0787 (3)	-0.0088 (5)	0.1182 (5)	0.0160 (12)	
N2	0.1667 (2)	-0.0939(5)	0.1005 (4)	0.0138 (11)	
C1	0.0334 (3)	0.0290 (6)	0.1291 (6)	0.0203 (15)	
H1	0.0055	-0.0117	0.1321	0.024*	

C2	0.0279 (3)	0.1283 (7)	0.1359 (6)	0.0193 (14)
H2	-0.0041	0.1535	0.1422	0.023*
C3	0.0691 (3)	0.1922 (6)	0.1336 (5)	0.0159 (13)
C4	0.0612 (3)	0.2989 (6)	0.1480 (5)	0.0161 (13)
C5	0.0146 (4)	0.3441 (6)	0.1051 (6)	0.0211 (16)
Н5	-0.0114	0.3090	0.0661	0.025*
C6	0.0082 (3)	0.4422 (7)	0.1221 (6)	0.0239 (16)
H6	-0.0222	0.4734	0.0937	0.029*
C7	0.0463 (4)	0.4939 (6)	0.1804 (6)	0.0229 (16)
H7	0.0418	0.5599	0.1898	0.027*
C8	0.0914 (4)	0.4485 (6)	0.2254 (6)	0.0243 (16)
H8	0.1167	0.4834	0.2660	0.029*
С9	0.0985 (4)	0.3503 (5)	0.2094 (6)	0.0194 (15)
Н9	0.1285	0.3191	0.2400	0.023*
C10	0.1156 (3)	0.1527 (5)	0.1165 (5)	0.0127 (13)
C11	0.1599 (3)	0.2079 (5)	0.1012 (5)	0.0146 (13)
H11	0.1577	0.2754	0.0998	0.018*
C12	0.2050 (3)	0.1647 (5)	0.0888 (6)	0.0161 (13)
H12	0.2322	0.2029	0.0769	0.019*
C13	0.2106 (3)	0.0604 (5)	0.0940 (5)	0.0125 (12)
C14	0.2567 (3)	0.0094 (5)	0.0877 (5)	0.0139 (12)
C15	0.3067 (3)	0.0582 (5)	0.0815 (5)	0.0133 (12)
C16	0.3258 (3)	0.1344 (6)	0.1443 (5)	0.0178 (14)
H16	0.3066	0.1577	0.1874	0.021*
C17	0.3743 (3)	0.1738 (6)	0.1401 (6)	0.0194 (14)
H17	0.3868	0.2254	0.1796	0.023*
C18	0.4039 (3)	0.1381 (6)	0.0787 (6)	0.0202 (15)
H18	0.4366	0.1637	0.0782	0.024*
C19	0.3838 (3)	0.0621 (6)	0.0167 (5)	0.0195 (14)
H19	0.4032	0.0384	-0.0258	0.023*
C20	0.3364 (3)	0.0230 (5)	0.0182 (5)	0.0146 (13)
H20	0.3236	-0.0272	-0.0230	0.018*
C21	0.2552 (3)	-0.0924 (6)	0.0870 (5)	0.0160 (13)
H21	0.2849	-0.1274	0.0823	0.019*
C22	0.2093 (3)	-0.1420 (6)	0.0935 (5)	0.0170 (14)
H22	0.2089	-0.2096	0.0929	0.020*
C23	0.1672 (3)	0.0044 (5)	0.1023 (4)	0.0129 (13)
C24	0.1190 (3)	0.0514 (5)	0.1122 (5)	0.0113 (12)
	× /	× /	× /	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01838 (19)	0.01279 (17)	0.01316 (17)	-0.00363 (8)	0.00622 (12)	-0.00142 (9)
Au2	0.0225 (2)	0.01961 (19)	0.00978 (17)	0.00323 (9)	0.00248 (12)	-0.00040 (9)
Cl1	0.0312 (9)	0.0133 (8)	0.0308 (9)	-0.0030 (7)	0.0144 (8)	0.0002 (7)
Cl2	0.0258 (9)	0.0216 (9)	0.0340 (10)	-0.0098 (7)	0.0152 (8)	-0.0046 (8)
C13	0.0315 (10)	0.0319 (11)	0.0216 (8)	-0.0063 (8)	0.0079 (8)	0.0042 (8)
Cl4	0.0382 (12)	0.0347 (11)	0.0229 (9)	0.0178 (10)	0.0057 (9)	-0.0016 (9)

supporting information

C15	0.0424 (12)	0.0248 (10)	0.0176 (8)	-0.0076 (8)	0.0050 (8)	-0.0014 (7)
C16	0.0248 (9)	0.0259 (10)	0.0272 (9)	0.0051 (7)	0.0066 (8)	-0.0032 (8)
N1	0.023 (3)	0.012 (3)	0.016 (3)	-0.002(2)	0.010 (2)	0.002 (2)
N2	0.015 (3)	0.016 (3)	0.013 (2)	-0.003 (2)	0.007 (2)	0.001 (2)
C1	0.022 (4)	0.017 (4)	0.024 (4)	-0.005 (3)	0.009 (3)	-0.003 (3)
C2	0.012 (3)	0.026 (4)	0.022 (3)	0.000 (3)	0.008 (3)	-0.003 (3)
C3	0.015 (3)	0.016 (3)	0.016 (3)	0.003 (3)	0.001 (3)	0.004 (3)
C4	0.024 (3)	0.014 (3)	0.014 (3)	0.004 (3)	0.011 (3)	-0.002 (3)
C5	0.027 (4)	0.018 (4)	0.018 (3)	0.005 (3)	0.007 (3)	-0.003 (3)
C6	0.025 (4)	0.027 (4)	0.023 (4)	0.014 (3)	0.015 (3)	0.004 (3)
C7	0.038 (5)	0.016 (3)	0.021 (3)	0.001 (3)	0.022 (3)	-0.002 (3)
C8	0.031 (4)	0.016 (3)	0.025 (4)	-0.003 (3)	0.003 (3)	-0.004 (3)
C9	0.030 (4)	0.012 (3)	0.016 (3)	0.002 (3)	0.002 (3)	-0.001 (3)
C10	0.014 (3)	0.014 (3)	0.012 (3)	-0.002 (2)	0.007 (2)	0.000 (2)
C11	0.016 (3)	0.015 (3)	0.015 (3)	0.002 (2)	0.006 (3)	0.002 (3)
C12	0.015 (3)	0.012 (3)	0.022 (3)	-0.006 (2)	0.006 (3)	0.002 (3)
C13	0.009 (3)	0.015 (3)	0.015 (3)	-0.001 (2)	0.006 (2)	0.000 (3)
C14	0.018 (3)	0.012 (3)	0.012 (3)	-0.002 (2)	0.003 (3)	-0.001 (2)
C15	0.007 (3)	0.017 (3)	0.015 (3)	0.003 (2)	0.001 (2)	0.003 (3)
C16	0.016 (3)	0.018 (3)	0.017 (3)	0.002 (3)	-0.001 (3)	0.002 (3)
C17	0.021 (4)	0.015 (3)	0.022 (3)	-0.001 (3)	0.006 (3)	0.000 (3)
C18	0.019 (4)	0.016 (3)	0.026 (4)	-0.001 (3)	0.005 (3)	-0.001 (3)
C19	0.019 (3)	0.024 (4)	0.016 (3)	-0.001 (3)	0.005 (3)	-0.001 (3)
C20	0.018 (3)	0.018 (3)	0.010 (3)	-0.001 (2)	0.008 (3)	-0.001 (2)
C21	0.017 (3)	0.016 (3)	0.018 (3)	0.002 (2)	0.009 (3)	-0.001 (3)
C22	0.024 (4)	0.016 (3)	0.013 (3)	0.004 (3)	0.008 (3)	0.002 (3)
C23	0.018 (3)	0.017 (3)	0.005 (3)	0.003 (3)	0.004 (2)	-0.004 (3)
C24	0.015 (3)	0.009 (3)	0.011 (3)	-0.006 (2)	0.007 (2)	0.001 (2)

Geometric parameters (Å, °)

Au1—N2	2.032 (6)	C10—C11	1.442 (10)
Au1—N1	2.039 (7)	C11—C12	1.367 (10)
Au1—Cl2	2.2546 (19)	C11—H11	0.9300
Au1—Cl1	2.257 (2)	C12—C13	1.444 (10)
Au2—Cl4	2.281 (2)	C12—H12	0.9300
Au2—Cl5	2.281 (2)	C13—C23	1.401 (9)
Au2—Cl6	2.284 (2)	C13—C14	1.417 (10)
Au2—Cl3	2.285 (2)	C14—C21	1.400 (10)
C1—N1	1.335 (10)	C14—C15	1.494 (10)
C1—C2	1.379 (11)	C15—C20	1.398 (9)
C1—H1	0.9300	C15—C16	1.412 (11)
C2—C3	1.399 (10)	C16—C17	1.395 (11)
С2—Н2	0.9300	C16—H16	0.9300
C3—C10	1.403 (10)	C17—C18	1.378 (12)
C3—C4	1.502 (10)	C17—H17	0.9300
C4—C9	1.381 (11)	C18—C19	1.411 (11)
C4—C5	1.404 (11)	C18—H18	0.9300

05 00	1 200 (11)	C10 C20	1 2(1 (10)
0.506	1.389 (11)	C19—C20	1.301 (10)
С5—Н5	0.9300	C19—H19	0.9300
C6—C7	1.373 (14)	C20—H20	0.9300
С6—Н6	0.9300	C21—C22	1.405 (11)
C7—C8	1.383 (13)	C21—H21	0.9300
С7—Н7	0.9300	C22—N2	1 320 (10)
C8-C9	1 390 (11)	C22_H22	0.9300
C° U°	0.0200	C22 N2	1.252 (0)
	0.9300	C23—N2	1.552 (9)
С9—Н9	0.9300	C23—C24	1.454 (9)
C10—C24	1.399 (9)	C24—N1	1.359 (9)
N2—Au1—N1	81.1 (3)	C11—C12—C13	120.6 (7)
N2—Au1—Cl2	175.42 (19)	C11—C12—H12	119.7
N1—Au1—Cl2	94.3 (2)	C13—C12—H12	119.7
N2—Au1—Cl1	94.92 (19)	C23—C13—C14	116.9 (7)
N1—Au1—Cl1	175.95 (19)	C23—C13—C12	118.3 (6)
Cl2—Au1—Cl1	89.62 (8)	C14—C13—C12	124.8 (6)
C14—Au2—C15	90.26 (10)	C21—C14—C13	118.2 (7)
C14— $Au2$ — $C16$	178 77 (8)	C_{21} C_{14} C_{15}	118.2(7)
$C_{15} = A_{11} 2 = C_{16} C_{15}$	89.67 (0)	C_{13} C_{14} C_{15}	123.5(7)
C13— $Au2$ — $C10$	89.07 (9)	$C_{13} - C_{14} - C_{15}$	123.3(7)
CI4— $Au2$ — $CI3$	89.90 (10)	$C_{20} = C_{15} = C_{16}$	120.2 (7)
CI5—Au2—CI3	1/8./5(/)	020-015-014	119.4 (7)
Cl6—Au2—Cl3	90.14 (9)	C16—C15—C14	120.2 (6)
N1—C1—C2	120.1 (7)	C17—C16—C15	118.3 (7)
N1—C1—H1	119.9	C17—C16—H16	120.8
C2—C1—H1	119.9	C15—C16—H16	120.9
C1—C2—C3	121.9 (7)	C18—C17—C16	121.5 (8)
C1—C2—H2	119.0	C18—C17—H17	119.2
С3—С2—Н2	119.0	C16—C17—H17	119.2
$C_2 - C_3 - C_{10}$	117.0 117.7(7)	C_{17} C_{18} C_{19}	118.9 (8)
$C_2 C_3 C_4$	117.7(7) 118.0(7)	C_{17} C_{18} H_{18}	120.6
$C_2 = C_3 = C_4$	110.9(7) 122.5(7)	$C_{10} = C_{18} = H_{18}$	120.0
C10-C3-C4	125.5 (7)		120.3
09-04-05	120.3 (7)	020-019-018	120.9 (7)
C9—C4—C3	119.3 (7)	C20—C19—H19	119.5
C5—C4—C3	120.2 (7)	C18—C19—H19	119.6
C6—C5—C4	118.5 (8)	C19—C20—C15	120.1 (7)
С6—С5—Н5	120.7	С19—С20—Н20	119.9
C4—C5—H5	120.8	С15—С20—Н20	120.0
C7—C6—C5	120.9 (8)	C14—C21—C22	120.7 (7)
С7—С6—Н6	119.6	C14—C21—H21	119.6
С5—С6—Н6	119.5	C22—C21—H21	1197
C6-C7-C8	120.6 (8)	$N_2 - C_2^2 - C_2^1$	120.7(7)
C6 C7 H7	110.7	N2 C22 C21	120.7 (7)
$C_0 = C_7 = H_7$	117.7	112 - 0.22 - 1122	117./
$\Box = \Box / = \Pi / \Box$	117./	$U_{21} - U_{22} - H_{22}$	119.0
C/C8C9	119.4 (8)	N2	123.6 (6)
С7—С8—Н8	120.3	N2—C23—C24	116.2 (6)
С9—С8—Н8	120.3	C13—C23—C24	120.2 (6)
C4—C9—C8	120.2 (8)	N1-C24-C10	123.2 (7)

С4—С9—Н9	119.9	N1—C24—C23	116.0 (6)
С8—С9—Н9	119.9	C10—C24—C23	120.8 (6)
C24—C10—C3	117.3 (7)	C1—N1—C24	119.5 (7)
C24—C10—C11	117.3 (6)	C1—N1—Au1	127.4 (5)
C3—C10—C11	125.4 (7)	C24—N1—Au1	113.1 (5)
C12—C11—C10	122.4 (7)	C22—N2—C23	119.9 (6)
C12—C11—H11	118.8	C22—N2—Au1	126.6 (5)
C10—C11—H11	118.8	C23—N2—Au1	113.5 (5)
N1—C1—C2—C3	-1.3 (13)	C18—C19—C20—C15	0.2 (12)
C1-C2-C3-C10	5.0 (12)	C16—C15—C20—C19	0.0 (11)
C1—C2—C3—C4	-175.9 (8)	C14—C15—C20—C19	-175.1 (7)
C2—C3—C4—C9	133.5 (8)	C13—C14—C21—C22	-0.7 (10)
C10—C3—C4—C9	-47.4 (10)	C15—C14—C21—C22	179.4 (7)
C2—C3—C4—C5	-41.7 (10)	C14—C21—C22—N2	-0.1 (11)
C10—C3—C4—C5	137.4 (8)	C14—C13—C23—N2	-2.9 (10)
C9—C4—C5—C6	3.2 (12)	C12—C13—C23—N2	174.8 (7)
C3—C4—C5—C6	178.3 (7)	C14—C13—C23—C24	178.0 (6)
C4—C5—C6—C7	-0.7 (12)	C12—C13—C23—C24	-4.3 (10)
C5—C6—C7—C8	-1.6 (13)	C3—C10—C24—N1	3.9 (10)
C6—C7—C8—C9	1.5 (13)	C11-C10-C24-N1	-175.0 (6)
C5—C4—C9—C8	-3.3 (12)	C3—C10—C24—C23	-175.0 (6)
C3—C4—C9—C8	-178.5 (8)	C11—C10—C24—C23	6.1 (10)
C7—C8—C9—C4	0.9 (13)	N2-C23-C24-N1	-0.2 (9)
C2-C3-C10-C24	-6.1 (10)	C13—C23—C24—N1	179.0 (6)
C4—C3—C10—C24	174.8 (7)	N2-C23-C24-C10	178.9 (6)
C2-C3-C10-C11	172.7 (7)	C13—C23—C24—C10	-2.0 (10)
C4—C3—C10—C11	-6.4 (11)	C2-C1-N1-C24	-1.2 (12)
C24—C10—C11—C12	-4.0 (11)	C2-C1-N1-Au1	176.9 (6)
C3—C10—C11—C12	177.2 (7)	C10-C24-N1-C1	-0.2 (11)
C10-C11-C12-C13	-2.3 (11)	C23-C24-N1-C1	178.8 (7)
C11—C12—C13—C23	6.5 (11)	C10-C24-N1-Au1	-178.6 (5)
C11—C12—C13—C14	-176.1 (7)	C23—C24—N1—Au1	0.4 (7)
C23—C13—C14—C21	2.1 (10)	N2—Au1—N1—C1	-178.6 (7)
C12—C13—C14—C21	-175.4 (7)	Cl2—Au1—N1—C1	0.7 (7)
C23—C13—C14—C15	-178.1 (6)	N2—Au1—N1—C24	-0.4 (5)
C12—C13—C14—C15	4.4 (11)	Cl2—Au1—N1—C24	179.0 (5)
C21—C14—C15—C20	42.6 (10)	C21—C22—N2—C23	-0.6 (10)
C13—C14—C15—C20	-137.3 (7)	C21—C22—N2—Au1	-178.9 (5)
C21—C14—C15—C16	-132.5 (7)	C13—C23—N2—C22	2.2 (10)
C13—C14—C15—C16	47.7 (10)	C24—C23—N2—C22	-178.7 (6)
C20-C15-C16-C17	1.0 (11)	C13—C23—N2—Au1	-179.3 (5)
C14—C15—C16—C17	176.0 (7)	C24—C23—N2—Au1	-0.2 (7)
C15—C16—C17—C18	-2.1 (12)	N1—Au1—N2—C22	178.7 (6)
C16—C17—C18—C19	2.2 (13)	N1—Au1—N2—C23	0.3 (5)
C17—C18—C19—C20	-1.2 (12)	Cl1—Au1—N2—C23	179.4 (4)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C1—H1…Cl2	0.93	2.68	3.244 (9)	120
C1—H1···Cl6 ⁱ	0.93	2.79	3.668 (8)	159
C18—H18…Cl2 ⁱⁱ	0.93	2.79	3.653 (8)	155
C22—H22…Cl1	0.93	2.66	3.239 (8)	121
C22—H22····Cl4 ⁱⁱⁱ	0.93	2.76	3.555 (9)	143

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*+1/2, *y*+1/2, *z*; (iii) -*x*+1/2, -*y*+1/2, -*z*+1.