

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{µ-5-(diethylamino)-2-[(2-oxidoethoxy)iminomethyl]phenolato}dicopper(II) acetone solvate

Wen-Kui Dong,* Xiao Chen, Xue-Ni He, Xiao-Lu Tang and Zhong-Wu Lv

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China Correspondence e-mail: dongwk@mail.lzjtu.cn

Received 29 July 2008; accepted 1 August 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.014 Å; R factor = 0.076; wR factor = 0.229; data-to-parameter ratio = 13.9.

The title complex, $[Cu_2(C_{13}H_{18}N_2O_3)_2]\cdot C_3H_6O$, has been synthesized by the reaction of copper(II) acetate monohydrate with 5,5'-bis(diethylamino)-2,2'-[ethylenedioxybis-(nitrilomethylidyne)]diphenol, where one of the N–O bonds of the ligand was cleaved during the reaction. The complex molecule has a μ -dialkoxo-bridged binuclear structure with both Cu^{II} centers exhibiting a square-planar coordination geometry.

Related literature

For related literature, see: Bu *et al.* (1990); Dong *et al.* (2007*a*,*b*); Sun *et al.* (2008); Zhang *et al.* (2007).

Experimental

Crystal data

 $\begin{bmatrix} Cu_2(C_{13}H_{18}N_2O_3)_2 \end{bmatrix} \cdot C_3H_6O \\ M_r = 685.75 \\ Monoclinic, P2_1/c \\ a = 20.633 (3) Å \\ b = 11.6045 (14) Å \\ c = 13.0738 (17) Å \\ \beta = 102.635 (2)^\circ$

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.515, T_{max} = 0.550$ (expected range = 0.475–0.507)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.075$ $wR(F^2) = 0.229$ S = 1.005363 reflections $V = 3054.6 (7) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 1.44 \text{ mm}^{-1}\) T = 298 (2) K 0.53 \times 0.49 \times 0.47 \text{ mm}\)

14726 measured reflections 5363 independent reflections 2967 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.092$

385 parameters H-atom parameters constrained $\Delta\rho_{max}=0.88$ e Å^{-3} $\Delta\rho_{min}=-1.06$ e Å^{-3}

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the 'Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A), which are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2162).

References

- Bu, X. R., You, X. Z. & Meng, Q. J. (1990). Comments Inorg. Chem. 9, 221–244.
- Dong, W. K., Chen, X., Wang, S. J., He, X. N., Wu, H. L. & Yu, T. Z. (2007a). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 37, 229–233.
- Dong, W. K., Duan, J. G. & Liu, G. L. (2007b). Transition Met. Chem. 32, 702–705.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sun, Y.-X., Gao, S.-X., Shi, J.-Y. & Dong, W.-K. (2008). Acta Cryst. E64, m226. Zhang, Y.-P., Chen, X., Shi, J.-Y., Xu, L. & Dong, W.-K. (2007). Acta Cryst. E63, 03852.

supporting information

Acta Cryst. (2008). E64, m1133 [doi:10.1107/S1600536808024707]

Bis{*µ*-5-(diethylamino)-2-[(2-oxidoethoxy)iminomethyl]phenolato}dicopper(II) acetone solvate

Wen-Kui Dong, Xiao Chen, Xue-Ni He, Xiao-Lu Tang and Zhong-Wu Lv

S1. Comment

Several works have been devoted to synthesize and characterize transition metal complexes bearing a salen-type bisoxime ligand or its derivatives (Dong *et al.*, 2007*a*; Dong *et al.*, 2007*b*).

The title compound has been synthesized by the reaction of copper(II) acetate monohydrate with a salen-type bisoxime ligand, 5,5'-di(N,N'-diethylamino)-2,2' -[ethylenedioxybis(nitrilomethylidyne)]diphenol (H₂ L^1). The catalytic action of Cu^{II} ions resulted in unexpected cleavage of one of the N—O bonds in the ligand H₂ L^1 (Bu *et al.*, 1990) giving a novel dialkoxo-bridged dinuclear complex with a Cu—O—Cu—O four-membered ring core, instead of the expected salen-type bisoxime Cu—N₂O₂ complex (Sun *et al.*, 2008).

The title molecule has μ -dialkoxo bridged binuclear structure with both Cu^{II} centers tetra-coordinated, where oxime nitrogen atom, phenoxo oxygen atom and two bridging alkoxo oxygen atoms act as donors. The Cu₂O₂ core is formed by two Cu^{II} ions and two bridging alkoxo oxygen atoms with Cu—Cu separation of 3.0051 (12) Å. The dihedral angle between the two planes, O2—Cu2—O5 and O2—Cu1—O5, is 8.80 (4)°.

S2. Experimental

5, 5'-Di(*N*,*N*'-diethylamino)-2,2'- [ethylenedioxybis(nitrilomethylidyne)]diphenol (H₂*L*¹) was synthesized according to previously reported procedure (Zhang *et al.*, 2007). A solution of copper(II) acetate monohydrate (20.0 mg, 0.1 mmol) in ethanol (15 ml) was added dropwise to a solution of H₂*L*¹ (44.3 mg, 0.1 mmol) in acetone (15 ml) at room temperature. The color of the mixing solution turned to brown immediately. The solution was stirred for 4 h at room temperature and then filtered. The filtrate was allowed to evaporate at room temperature for about three weeks and dark-brown prismatic single crystals suitable for X-ray crystallographic analysis were obtained. Anal. Calcd. for C₂₉H₄₂Cu₂N₄O₇ {[Cu₂(*L*²)₂]C₃H₆O} (%): C, 50.79; H, 6.17; N, 8.17; Cu, 18.53. Found: C, 50.61; H, 6.19; N, 8.01; Cu, 18.29. IR: *v*C=N, 1614 cm⁻¹ and *v*Ar-O, 1235 cm⁻¹.

S3. Refinement

H atoms were placed at calculated positions [C—H = 0.96 (CH₃), 0.97 Å (CH₂), 0.93 Å (CH)] and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Bis{µ-5-(diethylamino)-2-[(2-oxidoethoxy)iminomethyl]phenolato}dicopper(II) acetone solvate

Crystal data	
$[Cu_{2}(C_{13}H_{18}N_{2}O_{3})_{2}] \cdot C_{3}H_{6}O$ $M_{r} = 685.75$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 20.633 (3) Å b = 11.6045 (14) Å c = 13.0738 (17) Å $\beta = 102.635$ (2)° V = 3054.6 (7) Å ³ Z = 4	F(000) = 1432 $D_x = 1.491 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2917 reflections $\theta = 2.4-22.9^{\circ}$ $\mu = 1.44 \text{ mm}^{-1}$ T = 298 K Prismatic, dark-brown $0.53 \times 0.49 \times 0.47 \text{ mm}$
Data collection	
Bruker SMART 1000 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.515, T_{\max} = 0.550$	14726 measured reflections 5363 independent reflections 2967 reflections with $I > 2\sigma(I)$ $R_{int} = 0.092$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -23 \rightarrow 24$ $k = -13 \rightarrow 9$ $l = -15 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.075$ $wR(F^2) = 0.229$ S = 1.00 5363 reflections 385 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1245P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.88 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.07 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v Z0.0325 (3) Cu1 0.50062 (4) 0.85967 (8) 0.08317(7)Cu₂ 0.40492(4)0.91965 (8) 0.21830(7)0.0350(3)N1 0.4892(3)0.7990 (5) -0.0554(5)0.0362 (15) N2 0.061(2)0.8064(3)0.8744 (7) 0.0240(6) N3 0.4087(3)1.0305 (6) 0.3279 (5) 0.0419 (16) N4 0.0932 (4) 0.9250 (8) 0.2481 (7) 0.075(3)01 0.4275 (2) 0.7535 (4) -0.1126(4)0.0392 (13) O2 0.4116(2)0.8328(5)0.0968 (4) 0.0412(13)03 0.5922(2)0.8847(4)0.0975 (4) 0.0398(13)04 0.4662(2)1.0969 (4) 0.3692 (4) 0.0447(14)05 0.4970(2)0.9318(4)0.2158 (4) 0.0395(13)0.8842(5)06 0.3153(2)0.2103(4)0.0456 (14) 07 0.1481 (6) 0.5560(10)0.0993(9)0.154(4)C1 0.3732(3)0.8175(7) 0.0398(19)-0.0905(6)H1A 0.048* 0.3337 0.7991 -0.1433H1B 0.3822 0.8990 -0.0968 0.048* 0.3591 (3) C20.7965 (7) 0.0148 (6) 0.042(2)H2A 0.3189 0.8373 0.0199 0.051* H2B 0.3513 0.7149 0.0226 0.051* C3 0.5347 (3) 0.7810(6) -0.1079(6)0.0386 (18) H3 0.5222 0.7487 -0.17440.046* 0.6025 (3) C4 0.8082(7)-0.0690(6)0.0389 (18) C5 0.6286(4)0.8589(7)0.0413 (19) 0.0283 (6) C6 0.6954(4)0.8808(7)0.0556(7)0.048(2)0.058* H6 0.7128 0.9147 0.1203 C7 0.7386(4)0.8539 (8) -0.0103(7)0.051(2)C8 0.7128(4)0.050(2)0.8060(7)-0.1067(7)H8 0.7405 0.7888 -0.15200.060* C9 0.6464(3)0.7839(7)-0.1356(6)0.044(2)Н9 0.053* 0.6293 0.7518 -0.2012C10 0.8505 (4) 0.8597 (8) -0.0509(8)0.064(3)H10A 0.8255 0.8780 -0.1209 0.077* H10B 0.8868 0.9143 -0.03340.077* C11 0.8781 (5) 0.7429(9)-0.0516(8)0.080(3)H11A 0.9047 0.7255 0.0165 0.120*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11B	0.9051	0.7389	-0.1026	0.120*
H11C	0.8425	0.6882	-0.0690	0.120*
C12	0.8390 (5)	0.9014 (9)	0.1339 (8)	0.072(3)
H12A	0.8152	0.8672	0.1827	0.087*
H12B	0.8847	0.8750	0.1506	0.087*
C13	0.8354 (6)	1.0267 (10)	0.1358 (10)	0.097 (4)
H13A	0.8504	1.0576	0.0769	0.146*
H13B	0.8631	1.0550	0 1996	0.146*
HIJC	0.7903	1.0500	0.1321	0.146*
C14	0.7905 0.5245 (3)	1.0263 (7)	0.3815(6)	0.0422(19)
H14A	0.5166	0.9544	0.4147	0.051*
H14R	0.5611	1.0652	0.4280	0.051*
C15	0.5011 0.5443(3)	0.0002	0.2812 (6)	0.031
H15A	0.5498	1.0713	0.2612 (0)	0.0397 (19)
H15R	0.5456	0.0500	0.2450	0.048
C16	0.3585 (4)	1.0680 (7)	0.2900 0.3631(7)	0.048
U16	0.3365 (4)	1.0060 (7)	0.3031 (7)	0.049(2)
П10 С17	0.3003	1.1203	0.4120 0.2218 (7)	0.038°
C1/	0.2925 (4)	1.0207(7)	0.3318(7)	0.048(2)
C18	0.2740(4)	0.9378 (8)	0.2389(7)	0.051(2)
C19 1110	0.2075 (4)	0.9048 (8)	0.2342 (7)	0.059 (3)
H19	0.1954	0.8429	0.1889	$0.0/1^{*}$
C20	0.1578 (4)	0.9599 (9)	0.2739 (8)	0.065(3)
C21	0.1795 (5)	1.0508 (8)	0.3459 (8)	0.066(3)
H21	0.1487	1.0888	0.3761	0.079*
C22	0.2412 (4)	1.0817 (8)	0.3705 (7)	0.057 (2)
H22	0.2527	1.1436	0.4161	0.069*
C23	0.0379 (5)	1.0076 (11)	0.2675 (10)	0.087 (3)
H23A	0.0533	1.0868	0.2728	0.104*
H23B	-0.0013	1.0020	0.2112	0.104*
C24	0.0237 (6)	0.9686 (12)	0.3669 (10)	0.110 (4)
H24A	0.0075	0.8908	0.3595	0.165*
H24B	-0.0093	1.0177	0.3856	0.165*
H24C	0.0636	0.9718	0.4208	0.165*
C25	0.0727 (5)	0.8171 (10)	0.1932 (10)	0.083 (3)
H25A	0.1089	0.7620	0.2083	0.100*
H25B	0.0352	0.7848	0.2170	0.100*
C26	0.0544 (6)	0.8385 (12)	0.0819 (10)	0.109 (4)
H26A	0.0138	0.8818	0.0659	0.164*
H26B	0.0482	0.7664	0.0450	0.164*
H26C	0.0890	0.8815	0.0607	0.164*
C27	0.2690 (8)	0.5540 (14)	0.1403 (14)	0.151 (6)
H27A	0.2945	0.6170	0.1761	0.226*
H27B	0.2914	0.5225	0.0894	0.226*
H27C	0.2645	0.4954	0.1901	0.226*
C28	0.2039 (10)	0.5947 (16)	0.0880 (15)	0.139 (6)
C29	0.1968 (7)	0.6857 (14)	0.0057 (12)	0.135 (5)
H29A	0.1514	0.6892	-0.0323	0.202*
H29B	0.2249	0.6678	-0.0417	0.202*

supporting information

H29C	0.2095	0.7	589	0.0382	0.202*	
Atomic displacement parameters $(Å^2)$						
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0317 (5)	0.0379 (6)	0.0287 (5)	-0.0031 (4)	0.0086 (4)	-0.0046 (4)
Cu2	0.0319 (5)	0.0410 (6)	0.0332 (6)	-0.0024 (4)	0.0093 (4)	-0.0071 (4)
N1	0.030 (3)	0.043 (4)	0.036 (4)	-0.004 (3)	0.010 (3)	-0.005 (3)
N2	0.047 (4)	0.071 (5)	0.067 (6)	0.000 (4)	0.018 (4)	-0.004 (4)
N3	0.036 (3)	0.045 (4)	0.047 (4)	-0.005 (3)	0.014 (3)	-0.010 (3)
N4	0.057 (5)	0.081 (6)	0.090 (7)	-0.005 (5)	0.025 (5)	-0.023 (5)
01	0.034 (3)	0.046 (3)	0.038 (3)	-0.003 (2)	0.009 (2)	-0.014 (3)
O2	0.034 (3)	0.052 (3)	0.039 (3)	-0.006 (2)	0.012 (2)	-0.011 (3)
O3	0.034 (3)	0.047 (3)	0.041 (3)	-0.007(2)	0.013 (2)	-0.010 (3)
O4	0.042 (3)	0.042 (3)	0.050 (4)	-0.008(3)	0.011 (3)	-0.011 (3)
05	0.035 (3)	0.048 (3)	0.037 (3)	-0.008(2)	0.013 (2)	-0.011 (3)
06	0.038 (3)	0.051 (3)	0.050 (4)	-0.004 (3)	0.015 (3)	-0.017 (3)
07	0.137 (9)	0.164 (11)	0.162 (11)	-0.028 (8)	0.036 (8)	-0.006 (8)
C1	0.033 (4)	0.046 (5)	0.038 (5)	-0.004 (4)	0.005 (3)	-0.007 (4)
C2	0.035 (4)	0.051 (5)	0.041 (5)	-0.004(4)	0.009 (3)	-0.011 (4)
C3	0.036 (4)	0.042 (5)	0.038 (5)	-0.003 (4)	0.010 (3)	-0.003 (4)
C4	0.036 (4)	0.043 (5)	0.041 (5)	-0.001 (4)	0.014 (3)	-0.004 (4)
C5	0.036 (4)	0.045 (5)	0.046 (5)	-0.001 (4)	0.015 (4)	-0.005 (4)
C6	0.039 (5)	0.055 (5)	0.052 (5)	-0.005 (4)	0.015 (4)	-0.004 (4)
C7	0.041 (5)	0.057 (6)	0.059 (6)	-0.003 (4)	0.017 (4)	-0.004 (5)
C8	0.042 (5)	0.058 (6)	0.055 (6)	0.000 (4)	0.019 (4)	-0.003 (5)
C9	0.041 (4)	0.048 (5)	0.045 (5)	0.001 (4)	0.014 (4)	-0.003 (4)
C10	0.049 (5)	0.074 (7)	0.072 (7)	-0.001 (5)	0.020 (5)	-0.002 (6)
C11	0.066 (6)	0.085 (8)	0.092 (8)	0.011 (6)	0.026 (6)	0.006 (7)
C12	0.053 (6)	0.087 (8)	0.078 (8)	-0.004 (6)	0.017 (5)	-0.007 (6)
C13	0.090 (8)	0.088 (9)	0.111 (11)	-0.004(7)	0.017 (7)	-0.006 (8)
C14	0.038 (4)	0.044 (5)	0.043 (5)	-0.008(4)	0.006 (4)	-0.008(4)
C15	0.034 (4)	0.044 (5)	0.040 (5)	-0.010 (4)	0.008 (3)	-0.009 (4)
C16	0.045 (5)	0.050 (5)	0.053 (6)	-0.002 (4)	0.017 (4)	-0.014 (4)
C17	0.043 (5)	0.052 (5)	0.054 (6)	-0.005 (4)	0.022 (4)	-0.016 (5)
C18	0.044 (5)	0.058 (6)	0.058 (6)	-0.003 (4)	0.023 (4)	-0.014 (5)
C19	0.049 (5)	0.064 (6)	0.069 (7)	-0.005 (5)	0.024 (5)	-0.017 (5)
C20	0.053 (6)	0.071 (7)	0.076 (7)	-0.006 (5)	0.023 (5)	-0.018 (6)
C21	0.055 (6)	0.071 (7)	0.077 (7)	-0.003 (5)	0.027 (5)	-0.020 (6)
C22	0.050 (5)	0.060 (6)	0.065 (6)	-0.004 (5)	0.023 (5)	-0.019 (5)
C23	0.069 (7)	0.096 (9)	0.098 (10)	-0.007 (6)	0.025 (6)	-0.018 (7)
C24	0.097 (9)	0.115 (11)	0.116 (12)	-0.014 (8)	0.019 (8)	-0.015 (9)
C25	0.063 (7)	0.092 (9)	0.100 (10)	-0.008 (6)	0.027 (6)	-0.021 (8)
C26	0.097 (9)	0.118 (11)	0.108 (12)	-0.006 (8)	0.013 (8)	-0.005 (9)
C27	0.123 (13)	0.170 (18)	0.157 (17)	-0.019 (12)	0.025 (12)	0.007 (13)
C28	0.128 (14)	0.151 (16)	0.145 (16)	-0.031 (13)	0.047 (13)	0.010 (12)
C29	0.125 (12)	0.144 (14)	0.135 (14)	-0.020 (11)	0.028 (10)	-0.008 (12)

Geometric parameters (Å, °)

Cul—O3	1.880 (5)	C11—H11A	0.9600
Cu1—O2	1.909 (5)	C11—H11B	0.9600
Cu1—N1	1.910(6)	C11—H11C	0.9600
Cu1—O5	1.942 (5)	C12—C13	1.456 (14)
Cu1—Cu2	3.0051 (12)	C12—H12A	0.9700
Cu2—O6	1.874 (5)	C12—H12B	0.9700
Cu2—O2	1.911 (5)	C13—H13A	0.9600
Cu2—O5	1.912 (5)	C13—H13B	0.9600
Cu2—N3	1.914 (6)	C13—H13C	0.9600
N1—C3	1.295 (8)	C14—C15	1.488 (10)
N101	1.428 (7)	C14—H14A	0.9700
N2—C7	1.394 (10)	C14—H14B	0.9700
N2-C12	1.480 (12)	C15—H15A	0.9700
N2-C10	1.485 (11)	C15—H15B	0.9700
N3—C16	1.297 (9)	C16—C17	1.421 (11)
N3—O4	1.419 (7)	C16—H16	0.9300
N4—C20	1.363 (11)	C17—C18	1.400 (11)
N4—C25	1.459 (13)	C17—C22	1.416 (10)
N4—C23	1.552 (12)	C18—C19	1.392 (11)
O1—C1	1.425 (8)	C19—C20	1.401 (11)
O2—C2	1.412 (8)	C19—H19	0.9300
O3—C5	1.330 (8)	C20—C21	1.419 (13)
O4—C14	1.435 (8)	C21—C22	1.295 (11)
O5—C15	1.393 (8)	C21—H21	0.9300
O6—C18	1.324 (8)	C22—H22	0.9300
O7—C28	1.275 (16)	C23—C24	1.465 (14)
C1—C2	1.488 (10)	C23—H23A	0.9700
C1—H1A	0.9700	C23—H23B	0.9700
C1—H1B	0.9700	C24—H24A	0.9600
C2—H2A	0.9700	C24—H24B	0.9600
C2—H2B	0.9700	C24—H24C	0.9600
C3—C4	1.417 (10)	C25—C26	1.442 (15)
С3—Н3	0.9300	C25—H25A	0.9700
C4—C5	1.398 (11)	C25—H25B	0.9700
C4—C9	1.415 (10)	C26—H26A	0.9600
C5—C6	1.371 (10)	C26—H26B	0.9600
C6—C7	1.403 (11)	C26—H26C	0.9600
С6—Н6	0.9300	C27—C28	1.45 (2)
С7—С8	1.374 (12)	C27—H27A	0.9600
С8—С9	1.365 (10)	C27—H27B	0.9600
С8—Н8	0.9300	С27—Н27С	0.9600
С9—Н9	0.9300	C28—C29	1.49 (2)
C10-C11	1.470 (13)	С29—Н29А	0.9600
C10—H10A	0.9700	C29—H29B	0.9600
C10—H10B	0.9700	C29—H29C	0.9600

O3—Cu1—O2	169.2 (2)	H11B—C11—H11C	109.5
O3—Cu1—N1	93.7 (2)	C13—C12—N2	102.3 (9)
O2—Cu1—N1	96.1 (2)	C13—C12—H12A	111.3
O3—Cu1—O5	94.5 (2)	N2—C12—H12A	111.3
02—Cu1—05	76.2 (2)	C13—C12—H12B	111.3
N1-Cu1-O5	1701(2)	N2-C12-H12B	111.3
O_3 — C_{u1} — C_{u2}	132.92(15)	H12A— $C12$ — $H12B$	109.2
Ω^2 —Cu1—Cu2	38 15 (15)	C12-C13-H13A	109.5
N1— $Cu1$ — $Cu2$	133.02(17)	C12 $C13$ $H13R$	109.5
05-Cu1-Cu2	38.40(13)	H_{13A} $-C_{13}$ $-H_{13B}$	109.5
$06-Cu^2-0^2$	95.0(2)	C12-C13-H13C	109.5
$06 Cu^2 05$	170.6(2)	H_{13} C_{13} H_{13} H	109.5
$00 - Cu^2 - 05$	170.0(2)	$\begin{array}{c} \text{III} \text{JA} \\ \text{H} \text{IIII} \text{JA} \\ \text{H} \text{IIII} \text{JA} \\ \text{H} \text{IIII} \text{JA} \\ \text{IIII} \text{JA} \\ \text{IIII} \text{JA} \\ \text{IIII} \text{JA} \\ \text{IIIII} \text{JA} \\ \text{IIIIII JA} \\ IIIIIII JA \\ IIIII JA \\ \text{IIIIIIII JA IIIIII JA \\ IIIIII JA IIIIII JA \\ IIIIIII JA IIIIIII JA IIIIIIIII IIIIIIII$	109.5
02 - Cu2 - 03	70.0(2)	$\begin{array}{c} \text{III} \text{IIII} III$	109.3 112.7(6)
O_{0} C_{12} N_{2}	95.9(2)	04 - C14 - U13	115.7 (0)
02 - Cu2 - N3	107.9(2)	04 - C14 - H14A	108.8
05—Cu2—N3	94.9 (2)	C15—C14—H14A	108.8
O6—Cu2—Cu1	133.10 (16)	O4—C14—H14B	108.8
O2—Cu2—Cu1	38.11 (14)	C15—C14—H14B	108.8
O5—Cu2—Cu1	39.11 (14)	H14A—C14—H14B	107.7
N3—Cu2—Cu1	132.15 (18)	O5—C15—C14	111.6 (6)
C3—N1—O1	109.2 (6)	O5—C15—H15A	109.3
C3—N1—Cu1	127.5 (5)	C14—C15—H15A	109.3
O1—N1—Cu1	123.0 (4)	O5—C15—H15B	109.3
C7—N2—C12	124.0 (7)	C14—C15—H15B	109.3
C7—N2—C10	119.0 (8)	H15A—C15—H15B	108.0
C12—N2—C10	116.8 (7)	N3—C16—C17	125.3 (8)
C16—N3—O4	110.4 (6)	N3—C16—H16	117.4
C16—N3—Cu2	125.9 (6)	C17—C16—H16	117.4
O4—N3—Cu2	122.9 (4)	C18—C17—C22	117.7 (7)
C20—N4—C25	122.6 (8)	C18—C17—C16	122.9 (7)
C20—N4—C23	119.3 (8)	C22—C17—C16	119.3 (8)
C25—N4—C23	117.8 (8)	O6—C18—C19	117.7 (8)
C1-01-N1	110.6 (5)	O6—C18—C17	124.5 (7)
C2—O2—Cu1	124.9 (4)	C19—C18—C17	117.8 (7)
C2—O2—Cu2	127.3 (4)	C18—C19—C20	123.6 (9)
Cu1—O2—Cu2	103.7 (2)	С18—С19—Н19	118.2
C5-O3-Cu1	127.0(5)	C20-C19-H19	118.2
$N_{3} - O_{4} - C_{14}$	1100(5)	N4-C20-C19	121.9 (9)
$C_{15} = 05 = C_{12}^{-12}$	126.6(4)	N4 - C20 - C21	121.9(9) 122.3(8)
$C_{15} = 05 = C_{12}$	120.0(4) 129.3(4)	C_{19} C_{20} C_{21}	122.3(0) 115.8(8)
$Cu^2 = 05 - Cu^1$	129.5(4) 102.5(2)	$C_{22}^{22} = C_{21}^{21} = C_{20}^{21}$	113.0(0) 121.4(0)
$C_{u2} = 05 = C_{u1}$	102.3(2) 126.0(5)	$C_{22} = C_{21} = C_{20}$	121.4 (9)
$C_{10} = 00 = C_{12}$	120.9(5) 115.1(6)	$C_{22} = C_{21} = H_{21}$	119.5
01 - 01 - 02	108.5	$C_{20} = C_{21} = H_{21}$	119.5 122.7(0)
$C_2 = C_1 = H_1 A$	100.3	$C_{21} = C_{22} = C_{17}$	123.7 (9)
$C_2 - C_1 - \Pi A$	100.5	$C_{21} = C_{22} = \Pi_{22}$	110.2
OI - OI - HIB	100.3	$C_1 = C_2 = H_2 Z_2$	118.2
	108.3	$C_24 = C_23 = N_4$	104.5 (10)
HIA-CI-HIB	107.5	U24—U23—H23A	110.8

O2—C2—C1	112.4 (6)	N4—C23—H23A	110.8
O2—C2—H2A	109.1	С24—С23—Н23В	110.8
C1—C2—H2A	109.1	N4—C23—H23B	110.8
O2—C2—H2B	109.1	H23A—C23—H23B	108.9
C1—C2—H2B	109.1	C23—C24—H24A	109.5
H2A—C2—H2B	107.9	C23—C24—H24B	109.5
N1—C3—C4	123.2 (7)	H24A—C24—H24B	109.5
N1—C3—H3	118.4	C23—C24—H24C	109.5
С4—С3—Н3	118.4	H24A—C24—H24C	109.5
C5—C4—C9	118.3 (7)	H24B—C24—H24C	109.5
C5—C4—C3	125.0 (7)	C26—C25—N4	109.4 (11)
C9—C4—C3	116.7 (7)	C26—C25—H25A	109.8
O3—C5—C6	117.8 (7)	N4—C25—H25A	109.8
O3—C5—C4	123.5 (7)	С26—С25—Н25В	109.8
C6—C5—C4	118.7 (7)	N4—C25—H25B	109.8
C5—C6—C7	122.4 (8)	H25A—C25—H25B	108.2
С5—С6—Н6	118.8	С25—С26—Н26А	109.5
С7—С6—Н6	118.8	С25—С26—Н26В	109.5
C8—C7—N2	121.6 (8)	H26A—C26—H26B	109.5
C8—C7—C6	118.9 (8)	С25—С26—Н26С	109.5
N2—C7—C6	119.5 (8)	H26A—C26—H26C	109.5
C9—C8—C7	119.6 (8)	H26B—C26—H26C	109.5
С9—С8—Н8	120.2	С28—С27—Н27А	109.5
С7—С8—Н8	120.2	С28—С27—Н27В	109.5
C8—C9—C4	122.1 (8)	H27A—C27—H27B	109.5
С8—С9—Н9	119.0	С28—С27—Н27С	109.5
С4—С9—Н9	119.0	H27A—C27—H27C	109.5
C11—C10—N2	113.8 (8)	H27B—C27—H27C	109.5
C11—C10—H10A	108.8	O7—C28—C27	126.8 (18)
N2-C10-H10A	108.8	O7—C28—C29	112.6 (17)
C11—C10—H10B	108.8	C27—C28—C29	120.5 (16)
N2-C10-H10B	108.8	С28—С29—Н29А	109.5
H10A—C10—H10B	107.7	С28—С29—Н29В	109.5
C10-C11-H11A	109.5	H29A—C29—H29B	109.5
C10-C11-H11B	109.5	С28—С29—Н29С	109.5
H11A—C11—H11B	109.5	H29A—C29—H29C	109.5
C10-C11-H11C	109.5	H29B—C29—H29C	109.5
H11A—C11—H11C	109.5		
O3—Cu1—Cu2—O6	-173.8 (3)	N1—O1—C1—C2	-73.6 (8)
O2—Cu1—Cu2—O6	-2.9 (3)	Cu1—O2—C2—C1	-18.9 (9)
N1—Cu1—Cu2—O6	14.9 (4)	Cu2—O2—C2—C1	134.5 (6)
O5—Cu1—Cu2—O6	-172.3 (3)	O1—C1—C2—O2	64.6 (9)
O3—Cu1—Cu2—O2	-170.9 (3)	O1—N1—C3—C4	-175.2 (7)
N1—Cu1—Cu2—O2	17.8 (4)	Cu1—N1—C3—C4	-1.9 (11)
O5—Cu1—Cu2—O2	-169.3 (4)	N1—C3—C4—C5	-1.2 (13)
O3—Cu1—Cu2—O5	-1.6 (3)	N1—C3—C4—C9	-179.8 (7)
O2—Cu1—Cu2—O5	169.3 (4)	Cu1—O3—C5—C6	-177.8 (5)

N1—Cu1—Cu2—O5	-172.8(4)	Cu1—O3—C5—C4	0.5 (11)
O3—Cu1—Cu2—N3	19.7 (4)	C9—C4—C5—O3	-179.4 (7)
O2—Cu1—Cu2—N3	-169.3(4)	C3-C4-C5-O3	2.0 (13)
N1—Cu1—Cu2—N3	-151.5 (4)	C9—C4—C5—C6	-1.2(12)
05—Cu1—Cu2—N3	21.3 (4)	C3-C4-C5-C6	-179.8(8)
O3-Cu1-N1-C3	32(7)	03 - C5 - C6 - C7	178 2 (7)
02—Cu1—N1—C3	-172.3(7)	C4-C5-C6-C7	-0.2(13)
Cu2— $Cu1$ — $N1$ — $C3$	176.8 (5)	C12 - N2 - C7 - C8	-166.2(9)
03-Cu1-N1-01	175.6 (5)	C10 - N2 - C7 - C8	88(13)
02-Cu1-N1-01	01(5)	$C_{12} - N_{2} - C_{7} - C_{6}$	12.7(13)
$Cu^2 - Cu^2 - N1 - N1 - O1$	-10.8(7)	$C_{10} N_{2} C_{7} C_{6}$	-1723(8)
$06-Cu^2-N^3-C^{16}$	-81(7)	C_{5} C_{6} C_{7} C_{8}	14(14)
$\Omega^2 - Cu^2 - N^3 - C^{16}$	1291(11)	$C_{5} = C_{6} = C_{7} = N_{2}^{2}$	-1775(8)
$05-Cu^2-N3-C16$	175 3 (7)	$N_{2}^{-}C_{7}^{-}C_{8}^{-}C_{9}^{-}$	177.8 (8)
C_{11} C_{12} N_{3} C_{10} C_{10} C_{10} C_{10} N_{3} C_{10} $C_{$	162.0 (6)	$C_{6} = C_{7} = C_{8} = C_{9}$	-11(13)
$Cu_1 - Cu_2 - N_3 - C_{10}$	-177.0(5)	C_{1}^{2}	-0.3(13)
$O_{2} = C_{12} = N_{3} = O_{4}$	-30.8(15)	$C_{1} = C_{0} = C_{1} = C_{1}$	0.3(13)
$O_2 - C_{u2} - N_3 - O_4$	59.8 (15)	$C_{3} = C_{4} = C_{9} = C_{8}$	-170.8(7)
$C_{11} = C_{12} = N_{13} = C_{14}$	-60(7)	C_{3} C_{4} C_{5} C_{8} C_{10} C_{11}	-00.6(11)
$C_1 = C_2 = N_3 = 04$	-0.9(7)	$C_{12} N_{2} C_{10} C_{11}$	-90.0(11)
C_{3} NI OI CI	-130.4(0)	C12 - N2 - C12 - C13	-00.2(10)
$Cu_1 - N_1 - O_1 - C_1$	-163.5(10)	$C_1 = N_2 = C_{12} = C_{13}$	-90.3(10)
03-Cu1-02-C2	-105.5(10)	10 - 12 - 12 - 13	94.0 (10)
NI = CuI = 02 = C2	-8.5(0)	$N_{3} = 04 = 014 = 015$	75.3(7)
03-01-02-02	105.5(0) 159.5(7)	$Cu_2 = 05 = C15 = C14$	23.7 (9)
$Cu_2 - Cu_1 - O_2 - C_2$	158.5 (7)	Cu1 = 05 = C15 = C14	-1/3.3(5)
03—Cu1— 02 —Cu2	38.0 (13)	04-014-015-05	-65.7(9)
NI = CuI = O2 = Cu2	-16/.0(3)	04 - N3 - C16 - C17	1/5.1 (8)
05—Cu1— 02 —Cu2	6.8 (2) 20.1 (C)	Cu2 - N3 - C16 - C17	5.1 (13)
06—Cu2—O2—C2	20.1 (6)	N3-C16-C17-C18	1.0 (15)
05—Cu2—O2—C2	-164.7 (6)	N3—C16—C17—C22	-175.1 (8)
N3—Cu2—O2—C2	-117.0 (12)	Cu2—O6—C18—C19	173.8 (6)
Cu1—Cu2—O2—C2	-157.8(7)	Cu2—O6—C18—C17	-5.0 (13)
06—Cu2—O2—Cu1	177.9 (3)	C22—C17—C18—O6	175.0 (8)
O5—Cu2—O2—Cu1	-6.9 (2)	C16—C17—C18—O6	-1.2 (15)
N3—Cu2—O2—Cu1	40.8 (13)	C22—C17—C18—C19	-3.8 (13)
O2—Cu1—O3—C5	152.7 (11)	C16—C17—C18—C19	-179.9 (9)
N1—Cu1—O3—C5	-2.4 (6)	O6—C18—C19—C20	-175.2 (9)
O5—Cu1—O3—C5	-177.0 (6)	C17—C18—C19—C20	3.6 (15)
Cu2—Cu1—O3—C5	-176.0 (5)	C25—N4—C20—C19	11.0 (16)
C16—N3—O4—C14	148.0 (7)	C23—N4—C20—C19	-162.8 (10)
Cu2—N3—O4—C14	-41.6 (7)	C25—N4—C20—C21	-166.1 (11)
O2—Cu2—O5—C15	173.3 (6)	C23—N4—C20—C21	20.1 (15)
N3—Cu2—O5—C15	2.3 (6)	C18—C19—C20—N4	-179.8 (9)
Cu1—Cu2—O5—C15	166.6 (7)	C18—C19—C20—C21	-2.5 (15)
O2—Cu2—O5—Cu1	6.7 (2)	N4—C20—C21—C22	179.1 (10)
N3—Cu2—O5—Cu1	-164.3 (3)	C19—C20—C21—C22	1.8 (15)
O3—Cu1—O5—C15	12.8 (6)	C20—C21—C22—C17	-2.3 (16)
O2—Cu1—O5—C15	-172.8 (7)	C18—C17—C22—C21	3.3 (15)

Cu2—Cu1—O5—C15	-166.1 (8)	C16—C17—C22—C21	179.6 (9)
O3—Cu1—O5—Cu2	178.8 (2)	C20-N4-C23-C24	-98.5 (11)
O2—Cu1—O5—Cu2	-6.8 (2)	C25—N4—C23—C24	87.4 (12)
O2—Cu2—O6—C18	-163.7 (7)	C20—N4—C25—C26	-93.3 (12)
N3—Cu2—O6—C18	8.0 (7)	C23—N4—C25—C26	80.6 (12)
Cu1—Cu2—O6—C18	-161.9 (6)		