Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 4,4'-(Propane-1,3-divl)dipiperidinium sulfate monohvdrate

### E Yang,<sup>a</sup>\* Xu-Chun Song<sup>a</sup> and Rong-Qiang Zhuang<sup>b</sup>

<sup>a</sup>College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China, and <sup>b</sup>College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China Correspondence e-mail: yangeli66@yahoo.com.cn

Received 19 July 2008; accepted 6 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.131; data-to-parameter ratio = 14.5.

In the title compound,  $C_{13}H_{28}N_2^{2+}\cdot SO_4^{2-}\cdot H_2O$ , extensive hydrogen-bonding interactions between the protonated 4,4'-(propane-1,3-divl)dipiperidinium ions, the sulfate anions and the water molecules lead to a three-dimensional pillared and lavered structure with the 4.4'-(propane-1.3-divl)dipiperidinium ions acting as the pillars.



#### **Experimental**

Crystal data  $C_{13}H_{28}N_2^{2+}\cdot SO_4^{2-}\cdot H_2O$ 

 $M_r = 326.45$ Monoclinic,  $P2_1/n$ a = 6.2019 (2) Å b = 22.5110(5) Å c = 12.0052 (3) Å  $\beta = 100.439 \ (2)^{\circ}$ 

V = 1648.32 (8) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.22 \text{ mm}^-$ T = 293 (2) K  $0.22 \times 0.14 \times 0.09 \text{ mm}$  13022 measured reflections

 $R_{\rm int} = 0.066$ 

2932 independent reflections

2011 reflections with  $I > 2\sigma(I)$ 

#### Data collection

```
Siemens SMART 1K CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\rm min} = 0.927, T_{\rm max} = 0.98
```

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.048$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.131$               | independent and constrained                                |
| S = 1.03                        | refinement                                                 |
| 2932 reflections                | $\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 202 parameters                  | $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                                                                                            | D-H                                              | $H \cdot \cdot \cdot A$                          | $D \cdots A$                                                  | $D - \mathbf{H} \cdot \cdot \cdot A$        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|
| $\begin{array}{c} 01W - H1WA \cdots 04^{i} \\ 01W - H1WB \cdots 03^{ii} \\ N1 - H1NA \cdots 04^{iii} \\ N1 - H1NB \cdots 03^{iv} \\ N2 - H2NA \cdots 01^{v} \\ \end{array}$ | 0.85<br>0.85<br>0.94 (3)<br>0.85 (3)<br>0.88 (3) | 1.98<br>1.97<br>2.09 (3)<br>1.91 (3)<br>1.83 (3) | 2.819 (3)<br>2.799 (3)<br>2.904 (3)<br>2.711 (3)<br>2.704 (3) | 168<br>165<br>144 (3)<br>157 (3)<br>177 (3) |
| $N2-H2NB\cdots O4^{v_1}$                                                                                                                                                    | 0.92 (3)                                         | 2.02 (3)                                         | 2.845 (4)                                                     | 149 (3)                                     |

Symmetry codes: (i)  $-x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii)  $-x + \frac{3}{2}$ ,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iii) -x, -y, -z + 1; (iv) -x + 1, -y, -z + 1; (v) x + 1, y, z; (vi)  $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$ 

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff et al., 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors acknowledge financial support from the Natural Science Foundation of Fujian Province (2006 F3042).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2138).

#### References

Bergerhoff, G., Berndt, M. & Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany,

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

# supporting information

Acta Cryst. (2008). E64, o1763 [doi:10.1107/S1600536808025300]

# 4,4'-(Propane-1,3-diyl)dipiperidinium sulfate monohydrate

# E Yang, Xu-Chun Song and Rong-Qiang Zhuang

## S1. Comment

The asymmetric unit of the title compound, (I), consists of one protonated 4,4'-(propane-1,3-diyl)dipiperidinium ion, one deprotonated sulfate anion and one water molecule (Figure 1). Both protonated N ends of the 4,4'-(propane-1,3-diyl)dipiperidinium ion form N—H…O hydrogen bonds with the sulfate anion, as well as the water molecules form O—H…O hydrogen bonds with the sulfate anion of two-dimensional hydrogen-bonding layer parallel to the *ac* plane (Table 1 & Figure 2). The resulting layers are further pillared by the 4,4'-(propane-1,3-diyl)dipiperidinium ions to complete the three-dimensional structure.

## **S2. Experimental**

A solution of 4,4-trimethylenedipiperidine (1 mmol), sulfuric acid (1 mmol) and  $H_2O$  (10 ml) was slowly evaporated at room temperature, giving colorless single crystals suitable for X-ray analysis.

## S3. Refinement

The H atoms bonded to C and O atoms were placed at calculated positions, and refined with isotropic displacement parameters, using a riding model [C—H 0.93Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ ; O—H 0.85Å and  $U_{iso}(H) = 1.5U_{eq}(C)$ ]. The H atoms bonded to N atoms were refined freely.



# Figure 1

A view of the title compound, showing 30% probability displacement ellipsoids.



# Figure 2

The three-dimensional structure of the title compound, showing the hydrogen bonding interactions (dashed lines).

#### 4,4'-(Propane-1,3-diyl)dipiperidinium sulfate monohydrate

#### Crystal data

 $C_{13}H_{28}N_2^{2+} \cdot SO_4^{2-} \cdot H_2O$   $M_r = 326.45$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 6.2019 (2) Å b = 22.5110 (5) Å c = 12.0052 (3) Å  $\beta = 100.439$  (2)° V = 1648.32 (8) Å<sup>3</sup> Z = 4

#### Data collection

Siemens SMART 1K CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\min} = 0.927, T_{\max} = 0.98$ 

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
|-------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.048$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.131$                               | neighbouring sites                                       |
| <i>S</i> = 1.03                                 | H atoms treated by a mixture of independent              |
| 2932 reflections                                | and constrained refinement                               |
| 202 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0635P)^2 + 0.5599P]$        |
| 0 restraints                                    | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                   |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| direct methods                                  | $\Delta  ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$    |
|                                                 | $\Delta \rho_{\rm min} = -0.40 \text{ e} \text{ Å}^{-3}$ |

F(000) = 712

 $\theta = 2.0-25.1^{\circ}$  $\mu = 0.22 \text{ mm}^{-1}$ 

Prism. colorless

 $0.22 \times 0.14 \times 0.09 \text{ mm}$ 

13022 measured reflections 2932 independent reflections

 $\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$ 

2011 reflections with  $I > 2\sigma(I)$ 

T = 293 K

 $R_{\rm int} = 0.066$ 

 $h = -7 \rightarrow 7$ 

 $k = -26 \rightarrow 26$ 

 $l = -13 \rightarrow 14$ 

 $D_{\rm x} = 1.315 {\rm Mg m^{-3}}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 99 reflections

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|            | x            | у             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------------|--------------|---------------|--------------|-----------------------------|
| <b>S</b> 1 | 0.28582 (11) | 0.18642 (3)   | 0.35885 (6)  | 0.0255 (2)                  |
| O1W        | 0.7186 (3)   | -0.20465 (10) | 0.15532 (19) | 0.0458 (6)                  |
| H1WA       | 0.6074       | -0.2274       | 0.1421       | 0.069*                      |

| H1WB          | 0.8181               | -0.2279                | 0.1410               | 0.069*               |
|---------------|----------------------|------------------------|----------------------|----------------------|
| 01            | 0.2335 (3)           | 0.19986 (9)            | 0.23718 (16)         | 0.0346 (5)           |
| O2            | 0.2510 (4)           | 0.12374 (10)           | 0.38116 (19)         | 0.0489 (6)           |
| O3            | 0.5164 (3)           | 0.20349 (10)           | 0.40084 (18)         | 0.0431 (6)           |
| O4            | 0.1467 (3)           | 0.22203 (10)           | 0.42124 (19)         | 0.0493 (7)           |
| N1            | 0.1395 (4)           | -0.13893 (12)          | 0.4911 (2)           | 0.0310 (6)           |
| H1NA          | 0.026 (5)            | -0.1498 (14)           | 0.529 (3)            | 0.046*               |
| H1NB          | 0.258 (6)            | -0.1500 (14)           | 0.533 (3)            | 0.046*               |
| N2            | 0.8705 (4)           | 0.19250 (11)           | 0.0746 (2)           | 0.0279 (6)           |
| H2NA          | 0.986 (5)            | 0.1962 (14)            | 0.128 (3)            | 0.042*               |
| H2NB          | 0.851 (5)            | 0.2258 (14)            | 0.029 (3)            | 0.042*               |
| C1            | 0.1335 (5)           | -0.07379(13)           | 0.4752(3)            | 0.0328(7)            |
| HIA           | 0 1482               | -0.0545                | 0 5484               | 0.039*               |
| HIB           | -0.0068              | -0.0624                | 0.4306               | 0.039*               |
| $C^2$         | 0.3159(5)            | -0.05304(13)           | 0.4160(2)            | 0.0279(7)            |
| Н24           | 0.4555               | -0.0589                | 0.4661               | 0.0279(7)            |
| 112A<br>112B  | 0.4555               | -0.0108                | 0.4001               | 0.033*               |
| П2D<br>С2     | 0.2967<br>0.2102 (4) | -0.0108                | 0.4007<br>0.2044 (2) | 0.033                |
|               | 0.3192 (4)           | -0.08391(12)           | 0.3044 (2)           | 0.0249 (0)           |
| НЗА           | 0.1859               | -0.0756                | 0.2507               | 0.030*               |
|               | 0.3183 (5)           | -0.15306 (12)          | 0.3261(2)            | 0.0300(7)            |
| H4A           | 0.3080               | -0.1/39                | 0.2546               | 0.036*               |
| H4B           | 0.4554               | -0.1643                | 0.3739               | 0.036*               |
| C5            | 0.1292 (5)           | -0.17174 (14)          | 0.3825 (2)           | 0.0351 (8)           |
| H5A           | -0.0087              | -0.1634                | 0.3326               | 0.042*               |
| H5B           | 0.1369               | -0.2141                | 0.3972               | 0.042*               |
| C6            | 0.5170 (5)           | -0.06873 (12)          | 0.2525 (2)           | 0.0297 (7)           |
| H6A           | 0.5259               | -0.0957                | 0.1905               | 0.036*               |
| H6B           | 0.6483               | -0.0743                | 0.3092               | 0.036*               |
| C7            | 0.5158 (4)           | -0.00503 (12)          | 0.2080 (3)           | 0.0296 (7)           |
| H7A           | 0.3918               | -0.0001                | 0.1466               | 0.036*               |
| H7B           | 0.4964               | 0.0222                 | 0.2681               | 0.036*               |
| C8            | 0.7255 (5)           | 0.01124 (13)           | 0.1655 (3)           | 0.0315 (7)           |
| H8A           | 0.8465               | 0.0112                 | 0.2293               | 0.038*               |
| H8B           | 0.7549               | -0.0191                | 0.1129               | 0.038*               |
| C9            | 0.6696 (5)           | 0.18163 (13)           | 0.1245 (3)           | 0.0298 (7)           |
| H9A           | 0.5413               | 0.1820                 | 0.0647               | 0.036*               |
| H9B           | 0.6536               | 0.2132                 | 0.1774               | 0.036*               |
| C10           | 0.6836 (4)           | 0.12266 (12)           | 0.1851 (2)           | 0.0269 (7)           |
| H10A          | 0.5494               | 0.1160                 | 0.2141               | 0.032*               |
| H10B          | 0.8042               | 0.1236                 | 0.2491               | 0.032*               |
| C11           | 0.7181(4)            | 0.07147(12)            | 0.1069(2)            | 0.0264(7)            |
| H11A          | 0.5943               | 0.0712                 | 0.0433               | 0.032*               |
| C12           | 0.9259 (5)           | 0.0712<br>0.08438 (13) | 0.0598 (3)           | 0.032                |
| U12<br>H12Δ   | 1 0508               | 0.0844                 | 0.1215               | 0.040*               |
| 1112A<br>U12D | 0.0470               | 0.0520                 | 0.1215               | 0.040*               |
| 1112D<br>C12  | 0.74/7               | 0.0330                 | -0.0070              | 0.040                |
|               | 0.9149 ( <i>J</i> )  | 0.14551 (15)           | -0.0008(3)           | 0.0340 (ð)<br>0.042* |
| ПIЗА<br>UI2D  | 1.0328               | 0.1200                 | -0.0258              | 0.042*               |
| H13B          | 0.7997               | 0.1420                 | -0.0673              | 0.042*               |

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------------|-------------|-------------|-------------|--------------|--------------|--------------|
| <b>S</b> 1 | 0.0231 (4)  | 0.0290 (4)  | 0.0237 (4)  | -0.0011 (3)  | 0.0024 (3)   | -0.0009 (3)  |
| O1W        | 0.0439 (13) | 0.0327 (13) | 0.0623 (16) | 0.0011 (10)  | 0.0131 (12)  | -0.0080 (11) |
| 01         | 0.0342 (11) | 0.0457 (14) | 0.0209 (12) | 0.0003 (9)   | -0.0027 (9)  | 0.0051 (9)   |
| O2         | 0.0630 (16) | 0.0310 (14) | 0.0508 (16) | -0.0044 (11) | 0.0049 (12)  | 0.0120 (11)  |
| 03         | 0.0239 (11) | 0.0606 (15) | 0.0401 (14) | -0.0115 (10) | -0.0070 (10) | 0.0122 (11)  |
| O4         | 0.0416 (13) | 0.0637 (17) | 0.0469 (15) | 0.0067 (12)  | 0.0196 (11)  | -0.0167 (12) |
| N1         | 0.0267 (13) | 0.0376 (16) | 0.0275 (16) | -0.0033 (11) | 0.0019 (12)  | 0.0095 (12)  |
| N2         | 0.0327 (14) | 0.0249 (15) | 0.0230 (14) | -0.0041 (11) | -0.0036 (11) | 0.0046 (11)  |
| C1         | 0.0350 (16) | 0.0349 (19) | 0.0274 (17) | 0.0063 (14)  | 0.0028 (13)  | -0.0008 (14) |
| C2         | 0.0298 (15) | 0.0218 (16) | 0.0298 (17) | -0.0013 (12) | -0.0008 (13) | -0.0008 (13) |
| C3         | 0.0267 (14) | 0.0203 (15) | 0.0258 (16) | -0.0005 (12) | -0.0008 (12) | 0.0047 (12)  |
| C4         | 0.0401 (17) | 0.0219 (17) | 0.0266 (17) | -0.0035 (13) | 0.0022 (14)  | -0.0004 (13) |
| C5         | 0.0396 (18) | 0.0320 (18) | 0.0291 (18) | -0.0142 (14) | -0.0058 (14) | 0.0019 (14)  |
| C6         | 0.0318 (16) | 0.0244 (17) | 0.0326 (18) | 0.0010 (12)  | 0.0047 (13)  | 0.0020 (13)  |
| C7         | 0.0324 (15) | 0.0227 (16) | 0.0357 (18) | 0.0010 (12)  | 0.0110 (13)  | 0.0020 (13)  |
| C8         | 0.0347 (16) | 0.0229 (17) | 0.0379 (19) | 0.0002 (13)  | 0.0094 (14)  | -0.0012 (13) |
| C9         | 0.0325 (16) | 0.0251 (17) | 0.0317 (18) | 0.0027 (12)  | 0.0051 (13)  | 0.0021 (13)  |
| C10        | 0.0300 (15) | 0.0235 (17) | 0.0286 (17) | 0.0016 (12)  | 0.0093 (13)  | 0.0005 (13)  |
| C11        | 0.0272 (15) | 0.0248 (17) | 0.0275 (17) | 0.0003 (12)  | 0.0058 (13)  | 0.0011 (12)  |
| C12        | 0.0407 (17) | 0.0243 (17) | 0.0398 (19) | -0.0020 (13) | 0.0206 (15)  | -0.0047 (14) |
| C13        | 0.0391 (17) | 0.0342 (19) | 0.0324 (19) | -0.0038 (14) | 0.0114 (15)  | -0.0033 (14) |

Atomic displacement parameters  $(Å^2)$ 

Geometric parameters (Å, °)

| S1—O2    | 1.459 (2) | C4—H4B   | 0.9700    |
|----------|-----------|----------|-----------|
| S101     | 1.469 (2) | C5—H5A   | 0.9700    |
| S1—O4    | 1.477 (2) | C5—H5B   | 0.9700    |
| S1—O3    | 1.478 (2) | C6—C7    | 1.530 (4) |
| O1W—H1WA | 0.8501    | C6—H6A   | 0.9700    |
| O1W—H1WB | 0.8500    | C6—H6B   | 0.9700    |
| N1—C1    | 1.478 (4) | C7—C8    | 1.525 (4) |
| N1—C5    | 1.489 (4) | С7—Н7А   | 0.9700    |
| N1—H1NA  | 0.94 (3)  | С7—Н7В   | 0.9700    |
| N1—H1NB  | 0.85 (3)  | C8—C11   | 1.524 (4) |
| N2—C13   | 1.488 (4) | C8—H8A   | 0.9700    |
| N2—C9    | 1.497 (4) | C8—H8B   | 0.9700    |
| N2—H2NA  | 0.88 (3)  | C9—C10   | 1.509 (4) |
| N2—H2NB  | 0.92 (3)  | С9—Н9А   | 0.9700    |
| C1—C2    | 1.515 (4) | C9—H9B   | 0.9700    |
| C1—H1A   | 0.9700    | C10—C11  | 1.526 (4) |
| C1—H1B   | 0.9700    | C10—H10A | 0.9700    |
| C2—C3    | 1.534 (4) | C10—H10B | 0.9700    |
| C2—H2A   | 0.9700    | C11—C12  | 1.527 (4) |
| C2—H2B   | 0.9700    | C11—H11A | 0.9800    |
| C3—C6    | 1.523 (4) | C12—C13  | 1.509 (4) |

| C3—C4                                                                                                                                                                                           | 1.534 (4)            | C12—H12A                                                                                               | 0.9700               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------|----------------------|
| С3—НЗА                                                                                                                                                                                          | 0.9800               | C12—H12B                                                                                               | 0.9700               |
| C4—C5                                                                                                                                                                                           | 1.516 (4)            | C13—H13A                                                                                               | 0.9700               |
| C4—H4A                                                                                                                                                                                          | 0.9700               | C13—H13B                                                                                               | 0.9700               |
|                                                                                                                                                                                                 |                      |                                                                                                        |                      |
| 02—S1—O1                                                                                                                                                                                        | 111.60 (13)          | C3—C6—C7                                                                                               | 115.3 (2)            |
| O2—S1—O4                                                                                                                                                                                        | 108.18 (14)          | С3—С6—Н6А                                                                                              | 108.4                |
| O1—S1—O4                                                                                                                                                                                        | 110.38 (13)          | С7—С6—Н6А                                                                                              | 108.4                |
| O2—S1—O3                                                                                                                                                                                        | 110.79 (13)          | C3—C6—H6B                                                                                              | 108.4                |
| O1—S1—O3                                                                                                                                                                                        | 108.13 (12)          | С7—С6—Н6В                                                                                              | 108.4                |
| O4—S1—O3                                                                                                                                                                                        | 107.69 (14)          | H6A—C6—H6B                                                                                             | 107.5                |
| H1WA—O1W—H1WB                                                                                                                                                                                   | 100.7                | C8—C7—C6                                                                                               | 113.0 (2)            |
| C1—N1—C5                                                                                                                                                                                        | 112.5 (2)            | С8—С7—Н7А                                                                                              | 109.0                |
| C1—N1—H1NA                                                                                                                                                                                      | 108.6 (19)           | С6—С7—Н7А                                                                                              | 109.0                |
| C5—N1—H1NA                                                                                                                                                                                      | 112.1 (19)           | С8—С7—Н7В                                                                                              | 109.0                |
| C1—N1—H1NB                                                                                                                                                                                      | 111 (2)              | С6—С7—Н7В                                                                                              | 109.0                |
| C5—N1—H1NB                                                                                                                                                                                      | 106 (2)              | H7A—C7—H7B                                                                                             | 107.8                |
| H1NA—N1—H1NB                                                                                                                                                                                    | 107 (3)              | C11—C8—C7                                                                                              | 114.3 (2)            |
| C13—N2—C9                                                                                                                                                                                       | 112.4 (2)            | C11—C8—H8A                                                                                             | 108.7                |
| C13—N2—H2NA                                                                                                                                                                                     | 108 (2)              | C7—C8—H8A                                                                                              | 108.7                |
| C9—N2—H2NA                                                                                                                                                                                      | 110 (2)              | C11—C8—H8B                                                                                             | 108.7                |
| C13—N2—H2NB                                                                                                                                                                                     | 105.2 (19)           | C7—C8—H8B                                                                                              | 108.7                |
| C9—N2—H2NB                                                                                                                                                                                      | 109.9 (19)           | H8A—C8—H8B                                                                                             | 107.6                |
| H2NA—N2—H2NB                                                                                                                                                                                    | 111 (3)              | N2-C9-C10                                                                                              | 110.9 (2)            |
| N1—C1—C2                                                                                                                                                                                        | 111.3 (2)            | N2—C9—H9A                                                                                              | 109.4                |
| N1—C1—H1A                                                                                                                                                                                       | 109.4                | С10—С9—Н9А                                                                                             | 109.4                |
| C2-C1-H1A                                                                                                                                                                                       | 109.4                | N2-C9-H9B                                                                                              | 109.4                |
| N1—C1—H1B                                                                                                                                                                                       | 109.4                | C10-C9-H9B                                                                                             | 109.4                |
| $C^2$ — $C1$ — $H1B$                                                                                                                                                                            | 109.1                | H9A - C9 - H9B                                                                                         | 108.0                |
| $H_1A - C_1 - H_1B$                                                                                                                                                                             | 108.0                | C9-C10-C11                                                                                             | 111.7(2)             |
| C1 - C2 - C3                                                                                                                                                                                    | 113.0(2)             | C9-C10-H10A                                                                                            | 109.3                |
| C1 - C2 - H2A                                                                                                                                                                                   | 109.0                | C11 - C10 - H10A                                                                                       | 109.3                |
| $C_3 - C_2 - H_2 A$                                                                                                                                                                             | 109.0                | C9-C10-H10B                                                                                            | 109.3                |
| C1 - C2 - H2B                                                                                                                                                                                   | 109.0                | C11-C10-H10B                                                                                           | 109.3                |
| $C_3 - C_2 - H_2B$                                                                                                                                                                              | 109.0                | H10A - C10 - H10B                                                                                      | 107.9                |
| $H_2A = C_2 = H_2B$                                                                                                                                                                             | 107.8                | C8-C11-C10                                                                                             | 107.9<br>112.6 (2)   |
| C6-C3-C2                                                                                                                                                                                        | 107.0<br>112.0(2)    | C8 - C11 - C12                                                                                         | 112.0(2)<br>112.5(2) |
| C6-C3-C4                                                                                                                                                                                        | 112.0(2)<br>110.4(2) | C10-C11-C12                                                                                            | 112.3(2)<br>107.8(2) |
| $C_2 C_3 C_4$                                                                                                                                                                                   | 110.4(2)<br>100.0(2) | $C_{10} = C_{11} = C_{12}$                                                                             | 107.8 (2)            |
| C6-C3-H3A                                                                                                                                                                                       | 109.0 (2)            | $C_{10}$                                                                                               | 107.9                |
| $C_2 C_3 H_3 \Lambda$                                                                                                                                                                           | 108.5                | C12 C11 H11A                                                                                           | 107.9                |
| $C_2 = C_3 = H_3 \Lambda$                                                                                                                                                                       | 108.5                | C12 $C12$ $C11$                                                                                        | 107.3<br>112.2(2)    |
| $C_{\tau}$ $C_{J}$ $C_{J}$ $C_{J}$ $C_{J}$                                                                                                                                                      | 112 1 (2)            | $C_{13} = C_{12} = C_{11}$<br>$C_{13} = C_{12} = U_{12}$                                               | 112.3(2)             |
| $C_{3}$                                                                                                                                                                                         | 112.1(2)<br>100.2    | $C_{13}$ $-C_{12}$ $-\Pi_{12A}$                                                                        | 109.2                |
| $C_3 = C_4 = \Pi_4 \Lambda$                                                                                                                                                                     | 109.2                | C12 C12 H12R                                                                                           | 109.2                |
| $C_{5} = C_{4} = \Pi_{4}A$                                                                                                                                                                      | 109.2                | $C_{13} = C_{12} = - \Pi_{12} D$                                                                       | 109.2                |
| $C_3 = C_4 = \Pi_4 D$                                                                                                                                                                           | 109.2                | $U_{11} - U_{12} - H_{12B}$                                                                            | 109.2                |
| $\cup J \longrightarrow \cup U \longrightarrow U \longrightarrow$ | 109.2                | $\mathbf{\Pi}_{\mathbf{Z}\mathbf{A}} = \mathbf{C}_{1\mathbf{Z}} = \mathbf{\Pi}_{\mathbf{Z}\mathbf{B}}$ | 107.9                |
| 114А—04—П4D                                                                                                                                                                                     | 107.9                | 112-013-012                                                                                            | 111.0(2)             |

# supporting information

| N1-C5-C4   | 109.9 (2) | N2—C13—H13A   | 109.4 |  |
|------------|-----------|---------------|-------|--|
| N1—C5—H5A  | 109.7     | C12—C13—H13A  | 109.4 |  |
| C4—C5—H5A  | 109.7     | N2—C13—H13B   | 109.4 |  |
| N1—C5—H5B  | 109.7     | C12—C13—H13B  | 109.4 |  |
| C4—C5—H5B  | 109.7     | H13A—C13—H13B | 108.0 |  |
| H5A—C5—H5B | 108.2     |               |       |  |

# Hydrogen-bond geometry (Å, °)

|                                               | D—H      | H···A    | D···A     | D—H···A |  |
|-----------------------------------------------|----------|----------|-----------|---------|--|
| 01 <i>W</i> —H1 <i>WA</i> ···O4 <sup>i</sup>  | 0.85     | 1.98     | 2.819 (3) | 168     |  |
| O1 <i>W</i> —H1 <i>WB</i> ···O3 <sup>ii</sup> | 0.85     | 1.97     | 2.799 (3) | 165     |  |
| N1—H1 <i>NA</i> ····O4 <sup>iii</sup>         | 0.94 (3) | 2.09 (3) | 2.904 (3) | 144 (3) |  |
| N1—H1 <i>NB</i> ····O3 <sup>iv</sup>          | 0.85 (3) | 1.91 (3) | 2.711 (3) | 157 (3) |  |
| N2—H2NA····O1 <sup>v</sup>                    | 0.88 (3) | 1.83 (3) | 2.704 (3) | 177 (3) |  |
| N2—H2 <i>NB</i> ····O4 <sup>vi</sup>          | 0.92 (3) | 2.02 (3) | 2.845 (4) | 149 (3) |  |
|                                               |          |          |           |         |  |

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+3/2, y-1/2, -z+1/2; (iii) -x, -y, -z+1; (iv) -x+1, -y, -z+1; (v) x+1, y, z; (vi) x+1/2, -y+1/2, z-1/2.