

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-(3-Phenylallylidene)isonicotinohydrazide

Feng-Yu Bao

Department of Applied Chemistry, College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China Correspondence e-mail: bfyu2008@yahoo.com.cn

Received 3 July 2008; accepted 14 August 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.006 Å; R factor = 0.060; wR factor = 0.134; data-to-parameter ratio = 8.9.

The asymmetric unit of the title compound, $C_{15}H_{13}N_3O$, contains two similar molecules. Each molecule is non-planar, as indicated by the dihedral angles between the pyridine and benzene rings of 45.2 (2) and 56.6 (2)°. The crystal structure is consolidated by intermolecular N-H···O hydrogen bonds.

Related literature

For related literature, see: Kahwa et al. (1986); Qian et al. (2006); Santos et al. (2001).

Experimental

Crystal data

C ₁₅ H ₁₃ N ₃ O	a = 12.608 (8) Å
$M_r = 251.28$	b = 11.023 (7) Å
Monoclinic, Pc	c = 10.044 (7) Å

 $\beta = 105.94 (3)^{\circ}$ $V = 1342.2 (15) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.98, T_{max} = 0.98$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.134$ S = 1.013110 reflections 349 parameters 2 restraints 11645 measured reflections 3110 independent reflections 2784 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 291 (2) K

 $0.30 \times 0.26 \times 0.24$ mm

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.20$ e Å⁻³ $\Delta \rho_{\rm min} = -0.29$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O2^{i}$	0.86 (5)	2.19 (5)	3.050 (6)	174 (3)
Summetry code: (i) $x y \pm 1 z$				

Symmetry code: (i) x, y + 1, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2136).

References

- Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
- Qian, H.-Y., Yin, Z.-G., Jia, J., Liu, S.-M. & Feng, L.-Q. (2006). Acta Cryst. E62, 03623–03624.

Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, o1789 [doi:10.1107/S1600536808026287]

N'-(3-Phenylallylidene)isonicotinohydrazide

Feng-Yu Bao

S1. Comment

Interest in the chemistry of Schiff bases has increased considerably in recent years, mainly due to their novel properties and their application in the development of various proteins and enzymes (Kahwa *et al.*, 1986; Santos *et al.*, 2001). Structural information of Schiff base derivatives is useful in studying their coordination chemisty. As part of our research, we have synthesized the title compound (I) and report its crystal structure here.

The molecular structure is shown in Fig. 1. Each molecule is non-planar, with dihedral angles of 45.2 (2) and 56.6 (2)° between the pyridine ring and the benzene ring for the two molecules. Bond lengths and angles agree with those found for isonicotinohydrazide derivatives (Qian *et al.*, 2006).

Intermolecular N-H-O hydrogen bonds link pairs of molecules.

S2. Experimental

Pyridine-4-carboxylic acid hydrazide (1 mmol, 0.137 g) was dissolved in anhydrous methanol, whereafter H₂SO₄ (98%, 0.5 ml) was added and the mixture was stirred for several minutes at 351 K. A solution of cinnamaldehyde (1 mmol, 0.132 g) in methanol (8 ml) was then added dropwise and the mixture was stirred under reflux for 2 h. The product was isolated and recrystallized from dichloromethane, brown single crystals of (I) were obtained after 2 d.

S3. Refinement

H atoms on N2 and N5 were identified by difference Fourier map and refined isotropically. All other H atoms were placed in calculated positions, with C-H=0.93Å (aromatic), N-H = 0.96Å, and with $U_{iso}(H)=1.2U_{eq}(C,N)$. In the absence of significant anomalous scattering effects, 2686 Friedel pairs have been merged.

Figure 1

ORTEP plot of (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

N'-(3-Phenylallylidene)isonicotinohydrazide

Crystal data	
C ₁₅ H ₁₃ N ₃ O	F(000) = 528
$M_r = 251.28$	$D_{\rm x} = 1.244 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Pc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P -2yc	Cell parameters from 940 reflections
a = 12.608 (8) Å	$\theta = 2.5 - 20.5^{\circ}$
b = 11.023 (7) Å	$\mu = 0.08 \ { m mm^{-1}}$
c = 10.044 (7) Å	T = 291 K
$\beta = 105.94 \ (3)^{\circ}$	Block, brown
$V = 1342.2 (15) Å^3$	$0.30 \times 0.26 \times 0.24 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART APEX CCD area-detector	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 2000)
Radiation source: sealed tube	$T_{\rm min} = 0.98, \ T_{\rm max} = 0.98$
Graphite monochromator	11645 measured reflections
φ and ω scans	3110 independent reflections
	2784 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.044$	$k = -13 \rightarrow 14$
$\theta_{\rm max} = 27.7^{\circ}, \theta_{\rm min} = 1.7^{\circ}$	$l = -13 \rightarrow 12$
$h = -16 \rightarrow 16$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.134$	neighbouring sites
<i>S</i> = 1.01	H atoms treated by a mixture of independent
3110 reflections	and constrained refinement
349 parameters	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 0.88P]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	v	7.	Uiro*/Uar	
$\overline{C1}$	1 2011 (4)	0.4816 (5)	0.8674 (5)	0.0472 (10)	
U1	1.2011 (4)	0.5562	0.8420	0.057*	
C^{2}	1.2250 1.2551(4)	0.3302 0.4303(4)	0.0420 0.0017 (5)	0.057	
112	1.2331 (4)	0.4303 (4)	0.3917 (3)	0.0457 (10)	
П2 С2	1.5159	0.4/10	1.0303	0.033	
C3	1.2239 (4)	0.3174 (4)	1.0323 (5)	0.0417 (9)	
H3	1.2609	0.2838	1.1173	0.050*	
C4	1.1362 (4)	0.2566 (4)	0.9422 (4)	0.0418 (10)	
H4	1.1148	0.1809	0.9666	0.050*	
C5	1.0805 (4)	0.3081 (5)	0.8167 (4)	0.0469 (11)	
Н5	1.0219	0.2672	0.7571	0.056*	
C6	1.1126 (3)	0.4217 (4)	0.7798 (5)	0.0421 (9)	
C7	1.0508 (3)	0.4875 (4)	0.6585 (5)	0.0426 (10)	
H7	1.0694	0.5672	0.6446	0.051*	
C8	0.9646 (4)	0.4321 (4)	0.5637 (5)	0.0436 (10)	
H8	0.9451	0.3521	0.5747	0.052*	
C9	0.9049 (4)	0.5050 (4)	0.4446 (4)	0.0435 (10)	
H9	0.9175	0.5870	0.4333	0.052*	
C10	0.6810 (4)	0.4686 (4)	0.1451 (4)	0.0391 (9)	
C11	0.5998 (4)	0.5425 (4)	0.0516 (4)	0.0438 (10)	
C12	0.5471 (3)	0.5017 (4)	-0.0823 (4)	0.0356 (8)	
H12	0.5587	0.4233	-0.1093	0.043*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C13	0.4793 (4)	0.5778 (4)	-0.1716 (5)	0.0413 (9)
H13	0.4438	0.5497	-0.2599	0.050*
C14	0.5136 (4)	0.7372 (4)	-0.0082 (4)	0.0427 (9)
H14	0.5025	0.8165	0.0165	0.051*
C15	0.5845 (3)	0.6620 (4)	0.0872 (4)	0.0432 (10)
H15	0.6216	0.6914	0.1743	0.052*
C16	0.4052 (4)	0.0511 (4)	-0.2985 (4)	0.0424 (9)
H16	0.4482	-0.0181	-0.2728	0.051*
C17	0.3238 (3)	0.0544 (4)	-0.4232 (4)	0.0400 (9)
H17	0.3127	-0.0128	-0.4814	0.048*
C18	0.2588 (4)	0.1560 (4)	-0.4623 (5)	0.0455 (10)
H18	0.2039	0.1569	-0.5459	0.055*
C19	0.2761 (4)	0.2580 (4)	-0.3752 (4)	0.0417 (9)
H19	0.2328	0.3269	-0.4015	0.050*
C20	0.3577 (3)	0.2565 (4)	-0.2498 (4)	0.0356 (8)
H20	0.3689	0.3242	-0.1923	0.043*
C21	0.4226 (4)	0.1536 (4)	-0.2104 (4)	0.0462 (10)
C22	0.5026 (4)	0.1586 (4)	-0.0775 (5)	0.0462 (10)
H22	0.5019	0.2227	-0.0175	0.055*
C23	0.5807 (4)	0.0677 (4)	-0.0391 (4)	0.0433 (10)
H23	0.5931	0.0067	-0.0970	0.052*
C24	0.6411 (3)	0.0828 (4)	0.1081 (4)	0.0398 (9)
H24	0.6423	0.1533	0.1594	0.048*
C25	0.8300 (4)	-0.1108 (5)	0.3489 (5)	0.0502 (11)
C26	0.8954 (4)	-0.0909 (4)	0.4904 (5)	0.0441 (10)
C27	0.9750 (4)	-0.0014 (4)	0.5288 (5)	0.0405 (9)
H27	0.9822	0.0570	0.4650	0.049*
C28	1.0442 (4)	0.0012 (5)	0.6632 (5)	0.0505 (11)
H28	1.0965	0.0623	0.6904	0.061*
C29	0.9555 (3)	-0.1774 (4)	0.7183 (4)	0.0421 (9)
H29	0.9483	-0.2360	0.7819	0.051*
C30	0.8865 (3)	-0.1796 (3)	0.5848 (4)	0.0337 (8)
H30	0.8341	-0.2407	0.5582	0.040*
N1	0.8334 (3)	0.4414 (3)	0.3586 (4)	0.0397 (8)
N2	0.7663 (3)	0.5206 (4)	0.2548 (4)	0.0423 (9)
H2A	0.777 (4)	0.598 (5)	0.259 (5)	0.051*
N3	0.4603 (3)	0.6964 (3)	-0.1372 (3)	0.0392 (8)
N4	0.6918 (3)	-0.0162 (3)	0.1548 (4)	0.0424 (8)
N5	0.7800 (3)	-0.0023 (3)	0.2797 (3)	0.0368 (8)
H5A	0.833 (4)	0.042 (4)	0.259 (5)	0.044*
N6	1.0342 (3)	-0.0891 (4)	0.7569 (4)	0.0491 (9)
O1	0.6774 (2)	0.3578 (3)	0.1322 (3)	0.0434 (7)
O2	0.8172 (2)	-0.2090 (3)	0.2914 (3)	0.0440 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
C1	0.042 (2)	0.052 (3)	0.051 (3)	-0.006 (2)	0.019 (2)	0.004 (2)

C2	0.042 (2)	0.048 (2)	0.049 (3)	-0.0034 (19)	0.017 (2)	-0.011 (2)
C3	0.043 (2)	0.044 (2)	0.043 (2)	0.0020 (18)	0.0214 (19)	-0.0022 (18)
C4	0.048 (2)	0.042 (2)	0.042 (2)	-0.0146 (18)	0.0227 (19)	0.0100 (17)
C5	0.037 (2)	0.071 (3)	0.035 (2)	-0.014 (2)	0.0134 (17)	-0.010 (2)
C6	0.0332 (18)	0.050(2)	0.046 (2)	0.0070 (18)	0.0149 (17)	-0.0088 (19)
C7	0.037 (2)	0.043 (2)	0.054 (3)	0.0071 (18)	0.0238 (19)	-0.014 (2)
C8	0.040 (2)	0.041 (2)	0.053 (3)	0.0142 (18)	0.0167 (19)	0.0057 (19)
C9	0.051 (2)	0.050(2)	0.0264 (19)	0.003 (2)	0.0053 (17)	-0.0123 (18)
C10	0.044 (2)	0.036 (2)	0.040 (2)	-0.0233 (18)	0.0151 (17)	0.0063 (17)
C11	0.054 (3)	0.041 (2)	0.038 (2)	-0.006 (2)	0.0163 (19)	-0.0013 (18)
C12	0.0331 (19)	0.038 (2)	0.043 (2)	0.0074 (16)	0.0221 (16)	-0.0088 (16)
C13	0.042 (2)	0.046 (2)	0.040 (2)	-0.0041 (19)	0.0172 (18)	-0.0042 (18)
C14	0.048 (2)	0.042 (2)	0.037 (2)	-0.0053 (19)	0.0103 (18)	-0.0103 (18)
C15	0.041 (2)	0.056 (3)	0.032 (2)	-0.0076 (19)	0.0092 (17)	-0.0133 (18)
C16	0.051 (2)	0.045 (2)	0.031 (2)	-0.005 (2)	0.0121 (17)	0.0038 (17)
C17	0.036 (2)	0.046 (2)	0.036 (2)	-0.0121 (17)	0.0074 (17)	-0.0079 (17)
C18	0.047 (2)	0.047 (2)	0.043 (2)	-0.0120 (19)	0.0108 (19)	-0.013 (2)
C19	0.049 (2)	0.043 (2)	0.034 (2)	-0.0036 (19)	0.0128 (18)	-0.0051 (17)
C20	0.0386 (19)	0.036 (2)	0.037 (2)	-0.0144 (16)	0.0175 (16)	0.0037 (16)
C21	0.055 (3)	0.051 (3)	0.037 (2)	-0.004 (2)	0.0198 (19)	0.0099 (19)
C22	0.046 (2)	0.044 (2)	0.051 (3)	0.0147 (19)	0.018 (2)	-0.0061 (19)
C23	0.044 (2)	0.045 (2)	0.040 (2)	0.0018 (19)	0.0095 (18)	-0.0135 (18)
C24	0.0314 (18)	0.052 (2)	0.037 (2)	-0.0043 (17)	0.0113 (16)	-0.0110 (18)
C25	0.050 (2)	0.052 (3)	0.054 (3)	0.013 (2)	0.022 (2)	0.003 (2)
C26	0.047 (2)	0.045 (2)	0.049 (3)	0.003 (2)	0.028 (2)	0.005 (2)
C27	0.038 (2)	0.046 (2)	0.044 (2)	0.0001 (17)	0.0225 (18)	0.0012 (18)
C28	0.050 (2)	0.063 (3)	0.038 (2)	-0.011 (2)	0.0126 (19)	-0.009 (2)
C29	0.040 (2)	0.047 (2)	0.044 (2)	0.0067 (18)	0.0202 (18)	-0.0077 (18)
C30	0.0285 (16)	0.0339 (19)	0.044 (2)	0.0102 (14)	0.0190 (15)	-0.0027 (16)
N1	0.0374 (17)	0.0327 (17)	0.0451 (19)	-0.0052 (14)	0.0045 (14)	0.0001 (14)
N2	0.0305 (17)	0.045 (2)	0.0435 (19)	-0.0151 (15)	-0.0034 (14)	0.0138 (16)
N3	0.0488 (19)	0.0410 (19)	0.0321 (17)	0.0031 (16)	0.0182 (14)	0.0002 (15)
N4	0.055 (2)	0.0406 (19)	0.0303 (17)	-0.0081 (17)	0.0093 (16)	-0.0039 (15)
N5	0.0338 (17)	0.0399 (18)	0.0350 (18)	-0.0151 (14)	0.0064 (14)	-0.0011 (14)
N6	0.043 (2)	0.062 (2)	0.049 (2)	-0.0020 (18)	0.0230 (17)	-0.0041 (19)
01	0.0396 (15)	0.0449 (17)	0.0474 (17)	-0.0096 (13)	0.0152 (13)	-0.0059 (13)
O2	0.0434 (15)	0.0455 (17)	0.0413 (16)	0.0001 (13)	0.0084 (12)	0.0034 (14)

Geometric parameters (Å, °)

C1—C2	1.369 (7)	C16—H16	0.9300
C1—C6	1.385 (7)	C17—C18	1.379 (7)
C1—H1	0.9300	C17—H17	0.9300
C2—C3	1.400 (6)	C18—C19	1.405 (6)
С2—Н2	0.9300	C18—H18	0.9300
C3—C4	1.394 (6)	C19—C20	1.391 (6)
С3—Н3	0.9300	C19—H19	0.9300
C4—C5	1.386 (6)	C20—C21	1.391 (6)

C4 114	0.0000	C20 1120	0.000
C4—H4	0.9300	С20—Н20	0.9300
C5—C6	1.397 (7)	C21—C22	1.437 (6)
С5—Н5	0.9300	C22—C23	1.383 (6)
С6—С7	1.447 (7)	С22—Н22	0.9300
C7—C8	1.375 (7)	C23—C24	1.475 (6)
С7—Н7	0.9300	С23—Н23	0.9300
C8—C9	1 467 (6)	C24—N4	1 287 (6)
C8—H8	0.9300	C_{24} H24	0.9300
$C_0 = N_1$	1.272 (5)	$C_{24} = 1124$	1.216(6)
C9-NI	1.273(3)	$C_{23} = O_2$	1.210(0)
C9—H9	0.9300	C25—N5	1.439 (6)
01	1.228 (5)	C25—C26	1.451 (7)
C10—N2	1.432 (5)	C26—C27	1.385 (6)
C10—C11	1.437 (6)	C26—C30	1.388 (6)
C11—C15	1.393 (6)	C27—C28	1.391 (7)
C11—C12	1.400 (6)	С27—Н27	0.9300
C12—C13	1.347 (6)	C28—N6	1.399 (7)
C12—H12	0.9300	C28—H28	0.9300
C13—N3	1 390 (6)	C29—N6	1 368 (6)
C13_H13	0.9300	C_{29} C_{30}	1 384 (6)
C14 N2	1 262 (5)	C_{20} H_{20}	0.0200
C14 $C15$	1.302(3)	C29—H29	0.9300
	1.390 (7)	C30—H30	0.9300
C14—H14	0.9300	N1—N2	1.442 (5)
C15—H15	0.9300	N2—H2A	0.86 (5)
C16—C17	1.385 (6)	N4—N5	1.437 (5)
C16—C21	1.415 (7)	N5—H5A	0.90 (5)
C2—C1—C6	119.7 (5)	C16—C17—H17	119.6
C2-C1-H1	120.1	C17—C18—C19	1196(4)
C6_C1_H1	120.1	C17 - C18 - H18	120.2
$C_1 = C_2 = C_3$	120.1	$C_{10} = C_{10} = H_{10}$	120.2
C1 = C2 = C3	121.0 (4)	$C_{19} = C_{18} = 1118$	120.2
C1 = C2 = H2	119.2	$C_{20} = C_{19} = C_{18}$	120.3 (4)
C3—C2—H2	119.2	C20—C19—H19	119.9
C4—C3—C2	118.4 (4)	C18—C19—H19	119.9
С4—С3—Н3	120.8	C21—C20—C19	119.9 (4)
С2—С3—Н3	120.8	C21—C20—H20	120.1
C5—C4—C3	120.5 (4)	С19—С20—Н20	120.1
C5—C4—H4	119.8	C20—C21—C16	119.7 (4)
C3—C4—H4	119.8	C20—C21—C22	116.2 (4)
C4—C5—C6	119.9 (4)	C16—C21—C22	124.1 (4)
C4—C5—H5	120.1	C^{23} C^{22} C^{21} C^{21}	1197(4)
C6 C5 H5	120.1	$C_{23} C_{22} C_{22} C_{21}$	120.1
$C_0 = C_0 = H_0$	120.1	$C_{23} = C_{22} = H_{22}$	120.1
$C_1 = C_0 = C_3$	120.0(4)	$C_{21} = C_{22} = C_{24}$	120.1
	110./(3)	$U_{22} - U_{23} - U_{24}$	109.2 (4)
C5—C6—C7	123.0 (4)	С22—С23—Н23	125.4
C8—C7—C6	120.0 (4)	С24—С23—Н23	125.4
С8—С7—Н7	120.0	N4—C24—C23	109.7 (4)
С6—С7—Н7	120.0	N4—C24—H24	125.1
C7—C8—C9	116.9 (4)	C23—C24—H24	125.1

С7—С8—Н8	121.5	O2—C25—N5	121.8 (5)
С9—С8—Н8	121.5	O2—C25—C26	124.4 (4)
N1—C9—C8	111.1 (4)	N5-C25-C26	113.8 (4)
N1—C9—H9	124.4	C27—C26—C30	120.0 (4)
С8—С9—Н9	124.4	C27—C26—C25	123.7 (4)
O1—C10—N2	118.5 (4)	C30—C26—C25	115.6 (4)
O1—C10—C11	119.7 (4)	C26—C27—C28	119.9 (4)
N2-C10-C11	121.7 (4)	С26—С27—Н27	120.1
C15—C11—C12	119.1 (4)	С28—С27—Н27	120.1
C15—C11—C10	119.5 (4)	C27—C28—N6	119.3 (4)
C12—C11—C10	120.7 (4)	С27—С28—Н28	120.3
C13—C12—C11	119.1 (4)	N6—C28—H28	120.3
C13—C12—H12	120.4	N6-C29-C30	120.1 (4)
C11—C12—H12	120.4	N6—C29—H29	120.0
C12—C13—N3	122.8 (4)	С30—С29—Н29	120.0
C12—C13—H13	118.6	C29—C30—C26	120.2 (4)
N3—C13—H13	118.6	С29—С30—Н30	119.9
N3—C14—C15	121.0 (4)	С26—С30—Н30	119.9
N3—C14—H14	119.5	C9—N1—N2	108.8 (4)
C15—C14—H14	119.5	C10—N2—N1	118.8 (3)
C14—C15—C11	119.7 (4)	C10—N2—H2A	121 (3)
C14—C15—H15	120.1	N1—N2—H2A	121 (3)
C11—C15—H15	120.1	C14—N3—C13	118.2 (4)
C17—C16—C21	119.6 (4)	C24—N4—N5	114.5 (3)
C17—C16—H16	120.2	N4—N5—C25	117.7 (4)
С21—С16—Н16	120.2	N4—N5—H5A	108 (3)
C18—C17—C16	120.9 (4)	C25—N5—H5A	108 (3)
С18—С17—Н17	119.6	C29—N6—C28	120.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A····O2 ⁱ	0.86 (5)	2.19 (5)	3.050 (6)	174 (3)

Symmetry code: (i) x, y+1, z.