organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,5-Dibromoterephthalic acid dihydrate

Guang-Liang Song, Shan Liu, Hua-Jun Liu, Tao Zeng and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: zhuhj@njut.edu.cn

Received 16 May 2008; accepted 24 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; *R* factor = 0.049; *wR* factor = 0.117; data-to-parameter ratio = 15.0.

The asymmetric unit of the title compound, $C_8H_4Br_2O_4\cdot 2H_2O$, contains one half-molecule of 2,5-dibromoterephthalic acid (DBTA) and one water molecule. The DBTA molecule is centrosymmetric. In the crystal structure, intermolecular $O-H\cdots O$ hydrogen bonds link the molecules, forming a three-dimensional framework.

Related literature

For general background, see: Yao & Tour (1999). For a related structure, see: Singh & Bedi (1957).

Experimental

Crystal data $C_8H_4Br_2O_4 \cdot 2H_2O$ $M_r = 359.94$

Monoclinic, $P2_1/c$ a = 10.670 (2) Å

b = 7.413(1) Å	
c = 7.074 (1) Å	
$\beta = 92.74 \ (3)^{\circ}$	
V = 558.89 (15) Å ³	
Z = 2	

Data collection

Enraf-Nonius CAD-4	1003 measured reflections
diffractometer	1003 independent reflections
Absorption correction: ψ scan	763 reflections with $I > 2\sigma(I)$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.530, T_{\max} = 0.594$	every 200 reflections
(expected range = $0.499-0.559$)	intensity decay: none
Refinement	

Mo $K\alpha$ radiation $\mu = 7.26 \text{ mm}^{-1}$

 $0.10 \times 0.10 \times 0.08 \text{ mm}$

T = 293 (2) K

$D[E^2 - 2 + (E^2)] = 0.040$	21
$R[F^2 > 2\sigma(F^2)] = 0.048$	21 restraints
$wR(F^2) = 0.117$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
1003 reflections	$\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$
67 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
OW−HWA···O1 ⁱ	0.85	2.11	2.903 (9)	155
$OW-HWB\cdots O1^{ii}$	0.85	2.22	2.944 (9)	142
$O2-H2A\cdots OW$	0.82	1.75	2.566 (8)	177

Symmetry codes: (i) -x, -y, -z + 1; (ii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1985); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2130).

References

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Singh, T. & Bedi, S. N. (1957). J. Indian Chem. Soc. 34, 321-323.

Yao, Y. X. & Tour, J. M. (1999). Macromolecules, 32, 2455-2461.

supporting information

Acta Cryst. (2008). E64, o1860 [doi:10.1107/S1600536808027268]

2,5-Dibromoterephthalic acid dihydrate

Guang-Liang Song, Shan Liu, Hua-Jun Liu, Tao Zeng and Hong-Jun Zhu

S1. Comment

2,5-Dibromoterephthalic acid (DBTA) is an important intermediate in the preparation of flame-retardant polymers (Yao *et al.*, 1999). We report herein the crystal structure of the title compound (I).

The asymmetric unit of I (Fig. 1), contains one half of a molecule of 2,5-dibromoterephthalic acid (DBTA), which is related to the other half by a center of symmetry, and one water molecule. Three neighbouring DBTA molecules are linked through one water molecule by intermolecular O—H…O hydrogen bonds, to form a three dimensional framework.

S2. Experimental

The title compound was prepared according to the method described by Singh & Bedi (1957). Crystals of (I) suitable for X-ray analysis were obtained by dissolving DBTA (2.0 g) in water (80 ml) and evaporating slowly at room temperature for about 15 d.

S3. Refinement

Anisotropic parameters of the C atoms in the phenyl ring were restrained to have equal components and approximately isotropic behavior. H atoms were positioned geometrically, with O—H = 0.82 (for OH) and 0.85 (for H₂O) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C/O)$, where x = 1.2 for aromatic H and x = 1.5 for other H.

Figure 1

The molecular structure of (I), showing the atom labelling scheme. Anisotropic displacement parameters are shown at the 50% probability level.

2,5-Dibromoterephthalic acid dihydrate

Crystal data

 $C_{8}H_{4}Br_{2}O_{4} \cdot 2H_{2}O$ $M_{r} = 359.94$ Monoclinic, $P2_{1}/c$ a = 10.670 (2) Å b = 7.413 (1) Å c = 7.074 (1) Å $\beta = 92.74 (3)^{\circ}$ $V = 558.89 (15) \text{ Å}^{3}$ Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\rm min} = 0.530, T_{\rm max} = 0.594$ 1003 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.117$ S = 1.051003 reflections F(000) = 348 $D_x = 2.139 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 7.26 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.10 \times 0.10 \times 0.08 \text{ mm}$

1003 independent reflections 763 reflections with $I > 2\sigma(I)$ $R_{int} = 0.000$ $\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -12 \rightarrow 12$ $k = 0 \rightarrow 8$ $I = 0 \rightarrow 8$ 3 standard reflections every 200 reflections intensity decay: none

67 parameters21 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 1.5P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 0.55 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.70 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Br	0.31754 (7)	0.35260 (9)	0.52687 (10)	0.0366 (3)	
OW	-0.0069 (5)	-0.2828 (11)	0.7105 (11)	0.093 (3)	
HWA	-0.0608	-0.2028	0.6780	0.111*	
HWB	-0.0299	-0.3786	0.7651	0.111*	
01	0.1532 (5)	0.0220 (6)	0.5124 (8)	0.0495 (14)	
O2	0.2259 (5)	-0.2252 (7)	0.6570 (9)	0.0554 (15)	
H2A	0.1515	-0.2402	0.6767	0.083*	
C1	0.5431 (6)	0.1725 (10)	0.4729 (9)	0.034	
H1A	0.5725	0.2885	0.4518	0.040*	
C2	0.4182 (6)	0.1457 (8)	0.5085 (9)	0.0276 (13)	
C3	0.3736 (6)	-0.0245 (8)	0.5317 (8)	0.0255 (13)	
C4	0.2396 (6)	-0.0748 (9)	0.5662 (9)	0.0314 (15)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.0487 (4)	0.0111 (4)	0.0496 (5)	0.0050 (3)	-0.0007 (3)	0.0002 (3)
OW	0.030 (3)	0.111 (6)	0.139 (7)	0.008 (3)	0.013 (3)	0.073 (5)
01	0.045 (3)	0.016 (3)	0.087 (4)	-0.004 (2)	-0.002 (3)	0.015 (3)
O2	0.051 (3)	0.028 (3)	0.087 (4)	-0.006(3)	-0.004 (3)	0.029 (3)
C1	0.034	0.034	0.034	0.000	0.002	0.000
C2	0.043 (3)	0.009(3)	0.030 (3)	0.002 (3)	-0.009 (3)	0.000 (3)
C3	0.038 (3)	0.013 (3)	0.025 (3)	-0.002 (3)	-0.003 (2)	-0.004 (3)
C4	0.035 (3)	0.022 (3)	0.038 (4)	0.003 (3)	0.004 (3)	0.005 (3)

Geometric parameters (Å, °)

1.880 (6)	C1—C2	1.383 (8)
0.8500	C1-C3 ⁱ	1.413 (9)
0.8500	C1—H1A	0.9300
1.215 (8)	C2—C3	1.361 (8)
	1.880 (6) 0.8500 0.8500 1.215 (8)	1.880 (6) C1—C2 0.8500 C1—C3 ⁱ 0.8500 C1—H1A 1.215 (8) C2—C3

O2—C4	1.299 (8)	C3—C1 ⁱ	1.413 (9)
O2—H2A	0.8200	C3—C4	1.508 (9)
HWA—OW—HWB	120.0	C1C2Br	117.0 (5)
C4—O2—H2A	109.5	C2C3C1 ⁱ	119.5 (6)
C2—C1—C3 ⁱ	120.4 (6)	C2C3C4	126.0 (6)
C2—C1—H1A	119.8	C1 ⁱ C3C4	114.5 (5)
C3 ⁱ —C1—H1A	119.8	O1C4O2	124.1 (6)
C3—C2—C1	120.1 (6)	O1C4C3	121.0 (6)
C3—C2—Br	122.9 (5)	O2C4C3	115.0 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.7 (10)	Br—C2—C3—C4	2.8 (9)
	176.2 (5)	C2—C3—C4—O1	26.1 (10)
	2.7 (10)	C1 ⁱ —C3—C4—O1	-154.9 (6)
	-176.2 (5)	C2—C3—C4—O2	-153.4 (7)
	-178.3 (6)	C1 ⁱ —C3—C4—O2	25.6 (8)

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A	
OW—HWA…O1 ⁱⁱ	0.85	2.11	2.903 (9)	155	
OW—HWB…O1 ⁱⁱⁱ	0.85	2.22	2.944 (9)	142	
O2—H2A···OW	0.82	1.75	2.566 (8)	177	

Symmetry codes: (ii) -*x*, -*y*, -*z*+1; (iii) -*x*, *y*-1/2, -*z*+3/2.