Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Benzyliminomethyl-6-bromo-4-chlorophenol

Xiao-Hua Pu

Department of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China Correspondence e-mail: pxh913@163.com

Received 29 July 2008; accepted 2 August 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.011 Å; *R* factor = 0.068; *wR* factor = 0.177; data-to-parameter ratio = 14.3.

The title molecule, C₁₄H₁₁BrClNO, adopts a trans configuration with respect to the C=N double bond. The dihedral angle between the two aromatic rings is $70.4 (5)^{\circ}$. An intramolecular $O-H \cdots N$ hydrogen bond is observed between the hydroxyl and imine groups.

Related literature

For related literature, see: Ali et al. (2002); Cukurovali et al. (2002); Tarafder et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data	
C ₁₄ H ₁₁ BrClNO	b = 12.8976 (14) Å
$M_r = 324.60$	c = 23.892 (2) Å
Monoclinic, $P2_1/c$	$\beta = 92.992 \ (1)^{\circ}$
a = 4.3334 (8) Å	V = 1333.5 (3) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 3.27 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	6753 measured reflections
diffractometer	2325 independent reflections
Absorption correction: multi-scan	1699 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.068$
$T_{\rm min} = 0.355, \ T_{\rm max} = 0.676$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.176$ S = 1.062325 reflections

163 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.47 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.76 \text{ e} \text{ Å}^{-3}$

T = 298 (2) K

 $0.40 \times 0.37 \times 0.13 \text{ mm}$

Table 1 Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···N1	0.82	1.86	2.590 (7)	147

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful for research grant No. 08JZ09 from the Phytochemistry Key Laboratory of Shaanxi Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2649).

References

- Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Keat, T. B. (2002). J. Inorg. Biochem. 92, 141-148.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2000). SMART and, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2547-2554.

supporting information

Acta Cryst. (2008). E64, o1734 [doi:10.1107/S1600536808024884]

2-Benzyliminomethyl-6-bromo-4-chlorophenol

Xiao-Hua Pu

S1. Comment

Schiff base compounds have been of great interest for many years. These compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures. As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

Bond lengths in the title molecule (Fig. 1) have normal values (Allen *et al.*,1987). The C1=N1 bond length of 1.267 (9) Å conforms to the value for a double bond. The dihedral angle between the two aromatic rings is 70.4 (5)°. As expected, the molecule adopts a trans configuration about the C=N bond [C8-N1-C1-C2 = -178.6 (6)°]. An intramolecular O -H···N hydrogen bond is observed between hydroxyl and imine groups (Table 1).

S2. Experimental

3-Bromine-5-chlorosalicylaldehyde (0.1 mmol, 23.55 mg) and 1-benzylamine (0.1 mmol, 10.7 mg) were added to methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 7 d, yellow block-shaped crystals of the title compound were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl₂ (yield 54%). Analysis found: C 51.76, H 4.0%; calculated for C₁₄H₁₁Br_{Cl}N₀: C 51.77, H 3.39%.

S3. Refinement

All H atoms were placed in geometrically idealized positions [O-H = 0.82 Å and C-H = 0.93–0.97 Å] and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$. The highest unassigned peak in the difference map is located 0.85 and 1.05 Å from atoms Cl1 and C6, respectively.

Figure 1

The molecular structure of the title compound, showing 30% probability ellipsoids. The dashed line represents a hydrogen bond.

Figure 2

The crystal packing of the title compound, viewed down the *b* axis.

2-Benzyliminomethyl-6-bromo-4-chlorophenol

Crystal data C₁₄H₁₁BrClNO $M_r = 324.60$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 4.3334 (8) Å b = 12.8976 (14) Å c = 23.892 (2) Å $\beta = 92.992$ (1)° V = 1333.5 (3) Å³ Z = 4

F(000) = 648 $D_x = 1.617 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2314 reflections $\theta = 3.0-23.6^{\circ}$ $\mu = 3.27 \text{ mm}^{-1}$ T = 298 KBlock, yellow $0.40 \times 0.37 \times 0.13 \text{ mm}$ Data collection

Bruker SMART CCD area-detector	6753 measured reflections
diffractometer	2325 independent reflections
Radiation source: fine-focus sealed tube	1699 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.068$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 5$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -14 \rightarrow 15$
$T_{\min} = 0.355, T_{\max} = 0.676$	$l = -28 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: inferred from
$wR(F^2) = 0.176$	neighbouring sites
S = 1.06	H-atom parameters constrained
2325 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0638P)^2 + 4.7838P]$
163 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.47$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.76$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	1.1330 (2)	0.05445 (6)	0.34840 (4)	0.0688 (3)	
Cl1	1.1495 (6)	0.47661 (15)	0.37758 (10)	0.0761 (6)	
N1	0.4056 (13)	0.2399 (4)	0.1816 (2)	0.0495 (14)	
01	0.7218 (12)	0.1150 (3)	0.2472 (2)	0.0588 (13)	
H1	0.6061	0.1323	0.2205	0.088*	
C1	0.4902 (15)	0.3140 (6)	0.2137 (3)	0.0465 (16)	
H1A	0.4104	0.3798	0.2062	0.056*	
C2	0.7087 (14)	0.3002 (5)	0.2620 (3)	0.0409 (14)	
C3	0.8091 (15)	0.1982 (5)	0.2763 (3)	0.0419 (15)	
C4	1.0094 (15)	0.1881 (5)	0.3238 (3)	0.0442 (15)	
C5	1.1108 (15)	0.2704 (5)	0.3547 (3)	0.0425 (15)	
H5	1.2421	0.2609	0.3864	0.051*	
C6	1.0135 (16)	0.3711 (5)	0.3381 (3)	0.0476 (16)	
C7	0.8123 (16)	0.3849 (5)	0.2934 (3)	0.0481 (16)	
H7	0.7434	0.4511	0.2839	0.058*	
C8	0.1902 (16)	0.2605 (6)	0.1331 (3)	0.0562 (19)	

H8A	0.0875	0.3264	0.1380	0.067*	
H8B	0.0339	0.2066	0.1302	0.067*	
C9	0.3671 (15)	0.2630 (6)	0.0799 (3)	0.0480 (17)	
C10	0.4684 (18)	0.3549 (7)	0.0600 (3)	0.066 (2)	
H10	0.4266	0.4163	0.0786	0.080*	
C11	0.635 (2)	0.3571 (9)	0.0117 (4)	0.082 (3)	
H11	0.7064	0.4196	-0.0021	0.099*	
C12	0.691 (2)	0.2664 (10)	-0.0149 (4)	0.086 (3)	
H12	0.8006	0.2675	-0.0473	0.103*	
C13	0.594 (2)	0.1762 (9)	0.0043 (4)	0.084 (3)	
H13	0.6386	0.1154	-0.0146	0.101*	
C14	0.4270 (18)	0.1718 (7)	0.0517 (4)	0.069 (2)	
H14	0.3557	0.1087	0.0646	0.083*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0795 (6)	0.0510 (5)	0.0758 (6)	0.0131 (4)	0.0027 (4)	0.0117 (4)
Cl1	0.0979 (16)	0.0525 (11)	0.0767 (14)	-0.0047 (10)	-0.0060 (12)	-0.0098 (10)
N1	0.039 (3)	0.066 (4)	0.044 (3)	0.000 (3)	0.003 (3)	0.003 (3)
01	0.076 (3)	0.047 (3)	0.053 (3)	0.000 (2)	0.001 (2)	-0.002(2)
C1	0.039 (4)	0.056 (4)	0.045 (4)	0.002 (3)	0.013 (3)	0.009 (3)
C2	0.039 (3)	0.046 (3)	0.040 (4)	-0.001 (3)	0.016 (3)	0.001 (3)
C3	0.042 (4)	0.042 (3)	0.043 (4)	-0.001 (3)	0.016 (3)	0.001 (3)
C4	0.040 (4)	0.049 (4)	0.045 (4)	0.004 (3)	0.019 (3)	0.008 (3)
C5	0.042 (4)	0.047 (3)	0.039 (4)	0.002 (3)	0.008 (3)	0.001 (3)
C6	0.049 (4)	0.048 (4)	0.046 (4)	-0.001 (3)	0.009 (3)	-0.003 (3)
C7	0.053 (4)	0.042 (3)	0.050 (4)	0.005 (3)	0.011 (3)	0.000 (3)
C8	0.035 (4)	0.078 (5)	0.055 (5)	0.000 (3)	-0.002(3)	0.001 (4)
C9	0.037 (4)	0.068 (4)	0.038 (4)	0.002 (3)	-0.007 (3)	0.002 (3)
C10	0.052 (5)	0.082 (6)	0.065 (5)	0.000 (4)	-0.002 (4)	0.007 (4)
C11	0.059 (5)	0.115 (8)	0.072 (6)	0.000 (5)	-0.003 (5)	0.028 (6)
C12	0.062 (6)	0.144 (10)	0.051 (6)	0.013 (6)	0.005 (4)	0.006 (6)
C13	0.068 (6)	0.113 (8)	0.070 (6)	0.022 (6)	-0.007 (5)	-0.028 (6)
C14	0.055 (5)	0.081 (6)	0.071 (6)	0.004 (4)	-0.010 (4)	-0.010 (5)

Geometric parameters (Å, °)

Br1—C4	1.890 (6)	С7—Н7	0.93
Cl1—C6	1.741 (7)	C8—C9	1.518 (10)
N1-C1	1.267 (9)	C8—H8A	0.97
N1—C8	1.473 (9)	C8—H8B	0.97
O1—C3	1.325 (8)	C9—C10	1.359 (10)
01—H1	0.82	C9—C14	1.386 (11)
C1—C2	1.465 (9)	C10—C11	1.392 (12)
C1—H1A	0.93	C10—H10	0.93
С2—С7	1.387 (9)	C11—C12	1.360 (14)
C2—C3	1.422 (9)	C11—H11	0.93

C3—C4	1.397 (9)	C12—C13	1.326 (14)
C4—C5	1.353 (9)	C12—H12	0.93
C5—C6	1.416 (9)	C13—C14	1.377 (13)
С5—Н5	0.93	С13—Н13	0.93
C6—C7	1.355 (9)	C14—H14	0.93
C1—N1—C8	119 5 (6)	N1—C8—H8A	109 7
C301H1	109.5	C9 C8 H84	109.7
N1 C1 C2	107.5	N1 C8 H8B	109.7
N1 = C1 = C2	122.7 (0)		109.7
N = C = M A	118.7		109.7
$C_2 = C_1 = HIA$	110.7	$H\delta A = C\delta = H\delta B$	108.2
$C_{1} = C_{2} = C_{3}$	120.7 (6)	C10 - C9 - C14	119.8 (8)
	120.6 (6)	C10-C9-C8	119.9 (7)
C3—C2—C1	118.7 (6)	C14—C9—C8	120.3 (7)
01—C3—C4	120.0 (6)	C9—C10—C11	119.9 (9)
O1—C3—C2	123.2 (6)	C9—C10—H10	120.0
C4—C3—C2	116.9 (6)	C11—C10—H10	120.0
C5—C4—C3	122.7 (6)	C12—C11—C10	118.9 (10)
C5-C4-Br1	117.8 (5)	C12—C11—H11	120.6
C3—C4—Br1	119.4 (5)	C10—C11—H11	120.6
C4—C5—C6	118.9 (6)	C13—C12—C11	121.7 (10)
С4—С5—Н5	120.6	C13—C12—H12	119.1
С6—С5—Н5	120.6	C11—C12—H12	119.1
C7—C6—C5	120.7 (6)	C12—C13—C14	120.6 (10)
C7—C6—C11	120.7 (5)	С12—С13—Н13	119.7
C5—C6—Cl1	118.6 (5)	C14—C13—H13	119.7
C6-C7-C2	120.1 (6)	C13 - C14 - C9	119.0 (9)
C6-C7-H7	120.1 (0)	C_{13} C_{14} H_{14}	120.5
$C_2 - C_7 - H_7$	120.0	C9-C14-H14	120.5
$1 C_{2} C_{1} C_{1}$	100.6 (5)	0)-014-1114	120.5
111-03-03	109.0 (5)		
C9 N1 C1 C2	179 6 (6)	C5 C6 C7 C2	2.7(10)
C_{0} NI CI C2 C7	-1/8.0(0)	$C_{3} = C_{0} = C_{1} = C_{2}$	-2.7(10)
NI = CI = C2 = C7	1/5.2 (6)	CII - Cb - C/ - C2	1/9.2 (5)
NI-CI-C2-C3	-5.7(9)	$C_3 = C_2 = C_7 = C_6$	0.7(10)
C7—C2—C3—O1	-1/8.8 (6)	C1—C2—C7—C6	179.8 (6)
C1—C2—C3—O1	2.1 (9)	CI—NI—C8—C9	102.8 (7)
C7—C2—C3—C4	1.2 (9)	N1—C8—C9—C10	-94.4 (8)
C1—C2—C3—C4	-177.9 (5)	N1—C8—C9—C14	85.3 (8)
O1—C3—C4—C5	178.9 (6)	C14—C9—C10—C11	-0.7 (11)
C2—C3—C4—C5	-1.1 (9)	C8—C9—C10—C11	179.0 (6)
O1—C3—C4—Br1	-3.9 (8)	C9—C10—C11—C12	0.4 (12)
C2—C3—C4—Br1	176.1 (4)	C10-C11-C12-C13	-0.6 (14)
C3—C4—C5—C6	-0.8 (9)	C11—C12—C13—C14	1.0 (14)
Br1-C4-C5-C6	-178.1 (5)	C12—C13—C14—C9	-1.2 (13)
C4—C5—C6—C7	2.7 (10)	C10—C9—C14—C13	1.1 (11)
C4—C5—C6—Cl1	-179.1 (5)	C8—C9—C14—C13	-178.6 (7)
	× /		~ /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.82	1.86	2.590 (7)	147