metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(μ -Diphenylphosphanido- $\kappa^2 P:P'$)bis[2,2'-(pyridine-2,6-diyl)diphenyl- $\kappa^3 C^1, N, C^{1'}$)gold(III)] perchlorate acetonitrile solvate

Xin-Sheng Li, Juan Mo,* Su-Mei Zhang, Li Yuan and Jian-Hua Liu

College of Animal Husbandry and Veterinary Studies, Henan Agricultural University, Zhengzhou, Henan Province 450002, People's Republic of China Correspondence e-mail: mojuan52@126.com

Received 16 June 2008; accepted 31 July 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.005 Å; R factor = 0.029; wR factor = 0.058; data-to-parameter ratio = 19.1.

The title complex, $[Au_2(C_{17}H_{11}N)_2(C_{12}H_{10}P)]ClO_4 \cdot C_2H_3N$, contains two Au^{III} atoms bridged by a diphenylphosphanide ligand. Each Au atom is in a square-planar environment coordinated by diphenylphosphanide and 2,6-diphenylpyridine ligands. There are weak π - π stacking interactions between neighbouring molecules (the interplanar separations between two neighbouring dpp units are 3.40 and 3.57 Å). The intramolecular Au···Au separation is 3.788 (5) Å. The crystal structure shows weak intermolecular C-H···O and C-H···N hydrogen bonds involving an O atom of the perchlorate counter-ion and the N atom of the acetonitrile solvent molecule, respectively.

Related literature

For related literature, see: Goshe *et al.* (2003); Kui *et al.* (2006); Li *et al.* (2006); Lu *et al.* (2004); Wong *et al.* (1998); Yam *et al.* (2002).

Experimental

Crystal data $[Au_2(C_{17}H_{11}N)_2(C_{12}H_{10}P)]ClO_4-C_2H_3N$ $M_r = 1178.14$ Monoclinic, $P2_1/c$

a = 10.0612 (16) Å b = 13.526 (2) Å c = 29.640 (5) Å $\beta = 98.828 (4)^{\circ}$ $V = 3985.9 (11) \text{ Å}^3$ Z = 4Mo *K* α radiation

Data collection

Bruker SMART CCD area-detector	38570 measured reflections
diffractometer	10221 independent reflections
Absorption correction: multi-scan	8923 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.039$
$T_{\min} = 0.147, \ T_{\max} = 0.221$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ 534 parameters $wR(F^2) = 0.057$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 1.52$ e Å $^{-3}$ 10221 reflections $\Delta \rho_{min} = -1.55$ e Å $^{-3}$

 $\mu = 7.51 \text{ mm}^{-1}$ T = 113 (2) K

 $0.32 \times 0.22 \times 0.20$ mm

Table 1

Selected geometric parameters (Å, °).

Au1-N1	2.027 (3)	Au2-N2	2.041 (3)
Au1-C17	2.105 (3)	Au2-C18	2.091 (3)
Au1-C1	2.111 (3)	Au2-C34	2.113 (3)
Au1-P1	2.3121 (9)	Au2-P1	2.3180 (8)
	//_>		
N1-Au1-C17	79.97 (12)	N2-Au2-C18	80.19 (12)
N1-Au1-C1	80.18 (12)	N2-Au2-C34	80.02 (12)
C17-Au1-C1	160.10 (13)	C18-Au2-C34	160.15 (13)
N1-Au1-P1	172.84 (8)	N2-Au2-P1	173.99 (8)
C17-Au1-P1	95.15 (9)	C18-Au2-P1	93.98 (9)
C1-Au1-P1	104.75 (10)	C34-Au2-P1	105.84 (9)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C21-H21···O3 ⁱ	0.95	2.46	3.311 (7)	149
C36-H36···O2	0.95	2.57	3.372 (8)	143
C38−H38····O2 ⁱⁱ	0.95	2.59	3.540 (5)	175
C43−H43···O1 ⁱⁱⁱ	0.95	2.59	3.517 (3)	165
C46−H46···N3 ^{iv}	0.95	2.62	3.417 (4)	142
$C48 - H48C \cdots O1^{v}$	0.98	2.54	3.423 (8)	150

Symmetry codes: (i) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z; (v) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *XP* in *SHELXTL*.

We thank Henan Agricultural University for the generous support of this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2152).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Goshe, A. J., Steele, I. M. & Bosnich, B. (2003). J. Am. Chem. Soc. 125, 444-451.
- Kui, S. C. F., Huang, J.-S., Sun, R. W.-Y., Zhu, N. & Che, C.-M. (2006). Angew. Chem. Int. Ed. 118, 4779-4782.
- Li, C. K.-L., Sun, R. W.-Y., Kui, S. C.-F., Zhu, N. & Che, C.-M. (2006). Chem. Eur. J. 12, 5253-5266.
- Lu, W., Chan, M. C. W., Zhu, N., Che, C.-M., Li, C. & Hui, Z. (2004). J. Am. Chem. Soc. 126, 7639-7651.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1996). *SAEMOS:* Chireford of Contingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122. Wong, K.-H., Cheung, K.-K., Chan, M. C.-W. & Che, C.-M. (1998). Organometallics, 17, 3505-3511.
- Yam, V. W. W., Wong, K. M. C. & Zhu, N. (2002). J. Am. Chem. Soc. 124, 6506-6507.

supporting information

Acta Cryst. (2008). E64, m1126-m1127 [doi:10.1107/S1600536808024537]

(μ -Diphenylphosphanido- $\kappa^2 P:P'$)bis[2,2'-(pyridine-2,6-diyl)diphenyl- $\kappa^3 C^1, N, C^1$)gold(III)] perchlorate acetonitrile solvate

Xin-Sheng Li, Juan Mo, Su-Mei Zhang, Li Yuan and Jian-Hua Liu

S1. Comment

Recently, extensive investigations on the biological properties of gold(III) have been reported (Kui *et al.*, 2006; Wong *et al.*, 1998). The stability of metal compounds is usually enhanced by multidentate chelating ligands. Li and his co-workers have reported multinuclear gold complex of 2,6-diphenyl-Pyridine ligand (dpp) to generate a planar gold(III) moiety (Li *et al.*, 2006). In this context, the title complex, (I), has been prepared and its crystal structure is reported here.

The title compound show gold(III) atoms bridged by diphenylphosphanide. Each Au atom is surrounded by one P atom from diphenylphosphanide ligand and two C atoms, one N atom from dpp in a square-planar geometry, the least-squares plane through Au^{III} and dpp has a mean deviation of 0.04 (3) Å. The intramolecular Au···Au contact of 3.788Å is beyond a normal range of metal-metal interactions for d⁸ metal ions (3.09–3.50 Å) (Yam *et al.*, 2002; Goshe *et al.*, 2003; Lu *et al.*, 2004). The Au–N(pyridyl) distances (2.027 (3), 2.041 (3) Å) are comparable to the related distances found in $[Au(dpp)L]^{n+}$ analogues (1.94–2.06 Å), The Au–C(phenyl) distances (2.091 (3)–2.113 (3) Å) are comparable to the related distances found in $[Au(dpp)L]^{n+}$ analogues (2.06–2.13 Å) (Li *et al.*, 2006). The interplanar separation between two neighbouring dpp molecules are 3.40 and 3.57Å (Fig. 2). The crystal packing shows weak intermolecular C-H..O and C-H···N hydrogen bonds with O atoms of perchlorate counter-ion and N atom of acetonitrile molecule respectively. (Fig. 3, Table 2).

S2. Experimental

A mixture of Au(dpp)Cl (0.092 g, 0.2 mmol) and diphenylphosphine (0.018 g, 0.1 mmol) in acetonitrile (30 ml) was stirred for 2 h. Excess LiClO₄ was then added to yield a yellow precipitate, which was filtered, washed with diethyl ether. The precipitate was redissolve in acetonitrile. Yellow crystals suitable for X-ray diffraction were formed by vapour diffusion of diethyl ether into acetonitrile solution.

S3. Refinement

All hydrogen atoms were generated geometrically (C—H bond lengths of methyl group fixed at 0.98 Å, C—H bond lengths of pyridyl and phenyl fixed at 0.95 Å), assigned appropriated isotropic thermal parameters, $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level.

Figure 2

There is π - π interaction between between neighbouring molecules. The anions and solvent molecules are not shown, and H atoms have been omitted. Displacement ellipsoids are at the 40% probability level and Atoms without label are generated by the symmetry operation (1 - x, 1 - y, -z).

Figure 3

The crystal packing of the complex, viewed down the *a* axis, showing hydrogen bonds as dashed lines.

$[\mu$ -Diphenylphosphanido- $\kappa^2 P: P'$]bis[(2,6-diphenylpyridine- $\kappa^3 C^2, N, C^2$)gold(III)] perchlorate acetonitrile solvate

F(000) = 2264 $D_x = 1.963 \text{ Mg m}^{-3}$

 $\theta = 1.4-28.7^{\circ}$ $\mu = 7.51 \text{ mm}^{-1}$ T = 113 KBlock, yellow

 $0.32 \times 0.22 \times 0.20$ mm

Mo $K\alpha$ radiation, $\lambda = 0.71070$ Å Cell parameters from 13552 reflections

Crystal data

$[Au_2(C_{17}H_{11}N)_2(C_{12}H_{10}P)]ClO_4 \cdot C_2H_3N$
$M_r = 1178.14$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 10.0612 (16) Å
b = 13.526 (2) Å
c = 29.640 (5) Å
$\beta = 98.828 \ (4)^{\circ}$
$V = 3985.9 (11) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	38570 measured reflections 10221 independent reflections
Radiation source: fine-focus sealed tube	8923 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\rm max} = 28.7^{\circ}, \theta_{\rm min} = 1.4^{\circ}$
φ and ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan	$k = -18 \rightarrow 17$
(SADABS; Sheldrick, 1996)	$l = -39 \longrightarrow 39$
$T_{\min} = 0.147, \ T_{\max} = 0.221$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0278P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.52$ e Å⁻³ $\Delta\rho_{min} = -1.55$ e Å⁻³

Special details

 $R[F^2 > 2\sigma(F^2)] = 0.028$

Primary atom site location: structure-invariant

 $wR(F^2) = 0.057$

10221 reflections

direct methods

534 parameters

0 restraints

S = 1.04

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or equivale	ent isotropic displacement	parameters (Å ²)	J
-----------------------------------	-----------------------	----------------------------	------------------------------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au1	0.638497 (12)	0.281287 (9)	0.032930 (4)	0.01055 (4)	
Au2	0.566168 (12)	0.331694 (9)	0.152497 (4)	0.00993 (4)	
Cl1	0.78527 (10)	0.29051 (6)	0.29597 (3)	0.01996 (19)	
P1	0.60967 (9)	0.21001 (6)	0.10167 (3)	0.01063 (17)	

01	0.6459 (3)	0.3221 (3)	0.29088 (12)	0.0507 (9)
02	0.8447 (3)	0.3313 (2)	0.25911 (10)	0.0406 (8)
03	0.7868 (3)	0.18429 (18)	0.29417 (10)	0.0324 (7)
05	0.8547 (3)	0.3239 (2)	0.33921 (10)	0.0333 (7)
N1	0.6406 (3)	0.33719 (18)	-0.03039(9)	0.0119 (6)
N2	0.5487 (3)	0.44270 (18)	0.19785 (9)	0.0125 (6)
N3	0.6293 (4)	0.8322 (2)	0.06888 (13)	0.0353 (9)
C1	0.8332 (3)	0.2378 (2)	0.02273 (12)	0.0134 (7)
C2	0.9377 (4)	0.1917 (3)	0.05082 (13)	0.0196 (8)
H2	0.9268	0.1750	0.0812	0.024*
C3	1.0580 (4)	0.1693 (3)	0.03557 (14)	0.0234 (8)
Н3	1.1276	0.1372	0.0556	0.028*
C4	1.0781 (4)	0.1929 (3)	-0.00813 (14)	0.0227 (8)
H4	1.1602	0.1759	-0.0183	0.027*
C5	0.9785 (4)	0.2413 (3)	-0.03691 (13)	0.0187 (8)
Н5	0.9924	0.2590	-0.0669	0.022*
C6	0.8559 (3)	0.2646 (2)	-0.02188 (12)	0.0134 (7)
C7	0.7489 (3)	0.3170 (2)	-0.05110 (12)	0.0131 (7)
C8	0.7447 (4)	0.3461 (2)	-0.09612 (13)	0.0189 (8)
H8	0.8185	0.3328	-0.1117	0.023*
C9	0.6330 (4)	0.3944 (3)	-0.11806 (13)	0.0248 (9)
H9	0.6298	0.4134	-0.1491	0.030*
C10	0.5247 (4)	0.4158 (3)	-0.09585 (13)	0.0214 (8)
H10	0.4492	0.4511	-0.1110	0.026*
C11	0.5288 (3)	0.3846 (2)	-0.05116 (12)	0.0142 (7)
C12	0.4238 (3)	0.3933 (2)	-0.02224 (11)	0.0127 (7)
C13	0.3035 (4)	0.4442 (2)	-0.03724 (12)	0.0184 (7)
H13	0.2895	0.4741	-0.0666	0.022*
C14	0.2057 (4)	0.4508 (3)	-0.00958 (13)	0.0205 (8)
H14	0.1246	0.4858	-0.0195	0.025*
C15	0.2268 (4)	0.4059 (3)	0.03288 (13)	0.0207 (8)
H15	0.1593	0.4100	0.0520	0.025*
C16	0.3458 (4)	0.3546 (2)	0.04811 (12)	0.0173 (7)
H16	0.3577	0.3238	0.0773	0.021*
C17	0.4473 (3)	0.3480 (2)	0.02116 (12)	0.0134 (7)
C18	0.7480 (3)	0.4054 (2)	0.15075 (11)	0.0134 (7)
C19	0.8548 (3)	0.3858 (3)	0.12706 (12)	0.0159 (7)
H19	0.8515	0.3290	0.1080	0.019*
C20	0.9665 (4)	0.4483 (3)	0.13097 (13)	0.0233 (8)
H20	1.0380	0.4332	0.1146	0.028*
C21	0.9750 (4)	0.5317 (3)	0.15812 (14)	0.0232 (8)
H21	1.0506	0.5743	0.1599	0.028*
C22	0.8716 (4)	0.5523 (3)	0.18275 (12)	0.0211 (8)
H22	0.8770	0.6089	0.2019	0.025*
C23	0.7597 (3)	0.4903 (2)	0.17957 (12)	0.0158 (7)
C24	0.6487 (4)	0.5093 (2)	0.20564 (12)	0.0154 (7)
C25	0.6358 (4)	0.5876 (2)	0.23508 (12)	0.0205 (8)
H25	0.7051	0.6355	0.2416	0.025*

C26	0.5196 (4)	0.5942 (2)	0.25476 (12)	0.0215 (8)
H26	0.5077	0.6487	0.2739	0.026*
C27	0.4211 (4)	0.5227 (2)	0.24684 (12)	0.0188 (8)
H27	0.3433	0.5269	0.2613	0.023*
C28	0.4362 (3)	0.4449 (2)	0.21773 (11)	0.0135 (7)
C29	0.3418 (3)	0.3654 (2)	0.20285 (12)	0.0145 (7)
C30	0.2188 (4)	0.3568 (3)	0.22005 (13)	0.0190 (8)
H30	0.1987	0.4011	0.2429	0.023*
C31	0.1278 (4)	0.2837 (3)	0.20352 (13)	0.0207 (8)
H31	0.0463	0.2762	0.2157	0.025*
C32	0.1563 (4)	0.2214 (3)	0.16901 (13)	0.0202 (8)
H32	0.0926	0.1727	0.1569	0.024*
C33	0.2777 (3)	0.2295 (2)	0.15193 (12)	0.0171 (7)
H33	0.2949	0.1864	0.1282	0.021*
C34	0.3738 (3)	0.2993 (2)	0.16887 (11)	0.0124 (7)
C35	0.7453 (3)	0.1350 (2)	0.13295 (11)	0.0128 (7)
C36	0.7981 (3)	0.1545 (2)	0.17805 (12)	0.0139 (7)
H36	0.7716	0.2125	0.1924	0.017*
C37	0.8898 (3)	0.0893 (2)	0.20256 (12)	0.0172 (7)
H37	0.9238	0.1024	0.2337	0.021*
C38	0.9313 (3)	0.0060 (3)	0.18167 (13)	0.0184 (8)
H38	0.9949	-0.0376	0.1982	0.022*
C39	0.8799 (4)	-0.0139 (3)	0.13654 (13)	0.0208 (8)
H39	0.9095	-0.0707	0.1220	0.025*
C40	0.7854 (4)	0.0489 (3)	0.11244 (13)	0.0204 (8)
H40	0.7476	0.0334	0.0819	0.024*
C41	0.4844 (3)	0.1125 (2)	0.08729 (11)	0.0122 (7)
C42	0.4565 (4)	0.0507 (2)	0.12251 (13)	0.0215 (8)
H42	0.5013	0.0611	0.1528	0.026*
C43	0.3644 (4)	-0.0252 (3)	0.11367 (15)	0.0268 (9)
H43	0.3430	-0.0650	0.1380	0.032*
C44	0.3032 (4)	-0.0431 (3)	0.06923 (16)	0.0282 (10)
H44	0.2401	-0.0954	0.0631	0.034*
C45	0.3338 (4)	0.0151 (3)	0.03385 (14)	0.0242 (8)
H45	0.2940	0.0011	0.0034	0.029*
C46	0.4236 (3)	0.0948 (2)	0.04281 (12)	0.0155 (7)
H46	0.4424	0.1361	0.0186	0.019*
C47	0.6302 (4)	0.8197 (3)	0.10658 (16)	0.0301 (10)
C48	0.6321 (5)	0.8047 (4)	0.15590 (16)	0.0448 (12)
H48A	0.6670	0.8642	0.1725	0.067*
H48B	0.6899	0.7482	0.1662	0.067*
H48C	0.5405	0.7916	0.1618	0.067*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01160 (7)	0.01217 (6)	0.00809 (6)	0.00003 (5)	0.00215 (5)	0.00087 (4)
Au2	0.01163 (7)	0.00982 (6)	0.00834 (6)	-0.00009 (5)	0.00155 (5)	-0.00021 (4)

C11	0.0299 (5)	0.0169 (4)	0.0141 (4)	-0.0020 (4)	0.0064 (4)	-0.0008 (3)
P1	0.0135 (4)	0.0105 (4)	0.0080 (4)	0.0006 (3)	0.0019 (3)	-0.0002 (3)
01	0.036 (2)	0.065 (2)	0.050 (2)	0.0258 (17)	0.0025 (17)	-0.0007 (18)
O2	0.068 (2)	0.0353 (17)	0.0223 (17)	-0.0232 (16)	0.0181 (17)	-0.0033 (13)
03	0.052 (2)	0.0138 (13)	0.0306 (18)	-0.0011 (13)	0.0035 (15)	-0.0016 (11)
05	0.0417 (19)	0.0377 (17)	0.0206 (16)	-0.0132 (14)	0.0046 (14)	-0.0053 (13)
N1	0.0158 (15)	0.0110 (13)	0.0094 (14)	-0.0019 (11)	0.0036 (12)	0.0016 (10)
N2	0.0196 (15)	0.0096 (12)	0.0082 (14)	0.0016 (12)	0.0016 (12)	-0.0013 (10)
N3	0.052 (3)	0.0319 (19)	0.023 (2)	-0.0020(18)	0.0084 (19)	-0.0059(15)
C1	0.0123 (17)	0.0161 (16)	0.0127 (17)	-0.0003 (13)	0.0049 (14)	-0.0046 (13)
C2	0.0166 (19)	0.0259 (19)	0.0154 (19)	0.0015 (15)	-0.0007(15)	0.0031 (15)
C3	0.018 (2)	0.030 (2)	0.021 (2)	0.0035 (16)	-0.0010(16)	-0.0006(16)
C4	0.0126(19)	0.032(2)	0.024(2)	0.0026 (16)	0 0060 (16)	-0.0055(16)
C5	0.0120(19) 0.0176(19)	0.022(2)	0.027(2)	-0.0019(15)	0.0063(15)	-0.0009(14)
C6	0.0142(18)	0.0222(10) 0.0123(15)	0.0136(18)	-0.0023(13)	0.0022(14)	-0.0010(12)
C7	0.0164(18)	0.0123(15)	0.0122(17)	-0.0015(13)	0.0022(11) 0.0035(14)	-0.0016(12)
C8	0.0161(10)	0.0181(17)	0.0122(17)	0.0015(15)	0.0033(16)	0.0010(12)
C9	0.020(2) 0.032(2)	0.030(2)	0.014(2)	0.0019(19) 0.0038(18)	0.0003(10)	0.0009(11) 0.0079(16)
C10	0.032(2)	0.030(2) 0.0221(18)	0.014(2) 0.0139(19)	0.0050(10)	0.0091(17) 0.0040(16)	0.0075(10)
C11	0.029(2)	0.0221(10) 0.0089(15)	0.0137(19)	-0.0018(13)	0.0040(10)	0.0070(14) 0.0021(12)
C12	0.0203(18) 0.0162(18)	0.0003(15)	0.0127(10)	-0.0010(13)	0.0004(14)	0.0021(12) 0.0001(12)
C12	0.0102(10)	0.0169(15)	0.0111(17) 0.0164(19)	-0.0010(15)	0.0003(14)	0.0001(12) 0.0039(14)
C13	0.0211(19)	0.0109(10)	0.0104(1))	0.0007(15)	0.0002(15)	0.0039(14)
C14	0.0130(19)	0.0204(10)	0.023(2)	0.0004(15)	0.0013(10)	-0.0034(13)
C15	0.0135(19)	0.0239(13)	0.022(2)	0.0023(15)	0.0072(10)	0.0017(13)
C10 C17	0.0130(13)	0.0210(17)	0.0112(18)	0.0010(13)	0.0003(14)	0.0029(13)
C18	0.0134(17)	0.0121(15)	0.0131(18) 0.0103(17)	-0.0019(13)	-0.0034(14)	0.0002(13)
C10	0.0132(17)	0.0133(10)	0.0103(17)	0.0020(13)	0.0020(13)	0.0043(13)
C19 C20	0.0131(17)	0.0194(17)	0.0147(18)	-0.0002(14)	0.0001(14)	0.0009(14)
C20 C21	0.018(2)	0.032(2)	0.020(2)	-0.0012(17)	0.0048(10)	0.0053(10)
C21 C22	0.0143(19)	0.027(2)	0.027(2)	-0.0088(10)	-0.0008(10)	0.0033(10)
C22	0.028(2)	0.0104(17)	0.017(2)	-0.0039(16)	-0.0027(16)	0.0020(14)
C23	0.01/2(18)	0.0145(16)	0.0145(18)	-0.0003(14)	-0.0013(14)	0.0035(13)
C24	0.0219 (19)	0.0123(15)	0.0098(17)	-0.0021(14)	-0.0045 (14)	0.0009 (12)
C25	0.031(2)	0.0137(10)	0.0152(19)	-0.0057(15)	-0.0004(16)	-0.0037(13)
C26	0.039 (2)	0.0150 (17)	0.0103 (18)	0.0040 (16)	0.0026 (17)	-0.0039 (13)
C27	0.026 (2)	0.0168 (17)	0.0143 (19)	0.0075 (15)	0.0049 (16)	-0.0001(13)
C28	0.0166 (18)	0.0138 (15)	0.0100 (17)	0.0046 (14)	0.0016 (14)	0.0006 (13)
C29	0.0154 (18)	0.0160 (16)	0.0116 (17)	0.0027 (14)	0.0008 (14)	0.0036 (13)
C30	0.0187 (19)	0.0213 (18)	0.019 (2)	0.0076 (15)	0.0076 (16)	0.0000 (14)
C31	0.0130 (18)	0.029 (2)	0.021 (2)	0.0020 (15)	0.0049 (15)	0.0052 (16)
C32	0.0130 (18)	0.0248 (19)	0.022 (2)	-0.0003 (15)	0.0016 (15)	0.0050 (15)
C33	0.0154 (18)	0.0188 (17)	0.0165 (19)	0.0022 (14)	0.0001 (15)	-0.0004 (14)
C34	0.0146 (17)	0.0144 (15)	0.0081 (16)	0.0001 (13)	0.0019 (13)	0.0029 (12)
C35	0.0154 (17)	0.0130 (15)	0.0104 (17)	0.0010 (13)	0.0033 (14)	0.0030 (12)
C36	0.0113 (17)	0.0159 (16)	0.0151 (18)	-0.0001 (13)	0.0034 (14)	0.0010 (13)
C37	0.0122 (17)	0.0244 (18)	0.0143 (19)	-0.0003 (14)	-0.0001 (14)	0.0054 (14)
C38	0.0141 (18)	0.0191 (17)	0.023 (2)	0.0032 (14)	0.0062 (15)	0.0063 (14)
C39	0.025 (2)	0.0153 (17)	0.024(2)	0.0075 (15)	0.0075 (17)	-0.0007(14)

supporting information

C40	0.023 (2)	0.0201 (18)	0.017 (2)	0.0035 (15)	-0.0011 (15)	-0.0027 (14)
C41	0.0136 (17)	0.0104 (15)	0.0131 (17)	-0.0016 (13)	0.0034 (14)	-0.0030 (12)
C42	0.029 (2)	0.0169 (17)	0.020 (2)	-0.0023 (16)	0.0071 (17)	0.0006 (15)
C43	0.031 (2)	0.0155 (18)	0.037 (3)	-0.0063 (16)	0.015 (2)	0.0023 (16)
C44	0.022 (2)	0.0159 (18)	0.048 (3)	-0.0069 (16)	0.009 (2)	-0.0033 (17)
C45	0.020 (2)	0.0223 (19)	0.028 (2)	-0.0004 (16)	-0.0060 (16)	-0.0089 (16)
C46	0.0137 (18)	0.0177 (16)	0.0149 (18)	0.0008 (14)	0.0019 (14)	-0.0018 (13)
C47	0.040 (3)	0.0199 (19)	0.031 (3)	0.0015 (18)	0.006 (2)	-0.0050 (17)
C48	0.062 (3)	0.046 (3)	0.027 (3)	-0.001 (3)	0.008 (2)	0.008 (2)

Geometric parameters (Å, °)

Au1—N1	2.027 (3)	C20—C21	1.380 (5)
Aul—C17	2.105 (3)	C20—H20	0.9500
Aul—Cl	2.111 (3)	C21—C22	1.388 (5)
Au1—P1	2.3121 (9)	C21—H21	0.9500
Au2—N2	2.041 (3)	C22—C23	1.395 (5)
Au2—C18	2.091 (3)	C22—H22	0.9500
Au2—C34	2.113 (3)	C23—C24	1.474 (5)
Au2—P1	2.3180 (8)	C24—C25	1.391 (4)
Cl1—O2	1.434 (3)	C25—C26	1.387 (5)
Cl1—O5	1.436 (3)	C25—H25	0.9500
C11—O3	1.438 (3)	C26—C27	1.378 (5)
Cl1—O1	1.451 (3)	C26—H26	0.9500
P1—C41	1.829 (3)	C27—C28	1.384 (4)
P1—C35	1.833 (3)	С27—Н27	0.9500
N1-C11	1.357 (4)	C28—C29	1.458 (5)
N1—C7	1.358 (4)	C29—C30	1.413 (4)
N2	1.344 (4)	C29—C34	1.421 (4)
N2—C28	1.354 (4)	C30—C31	1.386 (5)
N3—C47	1.129 (5)	С30—Н30	0.9500
C1—C2	1.385 (5)	C31—C32	1.389 (5)
C1—C6	1.423 (5)	C31—H31	0.9500
C2—C3	1.389 (5)	C32—C33	1.396 (5)
C2—H2	0.9500	С32—Н32	0.9500
C3—C4	1.379 (5)	C33—C34	1.389 (5)
С3—Н3	0.9500	С33—Н33	0.9500
C4—C5	1.379 (5)	C35—C36	1.386 (5)
C4—H4	0.9500	C35—C40	1.402 (4)
C5—C6	1.409 (4)	C36—C37	1.397 (5)
С5—Н5	0.9500	С36—Н36	0.9500
C6—C7	1.457 (5)	C37—C38	1.382 (5)
C7—C8	1.386 (5)	С37—Н37	0.9500
C8—C9	1.374 (5)	C38—C39	1.385 (5)
С8—Н8	0.9500	C38—H38	0.9500
C9—C10	1.387 (5)	C39—C40	1.389 (5)
С9—Н9	0.9500	С39—Н39	0.9500
C10—C11	1.384 (5)	C40—H40	0.9500

C10—H10	0.9500	C41—C46	1.387 (5)
C11—C12	1.464 (4)	C41—C42	1.399 (4)
C12—C13	1.404 (5)	C42—C43	1.382 (5)
C12—C17	1.412 (4)	C42—H42	0.9500
C13—C14	1.377 (5)	C43—C44	1.387 (6)
С13—Н13	0.9500	C43—H43	0.9500
C14-C15	1 384 (5)	C44—C45	1 383 (5)
C14—H14	0.9500	C44—H44	0.9500
C15 C16	1 307 (5)	C45 C46	1.405(5)
C15_H15	0.9500	C45 H45	0.9500
C16 C17	1,202(4)	C46 H46	0.9500
C_{10}	0.0500	C40 $C47$ $C48$	1.472(6)
C10—H10	0.9300	C47 - C48	1.4/5 (0)
	1.397 (4)	C48—H48A	0.9800
C18—C23	1.425 (5)	C48—H48B	0.9800
C19—C20	1.397 (5)	C48—H48C	0.9800
С19—Н19	0.9500		
N1 A1 C17	70.07(12)	C21 C20 U20	110.2
NI—AuI—CI	79.97 (12) 90.18 (12)	$C_{21} = C_{20} = H_{20}$	119.3
NI—AuI—CI	80.18 (12)	C19—C20—H20	119.3
Cl/—Aul—Cl	160.10 (13)	C20—C21—C22	119.1 (3)
NI—AuI—PI	172.84 (8)	С20—С21—Н21	120.5
C17—Au1—P1	95.15 (9)	C22—C21—H21	120.5
C1—Au1—P1	104.75 (10)	C21—C22—C23	120.4 (3)
N2—Au2—C18	80.19 (12)	C21—C22—H22	119.8
N2—Au2—C34	80.02 (12)	C23—C22—H22	119.8
C18—Au2—C34	160.15 (13)	C22—C23—C18	121.1 (3)
N2—Au2—P1	173.99 (8)	C22—C23—C24	121.9 (3)
C18—Au2—P1	93.98 (9)	C18—C23—C24	117.1 (3)
C34—Au2—P1	105.84 (9)	N2—C24—C25	118.6 (3)
O2—Cl1—O5	110.88 (18)	N2—C24—C23	113.6 (3)
O2—C11—O3	110.39 (17)	C25—C24—C23	127.8 (3)
Q5-C11-Q3	109.96 (18)	C26—C25—C24	118.6 (3)
02-01-01	108 4 (2)	C26—C25—H25	120.7
05-C11-01	100.1(2) 109.28(19)	C_{24} C_{25} H_{25}	120.7
03-C11-01	107.8(2)	C_{27} C_{26} C_{25} C_{25} C_{25} C_{25}	120.7 120.9(3)
C_{A1} P_1 C_{A5}	98.71(15)	$C_{27} = C_{20} = C_{23}$	110.6
$C_{41} = 11 = C_{55}$	105.60(11)	$C_{27} = C_{20} = H_{20}$	119.0
C41 - F1 - Au1	103.09(11) 110.48(10)	$C_{23} = C_{20} = H_{20}$	119.0
C_{33} P_1 A_{12}	119.48 (10)	$C_{20} = C_{27} = C_{28}$	119.7 (5)
C41 - P1 - Au2	118.14 (10)	$C_{26} = C_{27} = H_{27}$	120.2
C35—P1—Au2	105.32 (11)	C28—C27—H27	120.2
Au1—P1—Au2	109.78 (3)	N2—C28—C27	117.8 (3)
C11—N1—C7	123.8 (3)	N2-C28-C29	113.7 (3)
C11—N1—Au1	118.1 (2)	C27—C28—C29	128.4 (3)
C7—N1—Au1	117.8 (2)	C30—C29—C34	120.7 (3)
C24—N2—C28	124.4 (3)	C30—C29—C28	121.2 (3)
C24—N2—Au2	117.9 (2)	C34—C29—C28	118.1 (3)
C28—N2—Au2	117.7 (2)	C31—C30—C29	119.9 (3)
C2—C1—C6	117.3 (3)	С31—С30—Н30	120.0

C2—C1—Au1	132.4 (3)	С29—С30—Н30	120.0
C6—C1—Au1	110.3 (2)	C30—C31—C32	119.6 (3)
C1—C2—C3	121.4 (3)	С30—С31—Н31	120.2
C1—C2—H2	119.3	С32—С31—Н31	120.2
С3—С2—Н2	119.3	C31—C32—C33	120.7 (3)
C4—C3—C2	121.1 (4)	С31—С32—Н32	119.7
С4—С3—Н3	119.5	С33—С32—Н32	119.7
С2—С3—Н3	119.5	C34—C33—C32	121.5 (3)
C5—C4—C3	119.6 (3)	С34—С33—Н33	119.3
C5—C4—H4	120.2	C32—C33—H33	119.3
C3-C4-H4	120.2	C_{33} C_{34} C_{29}	117.6(3)
C4-C5-C6	120.2 120.0(3)	$C_{33} = C_{34} = A_{11}^2$	132.0(2)
C_{4} C_{5} H_{5}	120.0 (5)	C_{29} C_{34} A_{11}^2	132.0(2)
C4 C5 H5	120.0	$C_{23} = C_{34} = A_{42}$	110.3(2)
C_{0}	120.0	$C_{30} = C_{30} = C_{40}$	110.9(3)
$C_{5} = C_{6} = C_{7}$	120.0(3)	$C_{30} = C_{33} = F_1$	121.9(2)
C_{3}	121.3(3)	C40 - C35 - F1	118.8(3)
CI = C6 = C/	11 / .8 (3)	$C_{35} = C_{36} = C_{37}$	120.5 (3)
NI-C/-C8	118.0 (3)	C35—C36—H36	119.8
NIC/C6	113.6 (3)	С37—С36—Н36	119.8
C8—C7—C6	128.4 (3)	C38—C37—C36	120.2 (3)
C9—C8—C7	119.5 (3)	С38—С37—Н37	119.9
С9—С8—Н8	120.2	С36—С37—Н37	119.9
С7—С8—Н8	120.2	C37—C38—C39	119.9 (3)
C8—C9—C10	121.3 (3)	С37—С38—Н38	120.1
С8—С9—Н9	119.3	С39—С38—Н38	120.1
С10—С9—Н9	119.3	C38—C39—C40	120.2 (3)
C11—C10—C9	118.7 (3)	С38—С39—Н39	119.9
C11—C10—H10	120.7	С40—С39—Н39	119.9
С9—С10—Н10	120.7	C39—C40—C35	120.4 (3)
N1-C11-C10	118.6 (3)	C39—C40—H40	119.8
N1-C11-C12	113.2 (3)	C35—C40—H40	119.8
C10—C11—C12	128.1 (3)	C46—C41—C42	119.8 (3)
C13—C12—C17	121.2 (3)	C46—C41—P1	122.3 (3)
C13—C12—C11	121.2 (3)	C42—C41—P1	117.8 (3)
C17 - C12 - C11	117.6 (3)	C43 - C42 - C41	120.6(4)
C_{14} C_{13} C_{12}	1202(3)	C43 - C42 - H42	119.7
C14—C13—H13	119.9	C_{41} C_{42} H_{42}	119.7
C_{12} C_{13} H_{13}	110.0	C_{41} C_{42} C_{43} C_{44}	110.8 (4)
$C_{12} = C_{13} = I_{13}$	110.2 (3)	$C_{42} = C_{43} = C_{44}$	120.1
$C_{13} = C_{14} = C_{15}$	119.2 (5)	$C_{42} - C_{43} - H_{43}$	120.1
$C_{13} = C_{14} = 1114$	120.4	$C_{44} = C_{45} = 1145$	120.1
C13 - C14 - H14	120.4	C45 - C44 - C43	120.2 (3)
C14 - C15 - C16	121.1 (3)	C43—C44—H44	119.9
C14-C15-H15	119.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.9
	119.5	C44 - C45 - C46	120.5 (4)
C1/-C16-C15	120.9 (3)	C44—C45—H45	119.8
C1/C16H16	119.5	C46—C45—H45	119.8
C15—C16—H16	119.5	C41—C46—C45	119.3 (3)
C16—C17—C12	117.4 (3)	C41—C46—H46	120.3

C16—C17—Au1	131.6 (3)	C45—C46—H46	120.3
C12—C17—Au1	111.0 (2)	N3—C47—C48	179.2 (5)
C19—C18—C23	117.1 (3)	C47—C48—H48A	109.5
C19—C18—Au2	131.7 (3)	C47—C48—H48B	109.5
C23—C18—Au2	111.2 (2)	H48A—C48—H48B	109.5
C18—C19—C20	120.9 (3)	C47—C48—H48C	109.5
C18—C19—H19	119.5	H48A—C48—H48C	109.5
C20—C19—H19	119.5	H48B—C48—H48C	109.5
C21—C20—C19	121.4 (3)		
C17—Au1—P1—C41	69.65 (14)	C34—Au2—C18—C23	3.3 (5)
C1—Au1—P1—C41	-109.99 (14)	P1—Au2—C18—C23	179.9 (2)
C17—Au1—P1—C35	179.50 (16)	C23—C18—C19—C20	-1.3(5)
C1—Au1—P1—C35	-0.14 (16)	Au2-C18-C19-C20	178.8 (3)
C17—Au1—P1—Au2	-58.78 (10)	C18—C19—C20—C21	-0.2 (6)
C1—Au1—P1—Au2	121.58 (10)	C19—C20—C21—C22	1.4 (6)
C18—Au2—P1—C41	179.02 (15)	C20—C21—C22—C23	-0.9 (6)
C34—Au2—P1—C41	-2.15 (16)	C21—C22—C23—C18	-0.7(5)
C18—Au2—P1—C35	70.08 (14)	C21—C22—C23—C24	179.3 (3)
C34—Au2—P1—C35	-111.09 (14)	C19—C18—C23—C22	1.8 (5)
C18—Au2—P1—Au1	-59.77 (9)	Au2—C18—C23—C22	-178.3 (3)
C34—Au2—P1—Au1	119.07 (10)	C19—C18—C23—C24	-178.2(3)
C17—Au1—N1—C11	-2.2 (2)	Au2-C18-C23-C24	1.7 (4)
C1—Au1—N1—C11	179.3 (3)	C28—N2—C24—C25	-1.7(5)
C17—Au1—N1—C7	-176.2 (3)	Au2—N2—C24—C25	177.5 (2)
C1—Au1—N1—C7	5.3 (2)	C28—N2—C24—C23	-179.8 (3)
C18—Au2—N2—C24	1.2 (2)	Au2—N2—C24—C23	-0.6 (4)
C34—Au2—N2—C24	-177.2 (3)	C22—C23—C24—N2	179.2 (3)
C18—Au2—N2—C28	-179.5 (3)	C18—C23—C24—N2	-0.8 (4)
C34—Au2—N2—C28	2.1 (2)	C22—C23—C24—C25	1.3 (6)
N1—Au1—C1—C2	175.4 (4)	C18—C23—C24—C25	-178.7 (3)
C17—Au1—C1—C2	171.1 (3)	N2-C24-C25-C26	-0.7 (5)
P1—Au1—C1—C2	-9.9 (4)	C23—C24—C25—C26	177.0 (3)
N1—Au1—C1—C6	-3.4 (2)	C24—C25—C26—C27	2.6 (5)
C17—Au1—C1—C6	-7.7 (5)	C25—C26—C27—C28	-2.1 (5)
P1—Au1—C1—C6	171.3 (2)	C24—N2—C28—C27	2.2 (5)
C6—C1—C2—C3	-2.3 (5)	Au2—N2—C28—C27	-177.0 (2)
Au1—C1—C2—C3	179.0 (3)	C24—N2—C28—C29	178.8 (3)
C1—C2—C3—C4	0.5 (6)	Au2—N2—C28—C29	-0.4(4)
C2—C3—C4—C5	1.3 (6)	C26—C27—C28—N2	-0.2 (5)
C3—C4—C5—C6	-1.3 (6)	C26—C27—C28—C29	-176.3 (3)
C4—C5—C6—C1	-0.6(5)	N2-C28-C29-C30	-179.8 (3)
C4—C5—C6—C7	179.2 (3)	C27—C28—C29—C30	-3.6 (6)
C2-C1-C6-C5	2.3 (5)	N2-C28-C29-C34	-2.7 (4)
Au1—C1—C6—C5	-178.7 (3)	C27—C28—C29—C34	173.5 (3)
C2-C1-C6-C7	-177.5 (3)	C34—C29—C30—C31	-0.5 (5)
Au1—C1—C6—C7	1.5 (4)	C28—C29—C30—C31	176.6 (3)
C11—N1—C7—C8	-0.3 (5)	C29—C30—C31—C32	-2.1 (6)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Au1—N1—C7—C8	173.4 (2)	C30—C31—C32—C33	2.2 (6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—N1—C7—C6	-179.5 (3)	C31—C32—C33—C34	0.4 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Au1—N1—C7—C6	-5.8 (4)	C32—C33—C34—C29	-2.9 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7—N1	-177.2 (3)	C32—C33—C34—Au2	179.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6—C7—N1	2.6 (4)	C30—C29—C34—C33	2.9 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7—C8	3.8 (5)	C28—C29—C34—C33	-174.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6—C7—C8	-176.5 (3)	C30—C29—C34—Au2	-178.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C7—C8—C9	0.3 (5)	C28—C29—C34—Au2	4.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7—C8—C9	179.4 (3)	N2—Au2—C34—C33	174.9 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7—C8—C9—C10	0.9 (6)	C18—Au2—C34—C33	170.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—C10—C11	-2.2 (6)	P1—Au2—C34—C33	-6.5 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7—N1—C11—C10	-1.0 (5)	N2—Au2—C34—C29	-3.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Au1—N1—C11—C10	-174.6 (2)	C18—Au2—C34—C29	-8.1 (5)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C7—N1—C11—C12	177.3 (3)	P1—Au2—C34—C29	175.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Au1—N1—C11—C12	3.7 (4)	C41—P1—C35—C36	-120.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-C10-C11-N1	2.2 (5)	Au1—P1—C35—C36	125.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C11—C12	-175.8 (3)	Au2—P1—C35—C36	1.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C11-C12-C13	177.0 (3)	C41—P1—C35—C40	51.5 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12-C13	-4.9 (6)	Au1—P1—C35—C40	-62.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C11—C12—C17	-3.5 (4)	Au2—P1—C35—C40	173.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12-C17	174.6 (3)	C40—C35—C36—C37	0.1 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C12—C13—C14	0.1 (5)	P1-C35-C36-C37	172.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—C13—C14	179.6 (3)	C35—C36—C37—C38	1.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C13—C14—C15	-0.7 (5)	C36—C37—C38—C39	-1.1 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C14—C15—C16	0.4 (6)	C37—C38—C39—C40	-1.0 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—C16—C17	0.6 (6)	C38—C39—C40—C35	2.7 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C16—C17—C12	-1.2 (5)	C36—C35—C40—C39	-2.2 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C16—C17—Au1	178.4 (3)	P1-C35-C40-C39	-174.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C12—C17—C16	0.9 (5)	C35—P1—C41—C46	-125.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—C17—C16	-178.6 (3)	Au1—P1—C41—C46	-1.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C12—C17—Au1	-178.8 (3)	Au2—P1—C41—C46	121.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—C17—Au1	1.7 (4)	C35—P1—C41—C42	50.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—Au1—C17—C16	-179.4 (3)	Au1—P1—C41—C42	174.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—Au1—C17—C16	-175.2 (3)	Au2—P1—C41—C42	-62.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1—Au1—C17—C16	5.8 (3)	C46—C41—C42—C43	-2.8 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—Au1—C17—C12	0.2 (2)	P1-C41-C42-C43	-179.0 (3)
P1—Au1—C17—C12 -174.6 (2)C42—C43—C44—C45 -0.3 (6)N2—Au2—C18—C19178.4 (3)C43—C44—C45—C46 -2.2 (6)C34—Au2—C18—C19 -176.8 (3)C42—C41—C46—C450.4 (5)P1—Au2—C18—C19 -0.1 (3)P1—C41—C46—C45176.4 (2)N2—Au2—C18—C23 -1.5 (2)C44—C45—C46—C412.1 (5)	C1—Au1—C17—C12	4.4 (5)	C41—C42—C43—C44	2.8 (5)
N2—Au2—C18—C19178.4 (3)C43—C44—C45—C46 -2.2 (6)C34—Au2—C18—C19 -176.8 (3)C42—C41—C46—C450.4 (5)P1—Au2—C18—C19 -0.1 (3)P1—C41—C46—C45176.4 (2)N2—Au2—C18—C23 -1.5 (2)C44—C45—C46—C412.1 (5)	P1—Au1—C17—C12	-174.6 (2)	C42—C43—C44—C45	-0.3 (6)
C34—Au2—C18—C19 -176.8 (3) C42—C41—C46—C45 0.4 (5) P1—Au2—C18—C19 -0.1 (3) P1—C41—C46—C45 176.4 (2) N2—Au2—C18—C23 -1.5 (2) C44—C45—C46—C41 2.1 (5)	N2—Au2—C18—C19	178.4 (3)	C43—C44—C45—C46	-2.2 (6)
P1—Au2—C18—C19 -0.1 (3) P1—C41—C46—C45 176.4 (2) N2—Au2—C18—C23 -1.5 (2) C44—C45—C46—C41 2.1 (5)	C34—Au2—C18—C19	-176.8 (3)	C42—C41—C46—C45	0.4 (5)
N2—Au2—C18—C23 -1.5 (2) C44—C45—C46—C41 2.1 (5)	P1—Au2—C18—C19	-0.1 (3)	P1-C41-C46-C45	176.4 (2)
	N2—Au2—C18—C23	-1.5 (2)	C44—C45—C46—C41	2.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C21—H21···O3 ⁱ	0.95	2.46	3.311 (7)	149
С36—Н36…О2	0.95	2.57	3.372 (8)	143

supporting information

C38—H38…O2 ⁱⁱ	0.95	2.59	3.540 (5)	175
C43—H43···O1 ⁱⁱⁱ	0.95	2.59	3.517 (3)	165
C46—H46…N3 ^{iv}	0.95	2.62	3.417 (4)	142
C48—H48 C ···O1 ^v	0.98	2.54	3.423 (8)	150

Symmetry codes: (i) -x+2, y+1/2, -z+1/2; (ii) -x+2, y-1/2, -z+1/2; (iii) -x+1, y-1/2, -z+1/2; (iv) -x+1, -y+1, -z; (v) -x+1, y+1/2, -z+1/2.