

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Disodium 4,4'-oxydibenzoate

Yuan Yang,^a Qi Li^b and Seik Weng Ng^c*

^aSchool of Physics and Chemistry, Guizhou Normal University, Guiyang, Guizhou 550001, People's Republic of China, ^bCollege of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 17 July 2008; accepted 30 July 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.043; wR factor = 0.135; data-to-parameter ratio = 7.2.

The crystal structure of the title compound, $2Na^+ C_{14}H_8O_5^{2-}$, consists of alternating layers of sodium cations and 4,4'-oxydibenzoate anions; the layers are perpendicular to the *a* axis, with the distance between the layers of cations (or anions) being half this axial length. The Na atoms are disordered over three sites [occupancies 0.775 (4), 0.781 (6) 0.444 (6)].

Related literature

For the crystal structure of 4,4'-oxybis(benzoic acid), see: Dey & Desiraju (2005); Potts *et al.* (2007).

Experimental

Crystal data 2Na⁺·C₁₄H₈O₅²⁻

 $M_r=302.18$

Monoclinic, Cc Z = 4 a = 29.1091 (4) Å Mo Kα radiation b = 5.7801 (1) Å $\mu = 0.17 \text{ mm}^{-1}$

b = 5.7801 (1) Å c = 7.6429 (1) Å $\beta = 92.4420 (1)^{\circ}$ $V = 1284.78 (3) \text{ Å}^{3}$

Data collection

Bruker SMART APEXII5002 measured reflectionsdiffractometer1471 independent reflectionsAbsorption correction: multi-scan1464 reflections with $I > 2\sigma(I)$ (SADABS; Sheldrick, 1996) $R_{int} = 0.015$ $T_{min} = 0.888, T_{max} = 1.000$ (expected range = 0.857-0.966)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.135$ S = 1.271471 reflections 203 parameters 3 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.79 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.27 \text{ e} \text{ Å}^{-3}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank Beijing Normal University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2752).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dey, A. & Desiraju, G. R. (2005). Chem. Commun. pp. 2486-2488.

Potts, S., Bredenkamp, M. W. & Gertenbach, J.-A. (2007). Acta Cryst. E63, 02887.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Westrip, S. P. (2008). publCIF. In preparation.

metal-organic compounds

T = 295 (2) K

 $0.5 \times 0.4 \times 0.2 \text{ mm}$

supporting information

Acta Cryst. (2008). E64, m1119 [doi:10.1107/S1600536808024331]

Disodium 4,4'-oxydibenzoate

Yuan Yang, Qi Li and Seik Weng Ng

S1. Comment

The crystal structure of disodium 4,4'-oxydibenzoate (Scheme I, Fig. 1) consists of alternating bands of sodium cations and 4,4'-oxydibenzoate anions. The two symmetry-independent sodium atoms over three positions. The lowest occupancy sodium atom is only weakly linked to two oxygen atoms, and probably "rattles" about in the crystal structure.

S2. Experimental

Betaine (0.047 g, 0.4 mmol), 4,4'-oxybis(benzoic acid) (0.103 g, 0.4 mmol) and guanidine hydrochloride (0.076 g, 0.8 mmol) were mixed in a molar ratio 1:1:2. The mixture was dissolved in mixture of ethanol (4 ml), 1 *M* sodium hydroxide (0.5 ml) and water (0.5 ml). Colorless crystals were obtained after about 10 days.

S3. Refinement

The Na1, Na2 and Na3 atoms were refined such that the total occupancy is two.

Carbon bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) 1.2U_{eq}(C)$.

Friedel pairs were merged as there are no anomalous scatterers.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the asymmetric unit of the title compound; displac ement ellipsoids are set at the 70% probability level. Hydrogeatoms are drawn as spheres of arbitrary radius. The two sodium atoms are disordered over three positions. Dashed lines denote the distances between them.

Disodium 4,4'-oxydibenzoate

Crystal data

2Na⁺·C₁₄H₈O₅²⁻ $M_r = 302.18$ Monoclinic, *Cc* a = 29.1091 (4) Å b = 5.7801 (1) Å c = 7.6429 (1) Å $\beta = 92.4420$ (1)° V = 1284.78 (3) Å³ Z = 4

Data collection

Bruker SMART APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.888, T_{\max} = 1.000$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0883P)^2 + 0.9438P]$
S = 1.27	where $P = (F_0^2 + 2F_c^2)/3$
1471 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
203 parameters	$\Delta ho_{ m max} = 0.79 \ { m e} \ { m \AA}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.024 (4)
map	

Special details

Experimental. A somewhat large crystal was used in the measurements, but this does not seem to have an adverse efffect on the quality of the diffraction data.

F(000) = 616

 $\theta = 4.0-27.5^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$

Block, colorless

 $0.5 \times 0.4 \times 0.2 \text{ mm}$

5002 measured reflections 1471 independent reflections 1464 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 27.5^{\circ}, \, \theta_{\rm min} = 4.1^{\circ}$

T = 295 K

 $R_{\rm int} = 0.015$

 $h = -37 \rightarrow 37$ $k = -7 \rightarrow 7$ $l = -9 \rightarrow 9$

 $D_{\rm x} = 1.562 \text{ Mg m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 4314 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)	
Nal	0.50001 (5)	0.1573 (3)	0.50001 (18)	0.0119 (4)	0.775 (4)	
Na2	0.44106 (5)	0.3880 (3)	0.84063 (18)	0.0113 (5)	0.781 (6)	
Na3	0.47490 (10)	0.7168 (5)	0.7153 (4)	0.0147 (9)	0.444 (6)	
01	0.53701 (10)	0.4833 (5)	0.9932 (4)	0.0273 (6)		
O2	0.51425 (9)	0.1864 (5)	0.8264 (4)	0.0243 (6)		
O3	0.91491 (10)	0.5648 (5)	0.9768 (4)	0.0279 (6)		
O4	0.92132 (9)	0.1917 (5)	1.0487 (4)	0.0249 (6)		
05	0.72485 (10)	0.1735 (6)	0.6575 (4)	0.0338 (7)		

C1	0.54493 (12)	0.3222 (6)	0.8891 (5)	0.0199 (7)	
C2	0.59376 (12)	0.2835 (6)	0.8364 (4)	0.0199 (7)	
C3	0.60419 (13)	0.0883 (6)	0.7386 (5)	0.0234 (7)	
H3	0.5812	-0.0182	0.7088	0.028*	
C4	0.64896 (13)	0.0513 (7)	0.6849 (5)	0.0250 (7)	
H4	0.6559	-0.0793	0.6201	0.030*	
C5	0.68284 (12)	0.2121 (7)	0.7296 (5)	0.0230 (7)	
C6	0.67343 (13)	0.4048 (7)	0.8307 (5)	0.0251 (8)	
H6	0.6966	0.5089	0.8634	0.030*	
C7	0.62823 (12)	0.4391 (7)	0.8825 (5)	0.0228 (7)	
H7	0.6214	0.5685	0.9488	0.027*	
C8	0.76546 (12)	0.2304 (8)	0.7501 (5)	0.0261 (8)	
C9	0.78630 (13)	0.0650 (7)	0.8574 (5)	0.0266 (8)	
H9	0.7713	-0.0733	0.8792	0.032*	
C10	0.82982 (14)	0.1068 (7)	0.9322 (5)	0.0248 (7)	
H10	0.8442	-0.0052	1.0026	0.030*	
C11	0.85196 (11)	0.3161 (6)	0.9022 (4)	0.0194 (7)	
C12	0.82984 (13)	0.4838 (7)	0.7983 (5)	0.0243 (7)	
H12	0.8440	0.6256	0.7813	0.029*	
C13	0.78638 (13)	0.4407 (7)	0.7192 (5)	0.0264 (7)	
H13	0.7719	0.5509	0.6475	0.032*	
C14	0.89941 (12)	0.3616 (6)	0.9821 (5)	0.0200 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0114 (7)	0.0098 (7)	0.0144 (7)	0.0005 (5)	-0.0009 (5)	-0.0005 (5)
Na2	0.0119 (8)	0.0094 (7)	0.0127 (8)	-0.0011 (5)	0.0003 (5)	0.0001 (5)
Na3	0.0169 (14)	0.0144 (15)	0.0127 (14)	0.0013 (10)	0.0008 (10)	-0.0004 (10)
O1	0.0230 (11)	0.0294 (14)	0.0299 (15)	0.0020 (11)	0.0043 (10)	-0.0037 (11)
O2	0.0183 (11)	0.0254 (13)	0.0293 (13)	-0.0020 (9)	0.0007 (10)	0.0005 (10)
O3	0.0262 (13)	0.0292 (15)	0.0282 (14)	-0.0081 (11)	-0.0015 (11)	0.0009 (11)
O4	0.0209 (12)	0.0281 (13)	0.0254 (13)	0.0042 (10)	-0.0017 (10)	0.0008 (10)
O5	0.0171 (12)	0.056 (2)	0.0288 (14)	-0.0011 (12)	0.0005 (10)	-0.0141 (13)
C1	0.0181 (15)	0.0215 (15)	0.0200 (15)	0.0019 (12)	0.0015 (12)	0.0039 (12)
C2	0.0165 (15)	0.0228 (16)	0.0204 (15)	0.0011 (12)	-0.0006 (12)	0.0030 (12)
C3	0.0187 (16)	0.0241 (17)	0.0274 (18)	-0.0015 (13)	0.0007 (13)	-0.0029 (13)
C4	0.0223 (17)	0.0260 (17)	0.0267 (17)	0.0035 (15)	0.0008 (13)	-0.0051 (14)
C5	0.0179 (16)	0.0299 (17)	0.0211 (15)	0.0015 (13)	0.0003 (12)	-0.0001 (13)
C6	0.0174 (16)	0.0290 (19)	0.0287 (17)	-0.0044 (13)	-0.0014 (13)	-0.0039 (15)
C7	0.0226 (17)	0.0217 (16)	0.0243 (17)	-0.0001 (13)	0.0016 (13)	-0.0034 (12)
C8	0.0159 (16)	0.039 (2)	0.0232 (17)	-0.0016 (14)	0.0031 (13)	-0.0074 (15)
C9	0.0227 (17)	0.0278 (18)	0.0294 (18)	-0.0069 (14)	0.0037 (14)	-0.0022 (14)
C10	0.0260 (18)	0.0237 (16)	0.0247 (17)	-0.0007 (14)	0.0024 (13)	0.0025 (14)
C11	0.0162 (15)	0.0232 (16)	0.0187 (15)	0.0003 (11)	0.0008 (11)	-0.0018 (12)
C12	0.0237 (17)	0.0238 (17)	0.0255 (18)	-0.0004 (13)	0.0028 (13)	0.0033 (13)
C13	0.0210 (16)	0.033 (2)	0.0252 (16)	0.0056 (15)	-0.0003 (12)	0.0026 (15)
C14	0.0188 (16)	0.0252 (16)	0.0162 (14)	-0.0013 (12)	0.0023 (12)	-0.0001 (12)

Geometric parameters (Å, °)

Na1—O1 ⁱ	2.342 (3)	O5—C8	1.391 (5)
Na1—O2 ⁱⁱ	2.434 (3)	C1—C2	1.511 (5)
Na1—O4 ⁱⁱⁱ	2.494 (3)	C2—C7	1.382 (5)
Na1—O2	2.517 (3)	C2—C3	1.394 (5)
Na1—O3 ⁱⁱⁱ	2.789 (3)	C3—C4	1.399 (5)
Na2—O3 ^{iv}	2.285 (3)	С3—Н3	0.9300
Na2—O4 ⁱⁱⁱ	2.326 (3)	C4—C5	1.388 (5)
Na2—O2	2.435 (3)	C4—H4	0.9300
Na2—O4 ^v	2.453 (3)	C5—C6	1.389 (6)
01—C1	1.252 (5)	C6—C7	1.404 (5)
O1-Na1 ^{vi}	2.342 (3)	С6—Н6	0.9300
O1—Na3 ^{vi}	2.784 (4)	С7—Н7	0.9300
O2—C1	1.268 (4)	C8—C9	1.382 (6)
O2-Na1 ^{vii}	2.434 (3)	C8—C13	1.384 (6)
O3—C14	1.260 (5)	C9—C10	1.389 (5)
O3—Na2 ^{viii}	2.285 (3)	С9—Н9	0.9300
O3—Na3 ^{ix}	2.774 (4)	C10—C11	1.394 (5)
O3—Na1 ^x	2.789 (3)	C10—H10	0.9300
O4—C14	1.266 (5)	C11—C12	1.393 (5)
O4—Na2 ^x	2.326 (3)	C11—C14	1.509 (5)
O4—Na2 ^{xi}	2.453 (3)	C12—C13	1.401 (5)
O4—Na1 ^x	2.494 (3)	C12—H12	0.9300
O5—C5	1.381 (4)	C13—H13	0.9300
O1 ⁱ —Na1—O2 ⁱⁱ	128.52 (12)	O2—C1—C2	117.6 (3)
O1 ⁱ —Na1—O4 ⁱⁱⁱ	96.84 (11)	C7—C2—C3	119.4 (3)
O2 ⁱⁱ —Na1—O4 ⁱⁱⁱ	123.07 (11)	C7—C2—C1	121.1 (3)
O1 ⁱ —Na1—O2	84.62 (11)	C3—C2—C1	119.5 (3)
O2 ⁱⁱ —Na1—O2	124.75 (10)	C2—C3—C4	120.5 (3)
O4 ⁱⁱⁱ —Na1—O2	86.69 (10)	С2—С3—Н3	119.7
O1 ⁱ —Na1—O3 ⁱⁱⁱ	144.60 (11)	C4—C3—H3	119.7
O2 ⁱⁱ —Na1—O3 ⁱⁱⁱ	76.17 (10)	C5—C4—C3	119.1 (3)
O4 ⁱⁱⁱ —Na1—O3 ⁱⁱⁱ	49.58 (9)	C5—C4—H4	120.4
O2—Na1—O3 ⁱⁱⁱ	101.66 (10)	C3—C4—H4	120.4
O3 ^{iv} —Na2—O4 ⁱⁱⁱ	101.63 (12)	O5—C5—C4	115.2 (3)
O3 ^{iv} —Na2—O2	86.45 (11)	O5—C5—C6	123.4 (3)
O4 ⁱⁱⁱ —Na2—O2	92.48 (11)	C4—C5—C6	121.3 (3)
O3 ^{iv} —Na2—O4 ^v	101.41 (12)	C5—C6—C7	118.6 (3)
O4 ⁱⁱⁱ —Na2—O4 ^v	135.10 (11)	С5—С6—Н6	120.7
O2—Na2—O4 ^v	126.93 (11)	С7—С6—Н6	120.7
O2—Na2—Na3 ^{vi}	72.45 (9)	C2—C7—C6	121.0 (3)
C1—O1—Na1 ^{vi}	140.4 (3)	С2—С7—Н7	119.5
C1—O1—Na3 ^{vi}	102.7 (2)	С6—С7—Н7	119.5
Na1 ^{vi} —O1—Na3 ^{vi}	92.50 (11)	C9—C8—C13	121.6 (3)
C1—O2—Na1 ^{vii}	115.6 (2)	C9—C8—O5	118.7 (4)
C1—O2—Na2	106.9 (2)	C13—C8—O5	119.4 (4)

Na1 ^{vii} —O2—Na2	101.34 (11)	C8—C9—C10	119.6 (3)
C1—O2—Na1	120.0 (2)	С8—С9—Н9	120.2
Na1 ^{vii} —O2—Na1	117.45 (12)	С10—С9—Н9	120.2
Na2—O2—Na1	88.21 (10)	C9—C10—C11	120.2 (4)
C14—O3—Na2 ^{viii}	154.6 (3)	C9—C10—H10	119.9
C14—O3—Na3 ^{ix}	128.3 (2)	C11—C10—H10	119.9
Na2 ^{viii} —O3—Na3 ^{ix}	73.42 (10)	C12—C11—C10	119.4 (3)
C14—O3—Na1 ^x	83.5 (2)	C12—C11—C14	120.1 (3)
Na2 ^{viii} —O3—Na1 ^x	95.35 (10)	C10—C11—C14	120.4 (3)
Na3 ^{ix} —O3—Na1 ^x	68.61 (9)	C11—C12—C13	120.6 (3)
C14—O4—Na2 ^x	129.7 (2)	C11—C12—H12	119.7
C14—O4—Na2 ^{xi}	115.0 (2)	С13—С12—Н12	119.7
Na2 ^x —O4—Na2 ^{xi}	115.15 (12)	C8—C13—C12	118.6 (4)
C14—O4—Na1 ^x	96.8 (2)	C8—C13—H13	120.7
Na2 ^x —O4—Na1 ^x	91.23 (10)	C12—C13—H13	120.7
Na2 ^{xi} —O4—Na1 ^x	84.93 (10)	O3—C14—O4	124.1 (3)
C5—O5—C8	120.4 (3)	O3—C14—C11	118.2 (3)
O1—C1—O2	123.7 (3)	O4—C14—C11	117.7 (3)
O1—C1—C2	118.7 (3)		
O3 ^{iv} —Na2—O2—C1	-128.5 (2)	C3—C4—C5—O5	-174.1 (4)
O4 ⁱⁱⁱ —Na2—O2—C1	130.0 (2)	C3—C4—C5—C6	1.9 (6)
O4 ^v —Na2—O2—C1	-26.9 (3)	O5—C5—C6—C7	173.5 (3)
O3 ^{iv} —Na2—O2—Na1 ^{vii}	-7.05 (12)	C4—C5—C6—C7	-2.2 (6)
O4 ⁱⁱⁱ —Na2—O2—Na1 ^{vii}	-108.56 (12)	C3—C2—C7—C6	0.7 (6)
O4v—Na2—O2—Na1vii	94.58 (14)	C1—C2—C7—C6	-178.9 (3)
O3 ^{iv} —Na2—O2—Na1	110.60 (11)	C5—C6—C7—C2	0.9 (6)
O4 ⁱⁱⁱ —Na2—O2—Na1	9.09 (11)	C5—O5—C8—C9	90.4 (5)
O4 ^v —Na2—O2—Na1	-147.78 (12)	C5—O5—C8—C13	-96.2 (5)
O1 ⁱ —Na1—O2—C1	-19.8 (3)	C13—C8—C9—C10	-1.9 (6)
O2 ⁱⁱ —Na1—O2—C1	114.3 (2)	O5—C8—C9—C10	171.3 (3)
O4 ⁱⁱⁱ —Na1—O2—C1	-117.0 (3)	C8—C9—C10—C11	1.3 (6)
O3 ⁱⁱⁱ —Na1—O2—C1	-164.5 (3)	C9-C10-C11-C12	0.7 (5)
C14 ⁱⁱⁱ —Na1—O2—C1	-138.8 (3)	C9—C10—C11—C14	-179.5 (3)
O1 ⁱ —Na1—O2—Na1 ^{vii}	-169.42 (13)	C10-C11-C12-C13	-2.2 (5)
O2 ⁱⁱ —Na1—O2—Na1 ^{vii}	-35.3 (2)	C14—C11—C12—C13	178.0 (3)
O4 ⁱⁱⁱ —Na1—O2—Na1 ^{vii}	93.37 (13)	C9—C8—C13—C12	0.5 (6)
O3 ⁱⁱⁱ —Na1—O2—Na1 ^{vii}	45.83 (14)	O5—C8—C13—C12	-172.7 (3)
C14 ⁱⁱⁱ —Na1—O2—Na1 ^{vii}	71.53 (14)	C11—C12—C13—C8	1.6 (6)
O1 ⁱ —Na1—O2—Na2	88.72 (11)	Na2 ^{viii} —O3—C14—O4	113.0 (6)
O2 ⁱⁱ —Na1—O2—Na2	-137.17 (13)	Na3 ^{ix}	-31.9 (5)
O4 ⁱⁱⁱ —Na1—O2—Na2	-8.48 (10)	Na1 ^x	24.2 (3)
O3 ⁱⁱⁱ —Na1—O2—Na2	-56.02 (11)	Na2 ^{viii} —O3—C14—C11	-66.2 (7)
Na1 ^{vi} —O1—C1—O2	-69.3 (5)	Na3 ^{ix} —O3—C14—C11	148.8 (3)
Na3 ^{vi} —O1—C1—O2	40.8 (4)	Na1 ^x	-155.1 (3)
Na1 ^{vi} —O1—C1—C2	111.7 (4)	Na2 ^{viii} —O3—C14—Na1 ^x	88.8 (6)
Na3 ^{vi} —O1—C1—C2	-138.3 (3)	Na3 ^{ix} —O3—C14—Na1 ^x	-56.1 (2)
Na1 ^{vii} —O2—C1—O1	-88.5 (4)	Na2 ^x —O4—C14—O3	70.0 (5)

Na2—O2—C1—O1	23.4 (4)	Na2 ^{xi} —O4—C14—O3	-114.9 (4)
Na1—O2—C1—O1	121.4 (3)	Na1 ^x	-27.3 (4)
Na1 ^{vii} —O2—C1—C2	90.6 (3)	Na2 ^x —O4—C14—C11	-110.7 (3)
Na2—O2—C1—C2	-157.5 (2)	Na2 ^{xi} —O4—C14—C11	64.4 (3)
Na1—O2—C1—C2	-59.6 (4)	Na1 ^x	152.0 (3)
O1—C1—C2—C7	-8.4 (5)	Na2 ^x —O4—C14—Na1 ^x	97.3 (3)
O2—C1—C2—C7	172.5 (3)	Na2 ^{xi} —O4—C14—Na1 ^x	-87.57 (17)
O1—C1—C2—C3	172.0 (4)	C12—C11—C14—O3	11.6 (5)
O2—C1—C2—C3	-7.1 (5)	C10-C11-C14-O3	-168.2 (3)
C7—C2—C3—C4	-1.0 (5)	C12—C11—C14—O4	-167.7 (3)
C1—C2—C3—C4	178.6 (3)	C10-C11-C14-O4	12.5 (5)
C2—C3—C4—C5	-0.3 (6)	C12-C11-C14-Na1x	-95.3 (6)
C8—O5—C5—C4	-146.1 (4)	C10-C11-C14-Na1x	84.9 (6)
C8—O5—C5—C6	37.9 (6)		

Symmetry codes: (i) *x*, -*y*+1, *z*-1/2; (ii) *x*, -*y*, *z*-1/2; (iii) *x*-1/2, -*y*+1/2, *z*-1/2; (iv) *x*-1/2, *y*-1/2, *z*; (v) *x*-1/2, *y*+1/2, *z*; (vi) *x*, -*y*+1, *z*+1/2; (vii) *x*, -*y*, *z*+1/2; (viii) *x*+1/2, *y*+1/2, *z*; (ix) *x*+1/2, -*y*+3/2, *z*+1/2; (x) *x*+1/2, -*y*+1/2, *z*+1/2; (xi) *x*+1/2, *y*-1/2, *z*.