

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[(2-{1-[2-(2-aminoethylamino)ethylimino]ethyl}-5-methoxyphenolato- $\kappa^4 N, N', N'', O$)copper(II)]- μ -nitrato- $\kappa^2 O: O'$]

Suwen Wang, Zhongfang Li,* Xutao Wang and Xianjin Yu

College of Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China

Correspondence e-mail: zhfli_sdut@yahoo.com.cn

Received 28 June 2008; accepted 14 July 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.060; wR factor = 0.160; data-to-parameter ratio = 12.9.

In the title compound, $[Cu(C_{13}H_{20}N_3O_2)(NO_3)]_n$, the Cu^{II} atom is chelated by the Schiff base ligand via three N atoms and one O atom lying in an approximate square plane (r.m.s. deviation = 0.04 Å). The complex molecules are linked into a polymeric chain by bridging nitrate anions, forming axial Cu-O bonds of 2.535 (6) and 2.676 (7) Å, completing a distorted octahedral coordination geometry. The NH groups of the ligand form hydrogen bonds to the nitrate anions.

Related literature

For related literature, see: Garnovskii et al. (1993); Huang et al. (2002); Bhadbhade & Srinivas (1993); Bunce et al. (1998).

 $\gamma = 89.95 \ (2)^{\circ}$

Z = 2

V = 786.8 (3) Å³

Mo $K\alpha$ radiation

 $0.43 \times 0.28 \times 0.22 \text{ mm}$

4891 measured reflections 2739 independent reflections

1896 reflections with $I > 2\sigma(I)$

 $\mu = 1.42 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.029$

Experimental

Crystal data

[Cu(C₁₃H₂₀N₃O₂)(NO₃)] $M_r = 375.87$ Triclinic, P1 a = 7.2012 (10) Åb = 10.095(2)Å c = 11.581 (2) Å $\alpha = 69.15(2)^{\circ}$ $\beta = 89.73 \ (2)^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\rm min} = 0.569, T_{\rm max} = 0.730$

Refinement

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.91 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

Table 1

H	lyd	rogen-	bond	geomet	ry	(A,	°)	۱.
---	-----	--------	------	--------	----	-----	----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1\cdots O5^{i}$	0.90 (1)	2.15 (2)	3.013 (8)	161 (6)
$N2-H1\cdots O3^{i}$	0.90(1)	2.65 (6)	3.134 (8)	115 (5)
$N4-H4A\cdots O2^{ii}$	0.90	2.43	3.316 (9)	168
$N4 - H4B \cdots O3^{ii}$	0.90	2.29	3.157 (8)	162
$N4 - H4B \cdots O4^{ii}$	0.90	2.66	3.175 (9)	118

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the NSFC (grant No. 20776081).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2290).

References

Bhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122-6130.

- Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Donnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179-4187.
- Garnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126 1-69

Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64-66.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1193 [doi:10.1107/S1600536808021880]

catena-Poly[[(2-{1-[2-(2-aminoethylamino)ethylimino]ethyl}-5-methoxy-phenolato- $\kappa^4 N, N', N'', O$)copper(II)]- μ -nitrato- $\kappa^2 O:O'$]

Suwen Wang, Zhongfang Li, Xutao Wang and Xianjin Yu

S1. Comment

Schiff bases have been studied as ligands for a long time due to instant and enduring popularity from their easy synthesis and versatility in complexes. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Garnovskii *et al.*, 1993; Huang *et al.*, 2002). Considerable attention has been focused on the syntheses and structures of Cu^{II} and Ni^{II} complexes. The Ni^{II} complexes with multidentate Schiff-base ligands have aroused particular interest because Ni can exhibit several oxidation states and may provide the basis of models for active sites of biological systems. On the other hand, the main attention in the optically active Schiff-base complexes is concentrated on their catalytic abilities in stereoselective synthesis (Bhadbhade & Srinivas, 1993; Bunce *et al.*, 1998).

S2. Experimental

A mixture of copper(II) nitrate hemi(pentahydrate) (1 mmol) and *N*-(2-hydroxy-4-methoxybenzyl)bisethylenetriamine (1 mmol) in 20 ml methanol was refluxed for two hours. The resulting solution was cooled and filtered and the filtrate was evaporated naturally at room temperature. Two day later, blue blocks were obtained with a yield of 16 %. Elemental analysis calculated: C 41.60, H 5.07, N 14.93 %; found: C 41.51, H 5.08, N 14.85 %.

S3. Refinement

H atoms bound to C atoms were placed in calculated positions with C—H = 0.93–0.97 Å and refined as riding with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The H atoms bound to N4 were also placed in calculated positions with N—H = 0.90 Å and allowed to ride with $U_{iso}(H) = 1.2U_{eq}(N)$. Atom H1 was located in a difference Fourier map and its position was refined with the N—H distance restrained to 0.90 (1) Å and with $U_{iso} = 0.05$ Å².

Figure 1

The asymmetric unit of the title compound drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.

catena-Poly[[(2-{1-[2-(2-aminoethylamino)ethylimino]ethyl}-5- methoxyphenolato- $\kappa^4 N, N', N'', O$)copper(II)]- μ -nitrato- $\kappa^2 O:O'$]

Crystal data	
$\begin{bmatrix} \text{Cu}(\text{C}_{13}\text{H}_{20}\text{N}_{3}\text{O}_{2})(\text{NO}_{3}) \end{bmatrix}$ $M_{r} = 375.87$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 7.2012 (10) Å b = 10.095 (2) Å c = 11.581 (2) Å a = 69.15 (2)° $\beta = 89.73$ (2)° $\gamma = 89.95$ (2)° V = 786.8 (3) Å ³	Z = 2 F(000) = 390 $D_x = 1.587 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2739 reflections $\theta = 2.2-25.0^{\circ}$ $\mu = 1.42 \text{ mm}^{-1}$ T = 293 K Block, blue $0.43 \times 0.28 \times 0.22 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{\min} = 0.569, T_{\max} = 0.730$	4891 measured reflections 2739 independent reflections 1896 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -8 \rightarrow 8$ $k = -11 \rightarrow 12$ $l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from
$wR(F^2) = 0.160$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
2739 reflections	and constrained refinement
213 parameters	$w = 1/[\sigma^2(F_o^2) + (0.107P)^2 + 0.9393P]$
1 restraint	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.016$
direct methods	$\Delta \rho_{\rm max} = 0.91 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.72893 (13)	0.60509 (7)	0.61951 (6)	0.0396 (3)	
C2	0.7556 (9)	0.9968 (6)	0.1737 (5)	0.0428 (13)	
C3	0.7606 (11)	1.1062 (6)	0.2212 (6)	0.0533 (16)	
H3	0.7675	1.2001	0.1682	0.064*	
C4	0.7551 (10)	1.0737 (7)	0.3470 (6)	0.0511 (16)	
H4	0.7594	1.1475	0.3772	0.061*	
C5	0.7434 (8)	0.9336 (6)	0.4323 (5)	0.0355 (12)	
C6	0.7281 (8)	0.8240 (6)	0.3825 (5)	0.0379 (12)	
C7	0.7387 (9)	0.8620 (6)	0.2511 (6)	0.0430 (14)	
H7	0.7337	0.7905	0.2181	0.052*	
C8	0.7388 (8)	0.9117 (6)	0.5646 (5)	0.0364 (12)	
С9	0.7516 (10)	1.0377 (7)	0.6051 (6)	0.0503 (15)	
H9A	0.6518	1.0342	0.6614	0.075*	
H9B	0.7428	1.1235	0.5342	0.075*	
H9C	0.8682	1.0357	0.6455	0.075*	
C10	0.7303 (11)	0.7615 (7)	0.7821 (5)	0.0519 (16)	
H10A	0.6546	0.8307	0.8011	0.062*	
H10B	0.8577	0.7716	0.8046	0.062*	
C11	0.6598 (11)	0.6117 (8)	0.8535 (6)	0.0625 (19)	
H11A	0.6895	0.5850	0.9404	0.075*	
H11B	0.5260	0.6079	0.8456	0.075*	
C12	0.6772 (13)	0.3710 (8)	0.8405 (7)	0.0637 (19)	
H12A	0.5426	0.3719	0.8441	0.076*	
H12B	0.7233	0.3152	0.9219	0.076*	

C13	0.7406 (11)	0.3068 (7)	0.7474 (6)	0.0562 (17)	
H13A	0.8729	0.2881	0.7557	0.067*	
H13B	0.6766	0.2177	0.7620	0.067*	
N1	0.7187 (7)	0.7844 (5)	0.6477 (4)	0.0402 (11)	
N2	0.7485 (8)	0.5147 (5)	0.8029 (4)	0.0415 (11)	
H1	0.871 (2)	0.517 (7)	0.816 (6)	0.050*	
N3	0.2005 (9)	0.5570 (6)	0.6866 (6)	0.0550 (14)	
N4	0.6991 (8)	0.4070 (5)	0.6214 (5)	0.0500 (13)	
H4A	0.5822	0.3937	0.6006	0.060*	
H4B	0.7773	0.3921	0.5664	0.060*	
01	0.7593 (8)	1.0387 (5)	0.0493 (4)	0.0616 (13)	
O2	0.7129 (9)	0.6914 (4)	0.4468 (4)	0.0633 (15)	
03	0.0805 (9)	0.5939 (7)	0.6146 (6)	0.0869 (18)	
04	0.3604 (9)	0.5871 (7)	0.6519 (7)	0.096 (2)	
05	0.1656 (9)	0.4935 (8)	0.7984 (6)	0.098 (2)	
C1	0.7476 (17)	0.9303 (8)	-0.0054 (6)	0.080 (3)	
H1A	0.8518	0.8674	0.0206	0.121*	
H1B	0.7488	0.9741	-0.0938	0.121*	
H1C	0.6346	0.8776	0.0207	0.121*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cu1	0.0575 (5)	0.0319 (4)	0.0322 (4)	-0.0024 (3)	0.0031 (3)	-0.0149 (3)
C2	0.040 (3)	0.038 (3)	0.048 (3)	-0.004 (2)	0.000 (3)	-0.013 (3)
C3	0.076 (5)	0.029 (3)	0.046 (3)	0.007 (3)	-0.016 (3)	0.000 (2)
C4	0.070 (4)	0.035 (3)	0.048 (3)	-0.004 (3)	0.013 (3)	-0.015 (3)
C5	0.032 (3)	0.033 (3)	0.048 (3)	-0.006(2)	0.013 (2)	-0.022 (2)
C6	0.045 (3)	0.033 (3)	0.035 (3)	-0.006 (2)	-0.003 (2)	-0.011 (2)
C7	0.050 (4)	0.038 (3)	0.048 (3)	-0.005 (3)	0.015 (3)	-0.025 (3)
C8	0.031 (3)	0.030 (3)	0.051 (3)	0.001 (2)	0.006 (2)	-0.018 (2)
C9	0.058 (4)	0.046 (3)	0.060 (4)	-0.001 (3)	-0.001 (3)	-0.034 (3)
C10	0.077 (5)	0.048 (3)	0.037 (3)	0.001 (3)	0.002 (3)	-0.022 (3)
C11	0.064 (5)	0.078 (5)	0.053 (4)	-0.009 (4)	0.010 (3)	-0.033 (4)
C12	0.087 (6)	0.053 (4)	0.053 (4)	-0.005 (4)	-0.007(4)	-0.021 (3)
C13	0.072 (5)	0.044 (4)	0.053 (4)	0.000 (3)	0.016 (3)	-0.020(3)
N1	0.046 (3)	0.044 (3)	0.038 (2)	-0.001 (2)	0.005 (2)	-0.025 (2)
N2	0.046 (3)	0.049 (3)	0.032 (2)	-0.003 (2)	0.002 (2)	-0.018 (2)
N3	0.055 (4)	0.055 (3)	0.057 (4)	-0.002 (3)	0.004 (3)	-0.022 (3)
N4	0.055 (3)	0.046 (3)	0.049 (3)	-0.005 (2)	0.006 (2)	-0.017 (2)
01	0.098 (4)	0.042 (2)	0.040 (2)	-0.006 (2)	-0.007(2)	-0.0085 (19)
O2	0.125 (5)	0.029 (2)	0.036 (2)	-0.005 (2)	0.000 (2)	-0.0107 (17)
03	0.065 (4)	0.108 (5)	0.078 (4)	-0.005 (3)	0.020 (3)	-0.022 (3)
O4	0.060 (4)	0.100 (5)	0.147 (6)	0.018 (3)	-0.040 (4)	-0.067(5)
05	0.071 (4)	0.137 (6)	0.076 (4)	0.003 (4)	-0.010 (3)	-0.026 (4)
C1	0.155 (9)	0.052 (4)	0.038 (3)	-0.008 (5)	-0.003 (4)	-0.020 (3)

Geometric parameters (Å, °)

Cu1—N1	1.952 (5)	C10—C11	1.529 (10)
Cu1—N2	1.997 (5)	C10—H10A	0.970
Cu1—N4	2.004 (5)	C10—H10B	0.970
Cu1—O2	1.880 (4)	C11—N2	1.453 (9)
Cu1—O3 ⁱ	2.535 (6)	C11—H11A	0.970
Cu1—O4	2.676 (7)	C11—H11B	0.970
C2—C7	1.342 (8)	C12—N2	1.451 (9)
C2—O1	1.350(7)	C12—C13	1.511 (10)
C2—C3	1.398 (9)	C12—H12A	0.970
C3—C4	1.374 (9)	C12—H12B	0.970
С3—Н3	0.930	C13—N4	1.481 (9)
C4—C5	1.410 (8)	C13—H13A	0.970
C4—H4	0.930	C13—H13B	0.970
C5—C6	1.422 (8)	N2—H1	0.90 (1)
C5—C8	1.468 (8)	N3—O3	1.169 (9)
C6—O2	1.284 (7)	N3—O4	1.220 (9)
C6—C7	1.433 (8)	N3—O5	1.248 (8)
С7—Н7	0.930	N4—H4A	0.900
C8—N1	1.310(7)	N4—H4B	0.900
C8—C9	1.508 (8)	O1—C1	1.449 (9)
С9—Н9А	0.960	C1—H1A	0.960
С9—Н9В	0.960	C1—H1B	0.960
С9—Н9С	0.960	C1—H1C	0.960
C10—N1	1.493 (7)		
O2—Cu1—N1	93.98 (19)	N2—C11—H11A	110.0
O2—Cu1—N2	179.4 (3)	C10—C11—H11A	110.0
N1—Cu1—N2	85.7 (2)	N2—C11—H11B	110.0
O2—Cu1—N4	95.0 (2)	C10—C11—H11B	110.0
N1—Cu1—N4	167.3 (2)	H11A—C11—H11B	108.4
N2—Cu1—N4	85.4 (2)	N2—C12—C13	108.5 (6)
O2—Cu1—O4	93.8 (3)	N2—C12—H12A	110.0
N1—Cu1—O4	87.8 (2)	C13—C12—H12A	110.0
N2—Cu1—O4	86.7 (2)	N2—C12—H12B	110.0
N4—Cu1—O4	82.8 (2)	C13—C12—H12B	110.0
C7—C2—O1	124.9 (5)	H12A—C12—H12B	108.4
C7—C2—C3	119.6 (6)	N4—C13—C12	109.0 (6)
O1—C2—C3	115.4 (5)	N4—C13—H13A	109.9
C4—C3—C2	119.5 (6)	C12—C13—H13A	109.9
C4—C3—H3	120.3	N4—C13—H13B	109.9
С2—С3—Н3	120.3	C12—C13—H13B	109.9
C3—C4—C5	123.1 (6)	H13A—C13—H13B	108.3
C3—C4—H4	118.5	C8—N1—C10	120.5 (5)
C5—C4—H4	118.5	C8—N1—Cu1	126.7 (4)
C4—C5—C6	116.8 (5)	C10—N1—Cu1	111.3 (4)
C4—C5—C8	118.2 (5)	C12—N2—C11	118.0 (6)

C6—C5—C8	124.9 (5)	C12—N2—Cu1	108.8 (4)
O2—C6—C5	124.9 (5)	C11—N2—Cu1	106.1 (4)
O2—C6—C7	116.7 (5)	C12—N2—H1	112 (4)
C5—C6—C7	118.3 (5)	C11—N2—H1	108 (4)
C2—C7—C6	122.5 (5)	Cu1—N2—H1	103 (4)
С2—С7—Н7	118.7	O3—N3—O4	119.1 (6)
С6—С7—Н7	118.7	O3—N3—O5	120.6 (7)
N1—C8—C5	120.8 (5)	O4—N3—O5	120.2 (7)
N1—C8—C9	119.6 (5)	C13—N4—Cu1	108.5 (4)
C5—C8—C9	119.6 (5)	C13—N4—H4A	110.0
С8—С9—Н9А	109.5	Cu1—N4—H4A	110.0
С8—С9—Н9В	109.5	C13—N4—H4B	110.0
Н9А—С9—Н9В	109.5	Cu1—N4—H4B	110.0
С8—С9—Н9С	109.5	H4A—N4—H4B	108.4
Н9А—С9—Н9С	109.5	C2	117.9 (5)
Н9В—С9—Н9С	109.5	C6—O2—Cu1	127.1 (4)
N1-C10-C11	107.4 (5)	N3—O4—Cu1	167.6 (6)
N1-C10-H10A	110.2	O1—C1—H1A	109.5
C11—C10—H10A	110.2	O1—C1—H1B	109.5
N1-C10-H10B	110.2	H1A—C1—H1B	109.5
C11—C10—H10B	110.2	O1—C1—H1C	109.5
H10A—C10—H10B	108.5	H1A—C1—H1C	109.5
N2-C11-C10	108.5 (6)	H1B—C1—H1C	109.5

Symmetry code: (i) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N2—H1…O5 ⁱ	0.90(1)	2.15 (2)	3.013 (8)	161 (6)
N2—H1···O3 ⁱ	0.90(1)	2.65 (6)	3.134 (8)	115 (5)
N4—H4A···O2 ⁱⁱ	0.90	2.43	3.316 (9)	168
N4—H4 <i>B</i> ···O3 ⁱⁱ	0.90	2.29	3.157 (8)	162
N4—H4 B ····O4 ⁱⁱ	0.90	2.66	3.175 (9)	118

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+1.