organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(carboxymethyl)ammonium 4-toluenesulfonate

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 8 August 2008; accepted 14 August 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.119; data-to-parameter ratio = 15.4.

The iminodiacetic acid component of the title salt, $C_4H_8NO_4^+ \cdot C_7H_7SO_3^-$, is protonated at the N atom. The cation uses the ammonium group to form hydrogen bonds to the O atoms of two adjacent sulfonate groups. In addition, the carboxylic acid portions of the cation form hydrogen bonds to the sulfonate groups. The hydrogen-bonding interactions give rise to a layer structure.

Related literature

For the crystal structures of iminodiacetic acid hydrohalides, see: Oskarsson (1973, 1974*a*,*b*, 1976).

Experimental

Crystal data

 $C_4H_8NO_4^+ \cdot C_7H_7O_3S^ M_r = 305.30$ Orthorhombic, *Pbca* a = 9.9291 (2) Å

```
b = 10.3636 (2) \text{ Å}

c = 25.8862 (5) \text{ Å}

V = 2663.72 (9) \text{ Å}^3

Z = 8
```

Mo $K\alpha$ radiation $\mu = 0.28 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.929, T_{\rm max} = 0.929$

Refinement

Table 1

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.119$ S = 1.153059 reflections 198 parameters 4 restraints

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1N1\cdotsO2^{i}$	0.88 (1)	2.02 (1)	2.885 (2)	167 (2)
$N1 - H1N2 \cdot \cdot \cdot O3^{ii}$	0.88(1)	2.06 (2)	2.792 (2)	140 (2)
O5−H5O···O1	0.84 (1)	1.79 (1)	2.607 (2)	164 (3)
$O7-H7O\cdots O2^{iii}$	0.84 (1)	1.85 (1)	2.659 (2)	160 (3)
Symmetry codes: $x - \frac{1}{2}, y - 1, -z + \frac{1}{2}.$	(i) $-x + 1$,	$y - \frac{1}{2}, -z + \frac{1}{2};$	(ii) $-x + \frac{1}{2}$,	$y - \frac{1}{2}, z;$ (iii)

T = 100 (2) K $0.27 \times 0.27 \times 0.27 \text{ mm}$

 $R_{\rm int} = 0.048$

refinement

 $\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

20842 measured reflections

3059 independent reflections

2560 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank the University of Malaya for funding this study (SF022/2007 A, FS339/2008 A) and also for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2187).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Oskarsson, Å. (1973). Acta Cryst. B29, 1747-1751.
- Oskarsson, Å. (1974a). Acta Cryst. B30, 780-783.

Oskarsson, Å. (1974b). Acta Cryst. B30, 1184–1188.

Oskarsson, A. (1976). Acta Cryst. B32, 2163-2170.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, o1798 [doi:10.1107/S1600536808026214]

Bis(carboxymethyl)ammonium 4-toluenesulfonate

Kong Mun Lo and Seik Weng Ng

S1. Experimental

Iminodiacetic acid (0.55 g, 4 mmol) and *p*-toluenesulfonic acid (0.65 g, 4 mmol) were heated in toluene (100 ml) for 1 h. Crystals were isolated from the cool solution after several days.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2 to $1.5U_{eq}(\text{carrier C})$. The acid and ammonium H atoms were refined with distance restraints of O—H = 0.84 (1) and N—H = 0.88 (1) Å; their isotropic displacement parameters were freely refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $(C_4H_8NO_4)^+(C_7H_7O_3S)^-$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Bis(carboxymethyl)ammonium 4-toluenesulfonate

Crystal data	
$C_4H_8NO_4^+ \cdot C_7H_7O_3S^-$	F(000) = 1280
$M_r = 305.30$	$D_{\rm x} = 1.523 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 4293 reflections
a = 9.9291 (2) Å	$\theta = 2.9 - 27.2^{\circ}$
b = 10.3636 (2) Å	$\mu=0.28~\mathrm{mm^{-1}}$
c = 25.8862 (5) Å	T = 100 K
$V = 2663.72 (9) Å^3$	Triangular block, colorless
Z = 8	$0.27 \times 0.27 \times 0.27$ mm

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.930, T_{max} = 0.930$ <i>Refinement</i>	20842 measured reflections 3059 independent reflections 2560 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.6^{\circ}$ $h = -12 \rightarrow 7$ $k = -13 \rightarrow 13$ $l = -33 \rightarrow 33$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.15	H atoms treated by a mixture of independent
3059 reflections	and constrained refinement
198 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0644P)^2 + 0.8206P]$
4 restraints	where $P = (F_o^2 + 2F_c^2)/3$
0 constraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.42$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.50$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.49041 (5)	0.84948 (4)	0.358654 (17)	0.01248 (14)
01	0.55419 (15)	0.74172 (13)	0.38508 (5)	0.0195 (3)
O2	0.56209 (14)	0.88382 (13)	0.31102 (5)	0.0163 (3)
O3	0.34727 (14)	0.83294 (13)	0.35029 (5)	0.0190 (3)
O4	0.40223 (14)	0.52637 (13)	0.30853 (5)	0.0171 (3)
05	0.51261 (16)	0.49339 (13)	0.38301 (5)	0.0199 (3)
H5O	0.510 (3)	0.5747 (10)	0.3841 (10)	0.034 (7)*
O6	0.20627 (14)	0.17528 (13)	0.21695 (5)	0.0176 (3)
07	0.29656 (14)	-0.02406 (13)	0.22217 (5)	0.0163 (3)
H7O	0.229 (2)	-0.047 (3)	0.2048 (10)	0.051 (9)*
N1	0.37466 (17)	0.27383 (15)	0.28845 (6)	0.0129 (3)
H1N1	0.402 (3)	0.316 (2)	0.2610 (7)	0.031 (7)*
H1N2	0.2899 (11)	0.296 (2)	0.2924 (8)	0.014 (5)*
C1	0.50864 (19)	0.98391 (18)	0.40013 (7)	0.0141 (4)
C2	0.3995 (2)	1.02980 (19)	0.42797 (8)	0.0187 (4)
H2	0.3146	0.9879	0.4256	0.022*
C3	0.4152 (2)	1.1376 (2)	0.45941 (8)	0.0212 (4)
H3	0.3404	1.1681	0.4788	0.025*
C4	0.5374 (2)	1.20164 (19)	0.46306 (7)	0.0183 (4)
C5	0.6471 (2)	1.15329 (19)	0.43556 (8)	0.0191 (4)
Н5	0.7319	1.1952	0.4380	0.023*
C6	0.6335 (2)	1.04440 (19)	0.40462 (7)	0.0171 (4)
H6	0.7093	1.0112	0.3866	0.021*
C7	0.5517 (2)	1.3217 (2)	0.49545 (8)	0.0247 (5)
H7A	0.4636	1.3631	0.4993	0.037*

H7B	0.6142	1.3815	0.4785	0.037*	
H7C	0.5868	1.2985	0.5296	0.037*	
C8	0.45172 (19)	0.45546 (18)	0.34029 (7)	0.0137 (4)	
C9	0.45326 (19)	0.31071 (18)	0.33494 (7)	0.0137 (4)	
H9A	0.5472	0.2798	0.3315	0.016*	
H9B	0.4132	0.2705	0.3660	0.016*	
C10	0.3811 (2)	0.13288 (17)	0.27813 (7)	0.0142 (4)	
H10A	0.3570	0.0845	0.3098	0.017*	
H10B	0.4738	0.1085	0.2680	0.017*	
C11	0.28461 (19)	0.09925 (18)	0.23534 (7)	0.0132 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0104 (2)	0.0118 (2)	0.0153 (2)	-0.00084 (17)	-0.00072 (16)	0.00057 (16)
01	0.0240 (8)	0.0125 (7)	0.0221 (7)	-0.0013 (6)	-0.0072 (6)	0.0031 (5)
O2	0.0164 (7)	0.0158 (7)	0.0168 (7)	-0.0021 (6)	0.0028 (5)	-0.0016 (5)
O3	0.0109 (7)	0.0226 (8)	0.0233 (7)	-0.0016 (6)	-0.0006 (6)	-0.0024 (5)
O4	0.0169 (7)	0.0148 (7)	0.0197 (7)	0.0007 (6)	-0.0025 (5)	0.0007 (5)
05	0.0293 (9)	0.0111 (7)	0.0192 (7)	-0.0007 (6)	-0.0092 (6)	-0.0014 (5)
O6	0.0156 (7)	0.0155 (7)	0.0217 (7)	-0.0016 (6)	-0.0030 (5)	0.0033 (5)
O7	0.0134 (7)	0.0143 (7)	0.0211 (7)	-0.0023 (6)	-0.0006 (6)	-0.0043 (5)
N1	0.0123 (8)	0.0109 (8)	0.0154 (8)	0.0011 (6)	-0.0002 (6)	0.0000 (6)
C1	0.0144 (9)	0.0131 (9)	0.0149 (8)	-0.0001 (7)	-0.0003 (7)	0.0010 (7)
C2	0.0148 (10)	0.0198 (10)	0.0215 (9)	-0.0019 (8)	0.0032 (8)	0.0004 (8)
C3	0.0190 (11)	0.0217 (10)	0.0228 (10)	0.0025 (8)	0.0066 (8)	-0.0020 (8)
C4	0.0237 (11)	0.0162 (10)	0.0150 (9)	0.0007 (8)	-0.0001 (8)	0.0004 (7)
C5	0.0145 (10)	0.0225 (10)	0.0202 (9)	-0.0045 (8)	0.0002 (8)	-0.0023 (8)
C6	0.0130 (9)	0.0199 (10)	0.0183 (9)	0.0004 (8)	0.0014 (7)	-0.0027 (7)
C7	0.0276 (12)	0.0219 (11)	0.0247 (10)	-0.0011 (9)	0.0010 (9)	-0.0067 (8)
C8	0.0102 (9)	0.0150 (9)	0.0161 (8)	-0.0005 (7)	0.0005 (7)	0.0004 (7)
C9	0.0125 (9)	0.0133 (9)	0.0152 (9)	0.0002 (7)	-0.0026 (7)	0.0000 (7)
C10	0.0132 (9)	0.0095 (8)	0.0200 (9)	0.0004 (7)	-0.0017 (7)	-0.0009 (7)
C11	0.0108 (9)	0.0132 (9)	0.0157 (8)	-0.0019 (7)	0.0028 (7)	0.0012 (7)

Geometric parameters (Å, °)

<u>81—03</u>	1.4478 (14)	C2—H2	0.9500	
S1—O1	1.4547 (14)	C3—C4	1.386 (3)	
S1—O2	1.4675 (13)	С3—Н3	0.9500	
S1—C1	1.768 (2)	C4—C5	1.394 (3)	
O4—C8	1.207 (2)	C4—C7	1.507 (3)	
O5—C8	1.320 (2)	C5—C6	1.390 (3)	
O5—H5o	0.84 (1)	C5—H5	0.9500	
O6-C11	1.205 (2)	С6—Н6	0.9500	
O7—C11	1.328 (2)	C7—H7A	0.9800	
O7—H7o	0.84 (1)	С7—Н7В	0.9800	
N1—C9	1.484 (2)	С7—Н7С	0.9800	

N1—C10	1.486 (2)	С8—С9	1.507 (3)
N1—H1n1	0.88 (1)	С9—Н9А	0.9900
N1—H1n2	0.88 (1)	С9—Н9В	0.9900
C1—C2	1.385 (3)	C10—C11	1.505 (3)
C1—C6	1.394 (3)	C10—H10A	0.9900
C2—C3	1.391 (3)	C10—H10B	0.9900
O3—S1—O1	114.00 (9)	С4—С5—Н5	119.7
O3—S1—O2	112.28 (8)	C5—C6—C1	119.93 (18)
O1—S1—O2	111.72 (8)	С5—С6—Н6	120.0
O3—S1—C1	106.53 (9)	C1—C6—H6	120.0
O1—S1—C1	105.95 (9)	С4—С7—Н7А	109.5
O2—S1—C1	105.63 (8)	С4—С7—Н7В	109.5
С8—О5—Н5О	108.2 (18)	H7A—C7—H7B	109.5
С11—07—Н7О	110 (2)	С4—С7—Н7С	109.5
C9—N1—C10	112.10 (14)	H7A—C7—H7C	109.5
C9—N1—H1N1	111.7 (17)	H7B—C7—H7C	109.5
C10—N1—H1N1	109.4 (16)	O4—C8—O5	125.13 (18)
C9—N1—H1N2	110.2 (14)	O4—C8—C9	123.20 (17)
C10—N1—H1N2	108.3 (15)	O5—C8—C9	111.66 (15)
H1N1—N1—H1N2	105 (2)	N1—C9—C8	109.01 (15)
C2—C1—C6	119.85 (18)	N1—C9—H9A	109.9
C2—C1—S1	120.41 (15)	С8—С9—Н9А	109.9
C6—C1—S1	119.73 (15)	N1—C9—H9B	109.9
C1—C2—C3	119.53 (19)	С8—С9—Н9В	109.9
C1—C2—H2	120.2	H9A—C9—H9B	108.3
С3—С2—Н2	120.2	N1-C10-C11	109.43 (15)
C4—C3—C2	121.46 (18)	N1-C10-H10A	109.8
С4—С3—Н3	119.3	C11-C10-H10A	109.8
С2—С3—Н3	119.3	N1-C10-H10B	109.8
C3—C4—C5	118.49 (18)	C11—C10—H10B	109.8
C3—C4—C7	121.06 (19)	H10A—C10—H10B	108.2
C5—C4—C7	120.4 (2)	O6—C11—O7	125.83 (17)
C6—C5—C4	120.68 (19)	O6-C11-C10	123.36 (17)
С6—С5—Н5	119.7	O7—C11—C10	110.79 (16)
O3—S1—C1—C2	16.35 (19)	C3—C4—C5—C6	0.9 (3)
O1—S1—C1—C2	-105.40 (17)	C7—C4—C5—C6	-178.42 (18)
O2—S1—C1—C2	135.94 (16)	C4—C5—C6—C1	1.2 (3)
O3—S1—C1—C6	-163.36 (15)	C2-C1-C6-C5	-2.3 (3)
O1—S1—C1—C6	74.89 (17)	S1—C1—C6—C5	177.39 (15)
O2—S1—C1—C6	-43.77 (18)	C10—N1—C9—C8	175.26 (15)
C6—C1—C2—C3	1.3 (3)	O4—C8—C9—N1	-5.4 (3)
S1—C1—C2—C3	-178.42 (15)	O5—C8—C9—N1	175.76 (15)
C1—C2—C3—C4	0.9 (3)	C9—N1—C10—C11	172.17 (15)
C2—C3—C4—C5	-1.9 (3)	N1-C10-C11-O6	-6.8 (3)
C2—C3—C4—C7	177.37 (19)	N1-C10-C11-O7	174.56 (14)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1N1···O2 ⁱ	0.88 (1)	2.02 (1)	2.885 (2)	167 (2)
N1—H1 <i>N</i> 2···O3 ⁱⁱ	0.88 (1)	2.06 (2)	2.792 (2)	140 (2)
O5—H5 <i>O</i> …O1	0.84 (1)	1.79 (1)	2.607 (2)	164 (3)
O7—H7 <i>O</i> …O2 ⁱⁱⁱ	0.84 (1)	1.85 (1)	2.659 (2)	160 (3)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) -*x*+1/2, *y*-1/2, *z*; (iii) *x*-1/2, *y*-1, -*z*+1/2.